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Outline

Part I

• Monte Carlo methods to compute the capacity of
noiseless constrained 2D channels.

• Tree-Based Gibbs sampling.

Part II

• Extensions to compute information rates of
noisy constrained 2D source/channel models.

• Multilayer importance sampling.

Both problems reduce to computing the
partition function of graphical models with cycles
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The Partition Function

Problem setting:

- finite sets X1, . . . ,XN and X 4
= X1 ×X2 × . . .×XN

- function f : X → R with f (x) ≥ 0 for all x ∈ X

Compute the partition function

Zf
4
=

∑
x∈X

f (x),

where

- X1, . . . ,XN are “small” sets (e.g., |X1| = . . . = |XN | = 2)
- N is large
- f has a “useful” factorization (factor graph) - but not cycle-free.

Also define
Sf

4
= {x ∈ X : f (x) > 0}.
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Part I: Noiseless Constrained 2D Channels

= = = =

= = = =

= = = =

= = = =

f (x1, . . . , xN) =
∏

neighbors (xk, x`)

g(xk, x`)

g(xk, x`) =

{
0, if xk = x` = 1
1, else

Also known as 2D (1,∞)-RLL channel.
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Noiseless Constrained 2D Channels

In this case

Zf =
∑
x∈X

f (x) = number of valid configurations = |Sf |

CN
4
= 1

N log Zf = noiseless capacity (for N →∞ called C∞ the Shannon capacity)

For a 2D (1,∞)-RLL [CW98,NZ00]

C∞ ≈ 0.587891 . . .

Tight bounds for C∞ are available for a few special cases, while our
method works for various generalizations of this example.
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Noiseless Constrained 1D Channels

Consider a 1D (1,∞)-RLL constraint

f (x1, . . . , xN) =

N∏
k=2

gk(xk−1, xk)

Zf =
∑
x∈X

f (x) =
∑
x∈X

N∏
k=2

gk(xk−1, xk)

Computing Zf is straightforward

. . .
Xk−2

gk−1

Xk−1

gk

Xk

gk+1

Xk+1 . . .

with sum-product message passing on a cycle-free factor graph.

Other approaches: combinatorial and algebraic [Shannon48].
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Estimating 1/Zf (Ogata-Tanemura)

Algorithm:

1. Draw samples x(1), x(2), . . . , x(K) ∈ Sf according to pf = f (x)/Zf .

2. Compute:

Γ̂ =
1

K·|Sf |

K∑
k=1

1

f (x(k))

⇒ E[Γ̂] = 1/Zf .

Issues:

1. How draw samples? Gibbs sampling: highly dependent samples,
prone to slow mixing.

2. Not applicable to previous example since Zf = |Sf |.
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Estimating 1/Zf (Ogata-Tanemura)

Algorithm:

1. Draw samples x(1), x(2), . . . , x(K) ∈ Sf according to pf = f (x)/Zf .

2. Compute:

Γ̂ =
1

K·|Sf |

K∑
k=1

1

f (x(k))

⇒ E[Γ̂] = 1/Zf . Issues:

1. How draw samples? Gibbs sampling: highly dependent samples,
prone to slow mixing.

2. Not applicable to previous example since Zf = |Sf |.

We will address both issues by tree-based Gibbs sampling and
tree-based estimation of 1/Zf .
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Tree-Based Gibbs Sampling
(Hamze & de Freitas, 2004)

Partition the index set {1, . . . , N} into two parts (A, B) such that
fixing either xA or xB breaks all cycles in the remaining factor graph.

= = = =

= = = =

= = = =

= = = =

A A
'

&

$

%

B
'

&

$

%

B

Generate samples (x
(1)
A , x

(1)
B ), (x

(2)
A , x

(2)
B ), . . . by alternating between

- sampling x
(k)
A according to p(xA|xB = x

(k−1)
B ) ∝ f (xA, x

(k−1)
B )

- sampling x
(k)
B according to p(xB|xA = x

(k)
A ) ∝ f (x

(k)
A , xB)

Much faster mixing than naive Gibbs sampling.
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Sampling from Cycle-Free Factor Graphs

(demonstrated for Markov chains)

Sampling from p(x1, . . . , xn) = p(x1)

n∏
k=2

p(xk|xk−1) is straightforward.

What if p(x1, . . . , xn) ∝
n∏

k=2

gk(xk−1, xk) ?

. . .
Xk−2

gk−1

Xk−1

gk

Xk
�

gk+1

Xk+1
�

. . .

Reparameterize using p(xk|xx−1) =
gk(xk−1, xk)

←−µXk
(xk)

←−µXk−1
(xk−1)

with sum-product messages ←−µ .

=⇒ “backward filtering forward sampling” (or the other way round)
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Sampling from Cycle-Free Factor Graphs
(demonstrated for Markov chains)

Sampling from p(x1, . . . , xn) = p(x1)

n∏
k=2

p(xk|xk−1) is straightforward.

What if p(x1, . . . , xn) ∝
n∏

k=2

gk(xk−1, xk) ?

. . .
Xk−2

gk−1

Xk−1

gk

Xk
�

gk+1

Xk+1
�

. . .

Reparameterize using p(xk|xx−1) =
gk(xk−1, xk)

←−µXk
(xk)

←−µXk−1
(xk−1)

with sum-product messages ←−µ .

=⇒ “backward filtering forward sampling” (or the other way round)

Yields Zg =
∑

x1,...,xn

n∏
k=2

gk(xk−1, xk) =
∑
x1

←−µX1(x1) as a byproduct.
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Tree-Based Estimation of 1/Zf (ISIT 2008)

= = = =

= = = =

= = = =

= = = =

A A
'

&

$

%

B
#

"

 

!

B

Suppose

fA(xA)
4
=

∑
xB

f (xA, xB).

Therefore ZfA
=

∑
xA

fA(xA) = Zf .

=⇒ Can modify the “first method” to estimate 1/Zf = 1/ZfA
by:

ΓA =
1

K·|SfA
|

K∑
k=1

1

fA(x
(k)
A )

Get fA(x
(k)
A ) and |SfA

| as byproducts of tree-based Gibbs sampling.
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ΓA =
1

K|SfA
|

K∑
k=1

1

fA(x
(k)
A )

ΓB =
1

K|SfB
|

K∑
k=1

1

fB(x
(k)
B )

= = = =

= = = =

= = = =

'

&

$

%

'

&

$

%
= = = =
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Numerical Example: (ITW 2009)

2D (1,∞)-RLL constraint, N = 10× 10.

Estimated noiseless capacity 1
N log Ẑf vs. number of samples K
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@@I C∞ ≈ 0.5878
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Numerical Example: (ITW 2009)

2D (1,∞)-RLL constraint, N = 60× 60.

Estimated noiseless capacity 1
N log Ẑf vs. number of samples K

 0.586
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@@I C∞ ≈ 0.5878
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Part II: Extension to Information Rate
of Noisy Constrained 2-D Channels

- Constrained channel input X1, . . . , XN

with 2-D factor graph for p(x1, . . . , xN) (up to a scale factor)

- Memoryless channel p(y|x) =
∏N

k=1 p(yk|xk)

=
ZZ

ZZ
Y1

X1 =
ZZ

ZZ
Y2

X2 =
ZZ

ZZ
Y3

X3 =
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

Want to estimate 1
N I(X ; Y ) = 1

N

(
H(Y )−H(Y |X)

)
.



17

Estimating I(X ; Y )

Want to estimate

1

N
I(X ; Y ) =

1

N

(
H(Y )−H(Y |X)

)
.

Suppose H(Y |X) is analytically available, for example, if the noise
is additive white Gaussian (AWGN) independent of the input

1

N
H(Y |X) =

1

2
log(2πeσ2)

We will focus on estimating H(Y ) (next slides).
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Estimating H(Y )

by a double-loop algorithm.

H(Y ) = −E [log p(Y )] ≈ − 1

L

L∑
`=1

log p(y(`))

for samples y(1), y(2), . . . , y(L) from p(y).

Issues:

1. How to generate samples y(1), . . . , y(L) ?

- Generate samples x(1), . . . , x(L) from p(x) by tree-based Gibbs
sampling.

- Generate y(1), . . . , y(L) from x(1), . . . , x(L) by channel simulation.

2. Remaining problem: how to estimate p(y(`)) ?
=⇒ inner loop (next slides).
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Estimating p(y(`)): Method 1

Clearly, the partition function of pX,Y (x, y(`)) (as a function of x)
is p(y(`))

p(y(`)) =
∑
x∈X

pX,Y (x, y(`))

=⇒ Can estimate p(y(`)) by
tree-based Gibbs sampling on pX,Y (x, y(`)).
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Estimating p(y(`)): Method 1

Clearly, the partition function of pX,Y (x, y(`)) (as a function of x)
is p(y(`))

p(y(`)) =
∑
x∈X

pX,Y (x, y(`))

=⇒ Can estimate p(y(`)) by
tree-based Gibbs sampling on pX,Y (x, y(`)).

Convergence too slow/erratic at SNR &-4 dB, (SNR
4
= 10 log10

1
σ2)
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Estimating p(y(`)): Method 2

Importance sampling

1. Draw samples x(1), x(2), . . . , x(K) from X according to some
auxiliary probability distribution q(x) = 1

Zg
g(x),

2. Compute

R̂ =
1

K

K∑
k=1

f (x(k))

g(x(k))

⇒ E(R̂) = Zf/Zg.

One (obvious) choice for g(x) is

g(x)
4
= f (x)α, for 0 ≤ α < 1

With this choice, the structure of the factor graph is preserved ⇒
Can sample from q(x) with tree-based Gibbs sampling.
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Estimating p(y(`)):

Use J parallel versions of importance sampling as
For j = 0, 1, . . . , J let

gj(x)
4
= f (x)αj

with 0 ≤ αJ < . . . < α1 < α0 = 1.

Here Zg0 = Zf and

Zf

ZgJ

=
Zg0

Zg1

Zg1

Zg2

· · ·
ZgJ−1

ZgJ

Multilayer importance sampling

1. For j = 1, 2 . . . , J compute Zgj−1
/Zgj

by importance sampling.

2. Use
J∏

j=1

R̂j as an estimate of Zf/ZgJ
, since E(R̂j) = Zgj−1

/Zgj
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Estimating p(y(`)):

Multilayer importance sampling

1. For j = 1, 2, . . . , J compute Zgj−1
/Zgj

by importance sampling.

2. Use
J∏

j=1

R̂j as an estimate of Zf/ZgJ
.

Estimating ZgJ
easier than Zf ⇒ tree-based Ogata-Tanemura.

In particular, we have ZgJ
= |Sf | if αJ = 0.

In our numerical experiments

f`(x)
4
= p(x)pY |X(y(`)|x)

And Zf`
is the desired quantity.
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Numerical Example:

Noisy 2D (1,∞)-RLL constraint, N = 24× 24.
AWGN channel, p(x) uniform over valid configurations, and J = 4.

Estimated information rate at zero dB vs. number of samples L.
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Numerical Example:

Noisy 2D (1,∞)-RLL constraint, N = 24× 24.
AWGN channel, p(x) uniform over valid configurations.

Estimated information rate vs. SNR
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@@I

estimated I(X; Y )
from previous slide

@@I

Ĉ24×24 ≈ 0.5961
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Conclusion

We proposed new sampling-based methods to estimate

• the partition function (normalization constant) of
unnormalized 2D probability distributions and

• the information rates of 2D source/channel models

The methods can handle other 2D constraints and other noisy 2D
channels, like ISI channels.

The proposed methods are guaranteed to asymptotically converge
to the desired quantity, in contrast to approximate GBP-based
methods [SSKWW08, SM10].

Applications: 2D storage such as holographic data storage.
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Thank You!


