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The Origin of Coding Constraints

Observation
Hardware constraints translate into coding constraints.
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The Origin of Coding Constraints

Observation
Hardware constraints translate into coding constraints.

Example of magnetic recording:

0000000 111

NN NN S S
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The Origin of Coding Constraints

Observation
Hardware constraints translate into coding constraints.

Example of magnetic recording:

0000000 111
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The Origin of Coding Constraints

Observation
Hardware constraints translate into coding constraints.

Example of magnetic recording:

0000000 111

NN NN S S

must not be too close
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Constrained Systems

Definition

A one-dimensional constrained system S is a set of finite words
(over a finite alphabet) which obey a certain constraint.

Observation

Most useful one-dimensional
constraints are regular
languages.

Goal

We want to losslessly translate
arbitrary sequences of input
bits to constrained sequences.

DASH

DOT

DASH

DOT

LETTER SPACE

WORD SPACE

Telegraph channel constraint, C. E. Shannon, 1948.
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Constrained Systems – Examples

Example

The (d, k)-RLL (Run-Length Limited)
constrained system is the set of all
{0, 1}-sequences such that the number
of 0’s between adjacent 1’s is at least d,
and there are no k+ 1 consecutive
zeroes.

000

1

1

(2, 3)-RLL Graph
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Constrained Systems – Encoders

replacements

Encoder
m n

Definition

A rate R = m/n encoder for a constrained system S is a
mapping {0, 1}m → {0, 1}n such that the concatenated output
is a sequence of S.
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Constrained Systems – Encoders

replacements

Encoder
m n

Definition

A rate R = m/n encoder for a constrained system S is a
mapping {0, 1}m → {0, 1}n such that the concatenated output
is a sequence of S.

Question

How high can the code rate be?
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The Capacity of Constrained Systems

Definition

The capacity of the constrained system S is

cap(S)
def
= lim

n→∞

log2 |Sn|
n

,

where |Sn| is the number of sequences in S of length n.

Theorem (Shannon, 1948)

If there exists a decodable code at rate R = m/n for S, then
R 6 cap(S).

Theorem (Shannon, 1948)

For any rate R = m/n < cap(S) there exists a block code for S
with rate R.
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More on the Origin of (d, k)-RLL

Question

Where does the k in (d, k)-RLL come from?
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More on the Origin of (d, k)-RLL

Question

Where does the k in (d, k)-RLL come from?

Example of magnetic recording:

t

The writer intends to write duration t, but because of a clock
drift, the reader may obtain (1− δ)t < t′ < (1+ δ)t. Thus, long
runs may result in spurious or missing zeros after decoding.
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More on the Origin of (d, k)-RLL

Question

Where does the k in (d, k)-RLL come from?

1 2 3 4 5 6

δ-drift neighborhood
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More on the Origin of (d, k)-RLL

Question

Where does the k in (d, k)-RLL come from?

1 2 3 4 5 6

neighborhoods are disjoint
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More on the Origin of (d, k)-RLL

Question

Where does the k in (d, k)-RLL come from?

1 2 3 4 5 6

neighborhoods are no longer disjoint!
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More on the Origin of (d, k)-RLL

Question

Where does the k in (d, k)-RLL come from?

1 2 3 4 5 6

This results in (0, 2)-RLL.
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Two-Dimensional Constrained Systems

Definition

A two-dimensional constrained system S is a set of n×m
arrays (over a finite alphabet) obeying some constraint.
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Two-Dimensional Constrained Systems

Definition

A two-dimensional constrained system S is a set of n×m
arrays (over a finite alphabet) obeying some constraint.

Example

The (d, k)-RLL system is the set of all {0, 1}-arrays such that in
each column and row, the number of 0’s between adjacent 1’s is
at least d, and there are no k+ 1 consecutive zeroes.
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Two-Dimensional Constrained Systems

Definition

A two-dimensional constrained system S is a set of n×m
arrays (over a finite alphabet) obeying some constraint.

Example

The (d, k)-RLL system is the set of all {0, 1}-arrays such that in
each column and row, the number of 0’s between adjacent 1’s is
at least d, and there are no k+ 1 consecutive zeroes.

Example

The no isolated bit system is the set of all {0, 1}-arrays such
that they contain no 0 surrounded by 1’s and no 1 surrounded
by 0’s.
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Two-Dimensional Constrained Systems (Cont.)

Motivation

Some two-dimensional
applications pose
constraints, e.g.,
magnetic drives, optical
and holographic storage
devices.
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Two-Dimensional Constrained Systems (Cont.)

Motivation

Some two-dimensional
applications pose
constraints, e.g.,
magnetic drives, optical
and holographic storage
devices.

Definition

The capacity of the constrained system S is

cap(S)
def
= lim

n,m→∞

log2 |Sn,m|
nm

,

where |Sn,m| is the number of arrays in S of size n×m.
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Prior Work

N. Calkin and H. Wilf, SIAM J. Disc. Math., 1998

Used the transfer-matrix method to provide numerical
bounds on cap(S1,∞):

0.5878911617 6 cap(S1,∞) 6 0.5878911618

(S1,∞ is the set of all (1,∞)-RLL arrays, i.e., binary arrays
which do not have adjacent 1’s. Equivalently, it is the set of
all independent sets in the grid graph.)
A. Kato and K. Zeger, IEEE Trans. Inform. Theory, 1999

Found the zero-capacity regions of two-dimensional
(d, k)-RLL constraints: cap(Sd,d+1) = 0 for all d > 0, and
cap(Sd,k) > 0 for k > d+ 2. They also provided weak
bounds on the capacity when it is not zero.
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S. Halevy, et al., IEEE Trans. Information Theory, 2004

Used a constructive approach in which variable-rate
bit-stuffing encoders are analyzed to provide the best yet
known lower bounds on cap(Sd,∞) for d > 1.

M. Schwartz and A. Vardy, Proc. AAECC-16, 2006

Proved asymptotically-tight (as k → ∞) lower and upper
bounds on cap(S0,k) by using probabilistic tools.

S. Forchhammer and T. V. Laursen, Proc. ISIT06, 2006

Used random fields to approximate the capacity of the
two-dimensional no-isolated-bit constraint.
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Prior Work

R. J. Baxter, J. Physics, 1980

Gave an exact but non-rigorous solution to the capacity of
hexagonal (0, 1)-RLL.

cap(S1,∞
hex

) = log2 κh ≈ 0.480767622 where κh = κ1κ2κ3κ4

κ1 = 4−135/411−5/12c−2 a = − 124

363
3√
11

κ2 =

(

1−
√
1− c+

√

2+ c+ 2
√

1+ c+ c2
)2

b =
2501

11979

√
33

κ3 =

(

−1−
√
1− c+

√

2+ c+ 2
√

1+ c+ c2
)2

c =
3

√

1

4
+

3

8
a
(

3√
b+ 1− 3√

b− 1
)

κ4 =

(√
1− a+

√

2+ a+ 2
√

1+ a+ a2
)−1/2

As Baxter notes: “It is not mathematically rigorous, in that certain analyticity properties . . . are assumed, and

the results . . . (which depend on assuming that various large-lattice limits can be interchanged) are used.

However, I believe that these assumptions . . . are in fact correct.”
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The Path-Cover Constraint

Definition

Given an undirected graph G, the Path-Cover Constraint is the
set of all subsets of edges such that every vertex in the induced
graph has degree either 1 or 2, i.e., a set of non-intersecting
paths cover all the vertices of the graph.
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The Path-Cover Constraint

Definition

Given an undirected graph G, the Path-Cover Constraint is the
set of all subsets of edges such that every vertex in the induced
graph has degree either 1 or 2, i.e., a set of non-intersecting
paths cover all the vertices of the graph.

Observation

Equivalently, an assignment of 0’s and 1’s to edges such that
every vertex “sees” exactly 1 or 2 incident edges assigned a 1.
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The Path-Cover Constraint

Definition

Given an undirected graph G, the Path-Cover Constraint is the
set of all subsets of edges such that every vertex in the induced
graph has degree either 1 or 2, i.e., a set of non-intersecting
paths cover all the vertices of the graph.

Observation

Equivalently, an assignment of 0’s and 1’s to edges such that
every vertex “sees” exactly 1 or 2 incident edges assigned a 1.

Observation

If the graph G is a “one-dimensional” string graph, then the PC
(Path Cover) constraint is exactly the (0, 1)-RLL constraint.
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The PC Constraint on the Triangular Grid

We will examine the PC constraint over the two-dimensional
triangular grid. An example of a PC constrained array:
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Networks of Relations – Definitions

Definition

A network of relations is an undirected graph for which we
associate with each vertex v a relation over deg(v) variables.

Definition

A satisfying assignment is an assignment of values to the
edges, such that each vertex-relation is satisfied.
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Networks of Relations – Definitions

Definition

A network of relations is an undirected graph for which we
associate with each vertex v a relation over deg(v) variables.

Definition

A satisfying assignment is an assignment of values to the
edges, such that each vertex-relation is satisfied.

Motivation

We want to build a network of relations such that its satisfying
assignments correspond to valid constrained arrays.
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Step #1: Constraint → Network of Relations

R 6=

R 6=

Definition

The relation R 6= is satisfied by
all assignments except for the
(0, 0, 0) and (1, 1, 1)
assignments.

Observation

The satisfying assignments to
the edges are exactly the valid
PC-constrained arrays.
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Step #1: Constraint → Network of Relations

φ+

R 6=

Definition

The relation φ+, the “accept all”
relation, is satisfied by all
assignments. It is used at the
edges of the n×m array.

Observation

The satisfying assignments to
the edges are exactly the valid
PC-constrained arrays.
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Holographic Reductions

Method

Under certain conditions a network of relations may be
transformed into a weighted graph by replacing each relation
vertex with a corresponding fixed gadget.

— L. G. Valiant, FOCS 2004.
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Holographic Reductions

Method

Under certain conditions a network of relations may be
transformed into a weighted graph by replacing each relation
vertex with a corresponding fixed gadget.

— L. G. Valiant, FOCS 2004.

Motivation

The number of satisfying assignments of the original network of
relations equals the weighted perfect matching of the resulting
weighted graph.
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The Perfect Matching

Definition

Let G = (V, E) be a graph. A perfect matching is a subset of
edges M ⊆ E such that every vertex v ∈ V is incident to exactly
one of the edges in M. The set of all perfect matchings will be
denoted PM(G). We can now assign complex weights to the
edges w : E → C, and define the weighted perfect matching of
G to be

PerfMatch(G)
def
= ∑

M∈PM(G)
∏
e∈M

w(e).
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Matchgates and Matchgrids

v1v2

v3

w1

w2

w3

w4w5

w6

Definition

A matchgate is a graph G = (V, E,X,Y)
with a set of input nodes X ⊆ V, and a set
of output nodes Y ⊆ V, where X and Y are
disjoint and |X|+ |Y| equals the number of
variables in the original relation.

Definition

A matchgrid is a network of relations whose vertices have been
replaced by appropriate matchgates, and every input vertex is
incident to exactly one output vertex (and vice versa) by an
edge from the original network.
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Signatures of Relations

Definition

The signature of a relation over n variables is the length 2n

binary vector, indexed by all possible variable assignments, in
which 0 stands for “not-satisfied” and 1 stands for “satisfied”.

Example

The signatures for R 6= and φ+ are:

x1 x2 x3 R 6=
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

x1 φ+
0 1
1 1
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Signatures of Matchgates

Definition

The interaction of the matchgate with the outside world is given
by a 2|X| × 2|Y| matrix, called the signature of the matchgate: for
every Z ⊆ X ∪Y there is an entry containing
PerfMatch(G− Z).

v1v2

v3

w1

w2

w3

w4w5

w6

index signature
(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(0, 1, 1)
(1, 0, 0)
(1, 0, 1)
(1, 1, 0)
(1, 1, 1)























w1w5 +w2w6 + w3w4
0
0
w4
0
w5
w6
0























Moshe Schwartz Networks of Relations in the Service of Constrained Coding



Introduction to Constrained Systems
Exact Two-Dimensional Capacity Calculation

Conclusion

Networks of Relations
Holographic Reductions
The FKT Method
An Exact Solution

Signatures of Matchgates

Observation

The signature of a generator (a matchgate with only output
nodes) is a column vector, while the signature of a recognizer
(a matchgate with only input nodes) is a row vector.
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Signatures of Matchgates

Observation

The signature of a generator (a matchgate with only output
nodes) is a column vector, while the signature of a recognizer
(a matchgate with only input nodes) is a row vector.

Observation

Half the entries of the signature of a matchgate are guaranteed
to be zero (depending on the parity of the index and the parity
of the vertex set).
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Signatures of Matchgates

Observation

The signature of a generator (a matchgate with only output
nodes) is a column vector, while the signature of a recognizer
(a matchgate with only input nodes) is a row vector.

Observation

Half the entries of the signature of a matchgate are guaranteed
to be zero (depending on the parity of the index and the parity
of the vertex set).

Problem

Will we be able to build matchgates for R 6= and φ+?
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Change of Bases

Definition

A basis is an ordered set of vectors. The standard basis is
defined as b = [(1, 0), (0, 1)]. Let β = [n, p] = [(n0, n1), (p0, p1)]
be some basis. We define the basis translation matrix as

Tβ
def
=

(

n0 n1

p0 p1

)

.

Let Γ be some matchgate with n input/output vertices.

sigβ(Γ) · T⊗n
β = sig

b
(Γ) for Γ a generator (1)

T⊗n
β · sig

b
(Γ) = sigβ(Γ) for Γ a recognizer (2)
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Change of Bases (Cont.)

Goal
Find a basis such that all matchgates are realizable.
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Change of Bases (Cont.)

Goal
Find a basis such that all matchgates are realizable.

Example

We choose the basis β = [n, p] = [(1, 1), (1,−1)]. Indeed:

(0, 1, 1, 1, 1, 1, 1, 0) · T⊗3
β = (6, 0, 0,−2, 0,−2,−2, 0),

and the generator matchgate is realizable since

(w1w5 +w2w6 + w3w4, 0, 0,w4, 0,w5,w6, 0) =

= (6, 0, 0,−2, 0,−2,−2, 0).
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Change of Bases (Cont.)

Goal
Find a basis such that all matchgates are realizable.

−1

−1 −1
−2

−2−2

−1

−1

−1
− 1

4

− 1
4− 1

4

Generator for R 6= Recognizer for R 6=
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Step #2: Network of Relations → Weighted Graph

R 6=

R 6=

−1

−1

−1

−2
−2

−2

−1

−1

−1
− 1

4
− 1

4

− 1
4

1

1
1

1

1
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The Holant Theorem

Definition

Given some x ∈ {n, p}⊗n, we associate with it an index vector
by substituting 0 for n and 1 for p. For example, with n⊗ p⊗ n

we associate the index vector (0, 1, 0). For Γ a generator
(recognizer), we define valGβ(Γ, x) (we define valRβ(Γ, x)) to
be the entry in sigβ(Γ) with the index associated with x.
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The Holant Theorem

Definition

Given some x ∈ {n, p}⊗n, we associate with it an index vector
by substituting 0 for n and 1 for p. For example, with n⊗ p⊗ n

we associate the index vector (0, 1, 0). For Γ a generator
(recognizer), we define valGβ(Γ, x) (we define valRβ(Γ, x)) to
be the entry in sigβ(Γ) with the index associated with x.

Definition

For a matchgrid M with f edges between matchgates,

Holant(M) = ∑
x∈β⊗ f

(

∏
16j6g

valGβ(Bj, x)

)(

∏
16i6r

valRβ(Ai, x)

)
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The Holant Theorem

Definition

For a matchgrid M with f edges between matchgates,

Holant(M) = ∑
x∈β⊗ f

(

∏
16j6g

valGβ(Bj, x)

)(

∏
16i6r

valRβ(Ai, x)

)

Observation

Under the standard basis, Holant(M) is PerfMatch(G). Under
our chosen basis β, Holant(M) is the number of satisfying
assignments to the network of relations since valG and valR
query the signatures of the relations.
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The Holant Theorem

Observation

Under the standard basis, Holant(M) is PerfMatch(G). Under
our chosen basis β, Holant(M) is the number of satisfying
assignments to the network of relations since valG and valR
query the signatures of the relations.

Theorem

For any matchgrid M over any basis β, if M has weighted
graph G then

Holant(M) = PerfMatch(G).

Moshe Schwartz Networks of Relations in the Service of Constrained Coding



Introduction to Constrained Systems
Exact Two-Dimensional Capacity Calculation

Conclusion

Networks of Relations
Holographic Reductions
The FKT Method
An Exact Solution

Calculating the Perfect Matching

Problem

How do we calculate PerfMatch(G)?

Moshe Schwartz Networks of Relations in the Service of Constrained Coding



Introduction to Constrained Systems
Exact Two-Dimensional Capacity Calculation

Conclusion

Networks of Relations
Holographic Reductions
The FKT Method
An Exact Solution

Calculating the Perfect Matching

Definition

A canonical partition, π, of {1, . . . , n} is a list of pairs
| p1p2 | p3p4 | . . . | pn−1pn | such that p1 < p2, p3 < p4, up
until pn−1 < pn, and p1 < p3 < · · · < pn−1.
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Calculating the Perfect Matching

Definition

A canonical partition, π, of {1, . . . , n} is a list of pairs
| p1p2 | p3p4 | . . . | pn−1pn | such that p1 < p2, p3 < p4, up
until pn−1 < pn, and p1 < p3 < · · · < pn−1.

Observation

With api ,pj being the weight of the edge pi → pj,

PerfMatch(G) = ∑
π

ap1,p2ap3,p4 . . . apn−1,pn .
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Calculating the Perfect Matching

Definition

A canonical partition, π, of {1, . . . , n} is a list of pairs
| p1p2 | p3p4 | . . . | pn−1pn | such that p1 < p2, p3 < p4, up
until pn−1 < pn, and p1 < p3 < · · · < pn−1.

Observation

With api ,pj being the weight of the edge pi → pj,

PerfMatch(G) = ∑
π

ap1,p2ap3,p4 . . . apn−1,pn .

Does this look familiar?

∑
π

sgn(π)ap1 ,p2ap3 ,p4 . . . apn−1,pn .
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Some Algebra

Definition

Let A = (ai,j) be the part above the main diagonal of an n× n
matrix. Then the Pfaffian of A is defined as

Pf(A) = ∑
π

sgn(π)ap1 ,p2ap3 ,p4 . . . apn−1,pn .
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Some Algebra

Definition

Let A = (ai,j) be the part above the main diagonal of an n× n
matrix. Then the Pfaffian of A is defined as

Pf(A) = ∑
π

sgn(π)ap1 ,p2ap3 ,p4 . . . apn−1,pn .

Theorem

If we complete A to be an n× n anti-symmetric matrix then we
get (Pf(A))2 = det(A).
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Some Algebra

Definition

Let A = (ai,j) be the part above the main diagonal of an n× n
matrix. Then the Pfaffian of A is defined as

Pf(A) = ∑
π

sgn(π)ap1 ,p2ap3 ,p4 . . . apn−1,pn .

Theorem

If we complete A to be an n× n anti-symmetric matrix then we
get (Pf(A))2 = det(A).

Observation

Without sgn(π), the Pfaffian becomes the Hafnian, which is to
the permanent as the Pfaffian is to the determinant.
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The Fisher-Kasteleyn-Temperley Method

Problem

The Hafnian and the permanent are notoriously hard to
handle, but give the perfect matching exactly.

The Pfaffian and determinant are easy to handle, but count
some of the summands with the wrong sign.
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The Fisher-Kasteleyn-Temperley Method

Method

The weighted perfect matching of a graph may be
calculated (up to a sign) as the square root of the
determinant of its anti-symmetric adjacency matrix.

The signs of the entries in the matrix are determined by a
Pfaffian orientation of the graph. Every planar graph has a
Pfaffian orientation.

— H. N. V. Temperley and M. E. Fisher, Phil. Mag., 1960.
— P. W. Kasteleyn, Physica, 1961.
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Step #3: Pfaffian Orientation

−1

−1 −1
−2−2

−2

−1

−1

−1
− 1

4− 1
4

− 1
4

1

1
1

1

1

Method

For a planar graph, an orientation of the
edges such that every clockwise walk on
a face has an odd number of edges
agreeing, is a Pfaffian orientation. Set

ai,j =











0 no edge

w(ei,j) if i → j

−w(ei,j) if j → i

and then Pf(A) = PerfMatch(G).

— P. W. Kasteleyn, Physica, 1961.
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An Exact Solution – The Determinant

An n× n array of basic blocks has the following anti-symmetric
adjacency matrix:

A = In ⊗ In ⊗ B+ In ⊗Un ⊗ ∆6,2 − In ⊗UT
n ⊗ ∆T

6,2

+Un ⊗ In ⊗ ∆7,3 −UT
n ⊗ In ⊗ ∆T

7,3.
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An Exact Solution – The Determinant

An n× n array of basic blocks has the following anti-symmetric
adjacency matrix:

A = In ⊗ In ⊗ B+ In ⊗Un ⊗ ∆6,2 − In ⊗UT
n ⊗ ∆T

6,2

+Un ⊗ In ⊗ ∆7,3 −UT
n ⊗ In ⊗ ∆T

7,3.

Takes care of the basic block. In is the n× n identity matrix and

B =

























0 −1 1 − 1
4 −1 0 0 0

1 0 −1 − 1
4 0 0 0 0

−1 1 0 − 1
4 0 0 0 0

1
4

1
4

1
4 0 0 0 0 0

1 0 0 0 0 −1 1 2
0 0 0 0 1 0 −1 2
0 0 0 0 −1 1 0 2
0 0 0 0 −2 −2 −2 0

























.
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An Exact Solution – The Determinant

An n× n array of basic blocks has the following anti-symmetric
adjacency matrix:

A = In ⊗ In ⊗ B+ In ⊗Un ⊗ ∆6,2 − In ⊗UT
n ⊗ ∆T

6,2

+Un ⊗ In ⊗ ∆7,3 −UT
n ⊗ In ⊗ ∆T

7,3.

Takes care of edges between blocks in the same row.
∆i,j (of the same dimensions as B) which is all zeroes except for
position (i, j) which is 1. Also

Un
def
=

















0 1
0 1

. . .
. . .
0 1

0
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An Exact Solution – The Determinant

An n× n array of basic blocks has the following anti-symmetric
adjacency matrix:

A = In ⊗ In ⊗ B+ In ⊗Un ⊗ ∆6,2 − In ⊗UT
n ⊗ ∆T

6,2

+Un ⊗ In ⊗ ∆7,3 −UT
n ⊗ In ⊗ ∆T

7,3.

Takes care of edges between blocks in the same column.
∆i,j (of the same dimensions as B) which is all zeroes except for
position (i, j) which is 1. Also

Un
def
=

















0 1
0 1

. . .
. . .
0 1

0
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An Exact Solution – The Determinant

An n× n array of basic blocks has the following anti-symmetric
adjacency matrix:

A = In ⊗ In ⊗ B+ In ⊗Un ⊗ ∆6,2 − In ⊗UT
n ⊗ ∆T

6,2

+Un ⊗ In ⊗ ∆7,3 −UT
n ⊗ In ⊗ ∆T

7,3.

Since each basic block stores 3 bit positions (edges), the
capacity is

cap = lim
n→∞

log2
√

det(A)

3n2
.
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An Exact Solution – The Determinant

An n× n array of basic blocks has the following anti-symmetric
adjacency matrix:

A = In ⊗ In ⊗ B+ In ⊗Un ⊗ ∆6,2 − In ⊗UT
n ⊗ ∆T

6,2

+Un ⊗ In ⊗ ∆7,3 −UT
n ⊗ In ⊗ ∆T

7,3.

Since each basic block stores 3 bit positions (edges), the
capacity is

cap = lim
n→∞

log2
√

det(A)

3n2
.

Observation
The matrix A is a 2-level Toeplitz matrix.
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Spectral Distribution of Toeplitz Matrices

Definition

Let us denote Q
def
= [−π,π]. For natural numbers p, k ∈ N, let

an integrable p-variate function f : Qp → Ck×k and a
multi-index n = (n1, . . . , np), ni > 1 be given. The p-level
Toeplitz matrix Tn( f ) is defined as

Tn( f )
def
=

n1−1

∑
j1=−n1+1

. . .
np−1

∑
jp=−np+1

J
(j1)
n1 ⊗ · · · ⊗ J

(jp)
np ⊗ aj1 ,...,jp( f )

where J
(l)
m denotes the matrix of order m whose i, j entry equals

1 if j− i = l and equals zero otherwise, and where

aj1 ,...,jp( f )
def
=

1

(2π)p

∫

Qp
f (φ)e−i(j1φ1+···+jpφp)dφ

is a matrix in Ck×k and i =
√
−1.
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Spectral Distribution of Toeplitz Matrices

Theorem (Tilli, 98)

If f : Qp → Ck×k is an integrable Hermitian matrix-valued
function, then for any function F, uniformly continuous and
bounded over R it holds

lim
n→∞

1

n1 . . . np

kn1 ...np

∑
j=1

F[λj(Tn( f ))] =

=
1

(2π)p

∫

Qp

k

∑
j=1

F[λj( f (φ))]dφ

where λj(M) denotes the j-th eigenvalue of M.
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Spectral Distribution of Toeplitz Matrices

Theorem (Tilli, 98)

If f : Qp → Ck×k is an integrable Hermitian matrix-valued
function, then for any function F, uniformly continuous and
bounded over R it holds

lim
n→∞

1

n1 . . . np

kn1 ...np

∑
j=1

F[λj(Tn( f ))] =

=
1

(2π)p

∫

Qp

k

∑
j=1

F[λj( f (φ))]dφ

where λj(M) denotes the j-th eigenvalue of M.
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An Exact Solution

Observation
1
n log2 det(A) =

1
n ∑ log2 λi(A).

iA = Tn( f ) where we define

f (φ1, φ2) = i[B+ eiφ1∆6,2 − e−iφ1∆T
6,2 + eiφ2∆7,3 − e−iφ2∆T

7,3].
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An Exact Solution

Observation
1
n log2 det(A) =

1
n ∑ log2 λi(A).

iA = Tn( f ) where we define

f (φ1, φ2) = i[B+ eiφ1∆6,2 − e−iφ1∆T
6,2 + eiφ2∆7,3 − e−iφ2∆T

7,3].

The Solution

cap =
1

24π2

∫ π

−π

∫ π

−π
log2 |21− 4 cos φ1 − 4 cos φ2

− 4 cos(φ1 − φ2)|dφ1dφ2

= 0.72399217 . . .
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Result Summary

A general approach to the problem of determining the
capacity of two-dimensional constraints. We do not know
the expressive power of the method.

Generalization to non-planar graphs: we do not care about
the exponential number of summands since we are
interested in the capacity, but we find it difficult to find the
dominant one.

Extension to generalized relations: relations are no longer
either satisfied or unsatisfied, but rather have a “degree” of
satisfaction. For example, we can efficiently count
(0, 1)-RLL with equal amount of horizontal and vertical
violations, but again, we find it difficult to find the dominant
summand.
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More News

Since publication of this work, Louidor and Marcus (IEEE
Trans. IT, 2010) used ad-hoc arguments to calculate the
capacity of:

2-Charge-Constrained arrays: The alphabet is {+1,−1},
and the sum of every 1× ℓ or ℓ× 1 window is between −2
and 2. The capacity is 1

4 .

ODD-Constrained arrays: The alphabet is {0, 1}, and is an
odd number of 0’s between adjacent 1’s in rows and
columns. The capacity is 1

2 .
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Some Interesting Open Problems. . .

What is the capacity of two-dimensional. . .

(d, k)-RLL? (d,∞)-RLL? (0, k)-RLL? (0, 1)-RLL
(hard-square entropy constant)?
Application: Magnetic and optimal storage devices

c-Charge-Constraint?
Application: Magnetic storage devices

No-isolated-bit constraint? No-isolated 1’s constraint?
Application: Optical and phase-change memory devices

No oriented cycle in the grid graph?
Application: Flash memory devices
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Thank You
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