Improved Mixing Condition on the Square Lattice for Counting and Sampling Independent Sets

> Ricardo Restrepo, **Jinwoo Shin**, Prasad Tetali, Eric Vigoda, and Linji Yang

> > Georgia Institute of Technology

November 5th, 2011

High Level Story

Previous Talk by Pinyan Lu is about

- Counting up to the correlation decay (or spatial mixing) threshold of regular trees
- For general spin models & graphs

This Talk is about

- Counting beyond the correlation decay (or spatial mixing) threshold of regular trees
- For specific spin models & graphs

Hard-core Model

Definition

For given (finite) graph G and activity $\lambda > 0$, define the distribution μ on 2^V as

$$\mu(I) \propto \begin{cases} \lambda^{|I|} & ext{if } I \in \mathfrak{I}(G) \\ 0 & ext{otherwise} \end{cases},$$

where $\mathcal{I}(G)$ is the collection of independent sets of G.

Hard-core Model

Definition

For given (finite) graph G and activity $\lambda > 0$, define the distribution μ on 2^V as

$$\mu(I) \propto \begin{cases} \lambda^{|I|} & ext{if } I \in \mathfrak{I}(G) \\ 0 & ext{otherwise} \end{cases},$$

where $\mathcal{I}(G)$ is the collection of independent sets of G.

Questions in this Talk

• Computational complexity of computing the partition function (normalizing factor)

$$Z = Z(G; \lambda) = \sum_{I \in \mathfrak{I}(G)} \lambda^{|I|}$$

 $\circ \ \ {\rm If} \ \ \lambda=1, \ \ Z \ \ {\rm is} \ \# \ {\rm of \ independents \ sets}.$

Hard-core Model

Definition

For given (finite) graph G and activity $\lambda > 0$, define the distribution μ on 2^V as

$$\mu(I) \propto \begin{cases} \lambda^{|I|} & ext{if } I \in \mathfrak{I}(G) \\ 0 & ext{otherwise} \end{cases},$$

where $\mathcal{I}(G)$ is the collection of independent sets of G.

Questions in this Talk

• Computational complexity of computing the partition function (normalizing factor)

$$Z = Z(G; \lambda) = \sum_{I \in \mathfrak{I}(G)} \lambda^{|I|}$$

 $\circ \ \ {\rm If} \ \ \lambda=1, \ \ Z \ \ {\rm is} \ \# \ {\rm of \ independents \ sets.}$

Computational complexity of sampling independent set I from μ?

- Not easy since $Z = \sum_{I \in \mathfrak{I}(G)} \lambda^{|I|}$ is the sum over exponentially large $\mathfrak{I}(G)$ in |V| = n
- Harder if λ is large or the maximum degree Δ is large

- Not easy since $Z = \sum_{I \in \mathfrak{I}(G)} \lambda^{|I|}$ is the sum over exponentially large $\mathfrak{I}(G)$ in |V| = n
- Harder if λ is large or the maximum degree Δ is large

Formally

• (Valiant 1979) Exact computation of Z is #P-complete even for $\lambda = 1$ and $\Delta = 3$

- Not easy since $Z = \sum_{I \in \mathbb{J}(G)} \lambda^{|I|}$ is the sum over exponentially large $\mathbb{J}(G)$ in |V| = n
- Harder if λ is large or the maximum degree Δ is large

Formally

- (Valiant 1979) Exact computation of Z is #P-complete even for $\lambda = 1$ and $\Delta = 3$
- (Weitz 2006) FPTAS for approximating Z for constant Δ and

$$\lambda < \lambda_{reg}(\Delta) := rac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$$

• $\lambda_{reg}(\Delta)$ is the spatial mixing threshold for the regular tree of degree Δ

- Not easy since $Z = \sum_{I \in \mathbb{J}(G)} \lambda^{|I|}$ is the sum over exponentially large $\mathbb{J}(G)$ in |V| = n
- Harder if λ is large or the maximum degree Δ is large

Formally

- (Valiant 1979) Exact computation of Z is #P-complete even for $\lambda = 1$ and $\Delta = 3$
- (Weitz 2006) FPTAS for approximating Z for constant Δ and

$$\lambda < \lambda_{reg}(\Delta) := rac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$$

• $\lambda_{reg}(\Delta)$ is the spatial mixing threshold for the regular tree of degree Δ

- (Sly 2010) NP-hard to approximate Z for $\Delta \ge 3$ and $\lambda_{reg}(\Delta) < \lambda < \lambda_{reg}(\Delta) + \varepsilon$
 - $\circ~$ (Galanis et al. 2011) NP-hard for $\Delta=$ 3, $\Delta\geq$ 6 and $\lambda>\lambda_{\it reg}(\Delta)$

- Not easy since $Z = \sum_{I \in \mathbb{J}(G)} \lambda^{|I|}$ is the sum over exponentially large $\mathbb{J}(G)$ in |V| = n
- Harder if λ is large or the maximum degree Δ is large

Formally

- (Valiant 1979) Exact computation of Z is #P-complete even for $\lambda = 1$ and $\Delta = 3$
- (Weitz 2006) FPTAS for approximating Z for constant Δ and

$$\lambda < \lambda_{reg}(\Delta) := rac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$$

• $\lambda_{reg}(\Delta)$ is the spatial mixing threshold for the regular tree of degree Δ

- (Sly 2010) NP-hard to approximate Z for $\Delta \geq$ 3 and $\lambda_{reg}(\Delta) < \lambda < \lambda_{reg}(\Delta) + \varepsilon$
 - (Galanis et al. 2011) NP-hard for $\Delta =$ 3, $\Delta \ge$ 6 and $\lambda > \lambda_{reg}(\Delta)$
- Question: For restricted class of graphs (e.g. \mathbb{Z}^2), FPTAS exists beyond $\lambda_{reg}(\Delta)$?

Where does $\lambda_{reg}(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$ come from?

• For example, consider the hard-core model μ of square lattices $G = \mathbb{Z}_2$.

Let $\mathbf{p}_L^{\text{even}} = \mathbf{Pr}$ [Origin is occupied | even boundary vertices of $L \times L$ box are occupied]. Let $\mathbf{p}_L^{\text{odd}} = \mathbf{Pr}$ [Origin is occupied | odd bounary vertices of $L \times L$ box are occupied].

• We say v is occupied if v is in the independent set sampled from μ .

Where does $\lambda_{reg}(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$ come from?

• For example, consider the hard-core model μ of square lattices $G = \mathbb{Z}_2$.

Let $\mathbf{p}_L^{\text{even}} = \mathbf{Pr}$ [Origin is occupied | even boundary vertices of $L \times L$ box are occupied]. Let $\mathbf{p}_L^{\text{odd}} = \mathbf{Pr}$ [Origin is occupied | odd bounary vertices of $L \times L$ box are occupied].

• We say v is occupied if v is in the independent set sampled from μ .

• We say (weak) SM (Spatial Mixing) holds if

 $| p_L^{\text{even}} - p_L^{\text{even}} | < \beta^L$ for some constant $\beta < 1$.

Where does
$$\lambda_{reg}(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$$
 come from?

For example, consider the hard-core model μ of square lattices G = Z₂.

Let $\mathbf{p}_L^{\text{even}} = \mathbf{Pr}$ [Origin is occupied | even boundary vertices of $L \times L$ box are occupied]. Let $\mathbf{p}_L^{\text{odd}} = \mathbf{Pr}$ [Origin is occupied | odd bounary vertices of $L \times L$ box are occupied].

• We say v is occupied if v is in the independent set sampled from μ .

We say (weak) SM (Spatial Mixing) holds if

 $| p_L^{\text{even}} - p_L^{\text{even}} | < \beta^L$ for some constant $\beta < 1$.

SM implies Pr[Origin is occupied] becomes independent of vertices far enough

Where does $\lambda_{reg}(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$ come from?

• For example, consider the hard-core model μ of square lattices $G = \mathbb{Z}_2$.

Let $\mathbf{p}_L^{\text{even}} = \mathbf{Pr}$ [Origin is occupied | even boundary vertices of $L \times L$ box are occupied]. Let $\mathbf{p}_L^{\text{odd}} = \mathbf{Pr}$ [Origin is occupied | odd bounary vertices of $L \times L$ box are occupied].

• We say v is occupied if v is in the independent set sampled from μ .

• We say (weak) SM (Spatial Mixing) holds if

 $| p_L^{\text{even}} - p_L^{\text{even}} | < \beta^L$ for some constant $\beta < 1$.

• SM implies Pr[Origin is occupied] becomes independent of vertices far enough

Seems useful to approximate Pr[Origin occupied]

Where does $\lambda_{reg}(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$ come from?

• For example, consider the hard-core model μ of square lattices $G = \mathbb{Z}_2$.

Let $\mathbf{p}_L^{\text{even}} = \mathbf{Pr}$ [Origin is occupied | even boundary vertices of $L \times L$ box are occupied]. Let $\mathbf{p}_L^{\text{odd}} = \mathbf{Pr}$ [Origin is occupied | odd bounary vertices of $L \times L$ box are occupied].

• We say v is occupied if v is in the independent set sampled from μ .

• We say (weak) SM (Spatial Mixing) holds if

 $| p_L^{\text{even}} - p_L^{\text{even}} | < \beta^L$ for some constant $\beta < 1$.

• SM implies Pr[Origin is occupied] becomes independent of vertices far enough

Seems useful to approximate Pr[Origin occupied] and Z as well !

Where $\lambda_{reg}(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$ comes from?

Weitz (2006) shows

SM for the regular tree of degree Δ

 \downarrow (implies)

SM & FPTAS for general graph G of max degree $\Delta = O(1)$

Where
$$\lambda_{reg}(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$$
 comes from?

Weitz (2006) shows

SM for the regular tree of degree Δ

 \downarrow (implies)

SM & FPTAS for general graph G of max degree $\Delta = O(1)$

• It is known (Kelly 1991) that SM in the regular tree of degree Δ if

$$\lambda \ < \ \lambda_{reg}(\Delta) := rac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$$

Where
$$\lambda_{reg}(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$$
 comes from?

Weitz (2006) shows

SM for the regular tree of degree Δ

 \downarrow (implies)

SM & FPTAS for general graph G of max degree $\Delta = O(1)$

• It is known (Kelly 1991) that SM in the regular tree of degree Δ if

$$\lambda \ < \ \lambda_{reg}(\Delta) := rac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}$$

Bounds for SM in Square Lattice \mathbb{Z}^2

- Weitz's result implies SM for $\lambda < \lambda_{reg}(4) = 27/16 = 1.6875$.
 - Previous best bound was 1.255 [vandenBerg-Steif 1994]
 - Conjectured bound is around 3.796 [Gaunt-Fisher 1965]

Our Result for Square Lattice \mathbb{Z}^2

Theorem If $\lambda < 2.3882$,

- 1. (Strong) SM in the hard-core model of \mathbb{Z}^2 holds.
- 2. FPTAS for partition function Z for finite subgraphs of \mathbb{Z}^2 .

★ Previous bound was $\lambda < 1.6875$ by Weitz (2006).

Theorem If $\lambda < 2.3882$,

- 1. (Strong) SM in the hard-core model of \mathbb{Z}^2 holds.
- 2. FPTAS for partition function Z for finite subgraphs of \mathbb{Z}^2 .
- 3. Unique Gibbs measure for the hard-core model on \mathbb{Z}^2 .
- 4. $O(n \log n)$ mixing time of the Glauber dynamics on finite subgraphs of \mathbb{Z}^2 .
- $\star\,$ Previous bound was $\lambda <$ 1.6875 by Weitz (2006).

Theorem If $\lambda < 2.3882$.

- 1. (Strong) SM in the hard-core model of \mathbb{Z}^2 holds.
- 2. FPTAS for partition function Z for finite subgraphs of \mathbb{Z}^2 .
- 3. Unique Gibbs measure for the hard-core model on \mathbb{Z}^2 .
- 4. $O(n \log n)$ mixing time of the Glauber dynamics on finite subgraphs of \mathbb{Z}^2 .
 - ★ Previous bound was $\lambda < 1.6875$ by Weitz (2006).

Our High-level Idea

- Weitz (2006) studied general graphs.
- We refine his approach utilizing the structure of \mathbb{Z}^2 to get a better result

Theorem If $\lambda < 2.3882$,

- 1. (Strong) SM in the hard-core model of \mathbb{Z}^2 holds.
- 2. FPTAS for partition function Z for finite subgraphs of \mathbb{Z}^2 .
- 3. Unique Gibbs measure for the hard-core model on \mathbb{Z}^2 .
- 4. $O(n \log n)$ mixing time of the Glauber dynamics on finite subgraphs of \mathbb{Z}^2 .
 - ★ Previous bound was $\lambda < 1.6875$ by Weitz (2006).

Our High-level Idea

- Weitz (2006) studied general graphs.
- We refine his approach utilizing the structure of \mathbb{Z}^2 to get a better result
- Our method is generic & applicable to other structured graphs.

OUR PROOF APPROACH BASED ON WEITZ'S RESULT (2006)

- DMS CONDITION

Weitz's self-avoiding-tree representation (2006)

• Given G = (V, E) and $v \in V$, he constructs a tree T_{saw} with root v such that

 $\Pr[v \text{ is occupied in } G] = \Pr[v \text{ is occupied in } T_{saw}]$

Weitz's self-avoiding-tree representation (2006)

• Given G = (V, E) and $v \in V$, he constructs a tree $\mathcal{T}_{\mathsf{saw}}$ with root v such that

 $\Pr[v \text{ is occupied in } G] = \Pr[v \text{ is occupied in } T_{saw}]$

- SM in T_{saw} implies SM in G since
 - Each vertex of T_{saw} is a copy of G
 - $\circ~$ Distances between copies in $\mathcal{T}_{\mathit{saw}}$ \geq Distances between originals in G

T_saw (G,A)

Weitz's self-avoiding-tree representation (2006)

• Given G = (V, E) and $v \in V$, he constructs a tree $\mathcal{T}_{\mathsf{saw}}$ with root v such that

 $\Pr[v \text{ is occupied in } G] = \Pr[v \text{ is occupied in } T_{saw}]$

- SM in T_{saw} implies SM in G since
 - Each vertex of T_{saw} is a copy of G
 - Distances between copies in $\mathcal{T}_{saw} \geq$ Distances between originals in G

Weitz's proof strategy for general G

```
SM & FTPAS for graph G of max degree \Delta = O(1)

\uparrow

SM for self-avoiding-tree T_{saw} of G

\uparrow

SM for regular trees of degree \Delta \qquad \stackrel{\text{Kelly}(1991)}{\leftarrow} \lambda < \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}
```

Weitz's self-avoiding-tree representation (2006)

• Given G = (V, E) and $v \in V$, he constructs a tree \mathcal{T}_{saw} with root v such that

 $\Pr[v \text{ is occupied in } G] = \Pr[v \text{ is occupied in } T_{saw}]$

- SM in T_{saw} implies SM in G since
 - Each vertex of T_{saw} is a copy of G
 - $\circ~$ Distances between copies in $\mathcal{T}_{\textit{saw}}$ \geq Distances between originals in ${\it G}$

Weitz's proof strategy for square lattice \mathbb{Z}^2

```
SM & FTPTAS for \mathbb{Z}^2

\uparrow

SM for self-avoiding-tree T_{saw} of \mathbb{Z}^2

\uparrow

SM for regular trees of degree \Delta = 4
```

$$\overset{\operatorname{Kelly}(1991)}{\leftarrow} \quad \lambda < \tfrac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} = 1.6875$$

Weitz's self-avoiding-tree representation (2006)

• Given G = (V, E) and $v \in V$, he constructs a tree $\mathcal{T}_{\mathsf{saw}}$ with root v such that

 $\Pr[v \text{ is occupied in } G] = \Pr[v \text{ is occupied in } T_{saw}]$

- SM in T_{saw} implies SM in G since
 - Each vertex of T_{saw} is a copy of G
 - Distances between copies in $\mathcal{T}_{saw} \geq$ Distances between originals in G

Our proof strategy for square lattice \mathbb{Z}^2

SM & FTPAS for \mathbb{Z}^2 \uparrow (from Weitz's work) SM for self-avoiding-tree T_{saw} of \mathbb{Z}^2 \uparrow (new)

SM for branching trees with average-degree < 3.8

 $\stackrel{(\text{new})}{\leftarrow}$ $\lambda < 2.3882$

- Each vertex of T_M has a type
- (Non-root) vertex of type *i* has M_{ij} children of type *j*.

- Each vertex of T_M has a type
- (Non-root) vertex of type *i* has M_{ij} children of type *j*.
 - \circ e.g. the regular tree of degree Δ is generated by 1×1 matrix $M = (\Delta 1)$.

- Each vertex of T_M has a type
- (Non-root) vertex of type *i* has M_{ij} children of type *j*.
 - $\circ~$ e.g. the regular tree of degree Δ is generated by 1 imes 1 matrix $M=(\Delta-1).$

for $M = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

In \mathbb{Z}^2 , we observe $T_{saw} \subset T_M$

- Since T_M is from considering walks in \mathbb{Z}^2 avoiding cycles of length 4
- While T_{saw} is from considering walks in \mathbb{Z}^2 avoiding cycles of any length

- Each vertex of T_M has a type
- (Non-root) vertex of type *i* has M_{ij} children of type *j*.
 - \circ e.g. the regular tree of degree Δ is generated by 1 imes 1 matrix $M = (\Delta 1)$.

for $M = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

```
In \mathbb{Z}^2, we observe T_{saw} \subset T_M
```

- Since T_M is from considering walks in \mathbb{Z}^2 avoiding cycles of length 4
- While T_{saw} is from considering walks in \mathbb{Z}^2 avoiding cycles of any length

- Each vertex of T_M has a type
- (Non-root) vertex of type *i* has M_{ij} children of type *j*.
 - \circ e.g. the regular tree of degree Δ is generated by 1 imes 1 matrix $M = (\Delta 1)$.

In \mathbb{Z}^2 , we observe $T_{saw} \subset T_M \subset$ 4-Regular teee for $M = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- Since T_M is from considering walks in \mathbb{Z}^2 avoiding cycles of length 4
- While T_{saw} is from considering walks in \mathbb{Z}^2 avoiding cycles of any length
- Hence, it seems promising to overcome the Weitz's bound

- Each vertex of T_M has a type
- (Non-root) vertex of type *i* has M_{ij} children of type *j*.
 - \circ e.g. the regular tree of degree Δ is generated by 1×1 matrix $M = (\Delta 1)$.

In \mathbb{Z}^2 , we observe $T_{saw} \subset T_M \subset$ 4-Regular teee for $M = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- Since T_M is from considering walks in \mathbb{Z}^2 avoiding cycles of length 4
- While T_{saw} is from considering walks in \mathbb{Z}^2 avoiding cycles of any length
- Hence, it seems promising to overcome the Weitz's bound
- More promising for bigger M considering avoiding cycles of larger lengths $6, 8, \ldots$

- Each vertex of T_M has a type
- (Non-root) vertex of type *i* has M_{ij} children of type *j*.
 - \circ e.g. the regular tree of degree Δ is generated by 1 imes 1 matrix $M = (\Delta 1)$.

In \mathbb{Z}^2 , we observe $T_{saw} \subset T_M \subset$ 4-Regular teee for $M = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- Since T_M is from considering walks in \mathbb{Z}^2 avoiding cycles of length 4
- While T_{saw} is from considering walks in \mathbb{Z}^2 avoiding cycles of any length
- Hence, it seems promising to overcome the Weitz's bound
- More promising for bigger M considering avoiding cycles of larger lengths $6, 8, \ldots$

How to prove SM for subtrees of T_M ?

• Weitz's proof is only applicable to the regular case, i.e. 1 imes 1 matrix $M=(\Delta-1)$

Want to prove

In the hard-core model for given branching tree T_M (or its subtree) of root r,

$$\left| \alpha_r^L(+) - \alpha_r^L(-) \right| < \beta^L, \quad \text{for } \beta < 1,$$

where $\left\{\begin{array}{l} \alpha_r^L(+) \\ \alpha_r^L(-) \end{array}\right\}$ is the probability *r* is occupied given *L*-level leaves are $\left\{\begin{array}{l} \text{occupied} \\ \text{unoccupied} \end{array}\right.$

Want to prove

In the hard-core model for given branching tree T_M (or its subtree) of root r,

$$\left| \alpha_r^L(+) - \alpha_r^L(-) \right| < \beta^L, \quad \text{for } \beta < 1,$$

where $\left\{\begin{array}{l} \alpha_r^L(+) \\ \alpha_r^L(-) \end{array}\right\}$ is the probability r is occupied given L-level leaves are $\left\{\begin{array}{l} \text{occupied} \\ \text{unoccupied} \end{array}\right.$

• Hence, suffice to prove that for $v \in T_M$

$$|lpha_{\mathbf{v}}(+)-lpha_{\mathbf{v}}(-)| < eta \max_{i} |lpha_{w_{i}}(+)-lpha_{w_{i}}(-)|,$$

where w_i is a child of v and $\alpha_v(\cdot)$ is an appropriate marginal probability.

Want to prove

In the hard-core model for given branching tree T_M (or its subtree) of root r,

$$\left| \alpha_r^L(+) - \alpha_r^L(-) \right| < \beta^L, \quad \text{for } \beta < 1,$$

where $\left\{\begin{array}{l} \alpha_r^L(+) \\ \alpha_r^L(-) \end{array}\right\}$ is the probability r is occupied given L-level leaves are $\left\{\begin{array}{l} \text{occupied} \\ \text{unoccupied} \end{array}\right.$

• Hence, suffice to prove that for $v \in T_M$

$$|\alpha_{v}(+) - \alpha_{v}(-)| < \beta \max_{i} |\alpha_{w_{i}}(+) - \alpha_{w_{i}}(-)|,$$

where w_i is a child of v and $\alpha_v(\cdot)$ is an appropriate marginal probability.

• Further, we have
$$\alpha_{\nu}(\cdot) = \frac{1}{1+\lambda \prod_{i} \alpha_{w_{i}}(\cdot)}$$
.

Want to prove

In the hard-core model for given branching tree T_M (or its subtree) of root r,

$$\left| \alpha_r^L(+) - \alpha_r^L(-) \right| \ < \ \beta^L, \qquad {
m for} \ \ \beta < 1,$$

where $\left\{\begin{array}{l} \alpha_r^L(+) \\ \alpha_r^L(-) \end{array}\right\}$ is the probability r is occupied given *L*-level leaves are $\left\{\begin{array}{l} \text{occupied} \\ \text{unoccupied} \end{array}\right.$

• Hence, suffice to prove that for $v \in T_M$

$$|\alpha_{v}(+) - \alpha_{v}(-)| < \beta \max_{i} |\alpha_{w_{i}}(+) - \alpha_{w_{i}}(-)|,$$

where w_i is a child of v and $\alpha_v(\cdot)$ is an appropriate marginal probability.

• Further, we have $\alpha_v(\,\cdot\,)=rac{1}{1+\lambda\prod_i lpha_{w_i}(\cdot)}$.

• At a high level, by setting $x = [\alpha_{w_i}(+)], y = [\alpha_{w_i}(-)] \in [0, 1]^{\Delta}$,

We want to prove $|F(x) - F(y)| < \beta ||x - y||_{\infty}$ for some function F.

Want to prove

In the hard-core model for given branching tree T_M (or its subtree) of root r,

$$\left| \alpha_r^L(+) - \alpha_r^L(-) \right| < \beta^L, \quad \text{for } \beta < 1,$$

where $\left\{\begin{array}{l} \alpha_r^L(+) \\ \alpha_r^L(-) \end{array}\right\}$ is the probability *r* is occupied given *L*-level leaves are $\left\{\begin{array}{l} \text{occupied} \\ \text{unoccupied} \end{array}\right.$

• Hence, suffice to prove that for $v \in T_M$

$$|\alpha_{v}(+) - \alpha_{v}(-)| < \beta \max_{i} |\alpha_{w_{i}}(+) - \alpha_{w_{i}}(-)|,$$

where w_i is a child of v and $\alpha_v(\cdot)$ is an appropriate marginal probability.

• Further, we have $\alpha_v(\,\cdot\,)=rac{1}{1+\lambda\prod_i lpha_{w_i}(\cdot)}$.

• At a high level, by setting $x = [\alpha_{w_i}(+)], y = [\alpha_{w_i}(-)] \in [0, 1]^{\Delta}$,

We want to prove $|F(x) - F(y)| < \beta ||x - y||_{\infty}$ for some function F.

Want to prove

In the hard-core model for given branching tree T_M (or its subtree) of root r,

$$\left| \alpha_r^L(+) - \alpha_r^L(-) \right| < \beta^L, \quad \text{for } \beta < 1,$$

where $\left\{\begin{array}{c} \alpha_r^L(+) \\ \alpha_r^L(-) \end{array}\right\}$ is the probability *r* is occupied given *L*-level leaves are $\left\{\begin{array}{c} \text{occupied} \\ \text{unoccupied} \end{array}\right.$

• Hence, suffice to prove that for $v \in T_M$ and for some function ϕ

$$\left|\phi(\alpha_{v}(+))-\phi(\alpha_{v}(-))\right| < \beta \max_{i} \left|\phi(\alpha_{w_{i}}(+))-\phi(\alpha_{w_{i}}(-))\right|,$$

where w_i is a child of v and $\alpha_v(\cdot)$ is an appropriate marginal probability.

 $\circ~$ Further, we have $\alpha_{v}(\,\cdot\,)=\frac{1}{1+\lambda\prod_{i}\alpha_{w_{i}}(\cdot)}$.

• At a high level, by setting $x = [\alpha_{w_i}(+)], y = [\alpha_{w_i}(-)] \in [0, 1]^{\Delta}$,

We want to prove $|F(x) - F(y)| < \beta ||x - y||_{\infty}$ for some function F.

Want to prove

In the hard-core model for given branching tree T_M (or its subtree) of root r,

$$\left| \alpha_r^L(+) - \alpha_r^L(-) \right| \ < \ \beta^L, \qquad {
m for} \ \ eta < 1,$$

where $\left\{\begin{array}{c} \alpha_r^L(+) \\ \alpha_r^L(-) \end{array}\right\}$ is the probability *r* is occupied given *L*-level leaves are $\left\{\begin{array}{c} \text{occupied} \\ \text{unoccupied} \end{array}\right.$

• Hence, suffice to prove that for $v \in T_M$ and for some function ϕ

$$\left|\phi(\alpha_{v}(+))-\phi(\alpha_{v}(-))\right| < \beta \max_{i} \left|\phi(\alpha_{w_{i}}(+))-\phi(\alpha_{w_{i}}(-))\right|,$$

where w_i is a child of v and $\alpha_v(\cdot)$ is an appropriate marginal probability.

• Further, we have $lpha_{\mathbf{v}}(\,\cdot\,)=rac{1}{1+\lambda\prod_{i}lpha_{w_{i}}(\cdot)}$.

• At a high level, by setting $x = [\phi(\alpha_{w_i}(+))], y = [\phi(\alpha_{w_i}(-))] \in [\phi(0), \phi(1)]^{\Delta}$,

We want to prove $|F(x) - F(y)| < \beta ||x - y||_{\infty}$ for some function F.

Want to prove

In the hard-core model for given branching tree T_M (or its subtree) of root r,

$$\left| \alpha_r^L(+) - \alpha_r^L(-) \right| \ < \ \beta^L, \qquad {
m for} \ \ \beta < 1,$$

where $\left\{\begin{array}{c} \alpha_r^L(+) \\ \alpha_r^L(-) \end{array}\right\}$ is the probability *r* is occupied given *L*-level leaves are $\left\{\begin{array}{c} \text{occupied} \\ \text{unoccupied} \end{array}\right.$

• Hence, suffice to prove that for $v \in T_M$ and for some function ϕ

$$\left|\phi(\alpha_{v}(\boldsymbol{u}+\boldsymbol{d}\boldsymbol{u}))-\phi(\alpha_{v}(\boldsymbol{u}))\right| < \beta \max_{i} \left|\phi(\alpha_{w_{i}}(\boldsymbol{u}+\boldsymbol{d}\boldsymbol{u}))-\phi(\alpha_{w_{i}}(\boldsymbol{u}))\right|,$$

where w_i is a child of v and $\alpha_v(\cdot)$ is an appropriate marginal probability.

• Further, we have $\alpha_v(u) = \frac{1}{1+\lambda \prod_i \alpha_{w_i}(u)}$ and $\alpha_\ell(u) = u \in [0,1]$ for *L*-level leaf ℓ .

• At a high level, by setting $x = [\phi(\alpha_{w_i}(+))], y = [\phi(\alpha_{w_i}(-))] \in [\phi(0), \phi(1)]^{\Delta}$,

We want to prove $|F(x) - F(y)| < \beta ||x - y||_{\infty}$ for some function F.

Want to prove

In the hard-core model for given branching tree T_M (or its subtree) of root r,

$$\left| \alpha_r^L(\mathbf{1}) - \alpha_r^L(\mathbf{0}) \right| \ < \ \beta^L, \qquad ext{for} \ \ \beta < 1,$$

where $\begin{pmatrix} \alpha_r^L(1) \\ \alpha_r^L(0) \end{pmatrix}$ is the probability *r* is occupied given *L*-level leaves are $\begin{cases} \text{occupied} \\ \text{unoccupied} \end{cases}$.

• Hence, suffice to prove that for $v \in T_M$ and for some function ϕ

$$\left|\phi(\alpha_{v}(\boldsymbol{u}+\boldsymbol{d}\boldsymbol{u}))-\phi(\alpha_{v}(\boldsymbol{u}))\right| < \beta \max_{i} \left|\phi(\alpha_{w_{i}}(\boldsymbol{u}+\boldsymbol{d}\boldsymbol{u}))-\phi(\alpha_{w_{i}}(\boldsymbol{u}))\right|,$$

where w_i is a child of v and $\alpha_v(\cdot)$ is an appropriate marginal probability.

- Further, we have $\alpha_v(u) = \frac{1}{1+\lambda \prod_i \alpha_{w_i}(u)}$ and $\alpha_\ell(u) = u \in [0,1]$ for *L*-level leaf ℓ .
- At a high level, by setting $x = [\phi(\alpha_{w_i}(+))], y = [\phi(\alpha_{w_i}(-))] \in [\phi(0), \phi(1)]^{\Delta}$,

We want to prove $|F(x) - F(y)| < \beta ||x - y||_{\infty}$ for some function F.

Want to prove

In the hard-core model for given branching tree T_M (or its subtree) of root r,

$$\left| \int_0^1 d\alpha_r^L(\boldsymbol{u}) \right| = \left| \alpha_r^L(1) - \alpha_r^L(\boldsymbol{0}) \right| < \beta^L, \quad \text{for } \beta < 1,$$

where $\begin{pmatrix} \alpha_r^L(1) \\ \alpha_r^L(0) \end{pmatrix}$ is the probability *r* is occupied given *L*-level leaves are $\begin{cases} \text{occupied} \\ \text{unoccupied} \end{cases}$.

• Hence, suffice to prove that for $v \in T_M$ and for some function ϕ

$$\left|\phi(\alpha_{v}(\boldsymbol{u}+\boldsymbol{d}\boldsymbol{u}))-\phi(\alpha_{v}(\boldsymbol{u}))\right| < \beta \max_{i} \left|\phi(\alpha_{w_{i}}(\boldsymbol{u}+\boldsymbol{d}\boldsymbol{u}))-\phi(\alpha_{w_{i}}(\boldsymbol{u}))\right|,$$

where w_i is a child of v and $\alpha_v(\cdot)$ is an appropriate marginal probability.

- Further, we have $\alpha_v(u) = \frac{1}{1+\lambda \prod_i \alpha_{w_i}(u)}$ and $\alpha_\ell(u) = u \in [0,1]$ for *L*-level leaf ℓ .
- At a high level, by setting $x = [\phi(\alpha_{w_i}(+))], y = [\phi(\alpha_{w_i}(-))] \in [\phi(0), \phi(1)]^{\Delta}$,

We want to prove $|F(x) - F(y)| < \beta ||x - y||_{\infty}$ for some function F.

Want to prove

In the hard-core model for given branching tree T_M (or its subtree) of root r,

$$\left| \int_0^1 d\alpha_r^L(\boldsymbol{u}) \right| = \left| \alpha_r^L(1) - \alpha_r^L(\boldsymbol{0}) \right| < \beta^L, \quad \text{for } \beta < 1,$$

where $\begin{pmatrix} \alpha_r^L(1) \\ \alpha_r^L(0) \end{pmatrix}$ is the probability *r* is occupied given *L*-level leaves are $\begin{cases} \text{occupied} \\ \text{unoccupied} \end{cases}$.

• Hence, suffice to prove that for $v \in T_M$ and for some function ϕ

$$\left|\phi(\alpha_{v}(\boldsymbol{u}+\boldsymbol{d}\boldsymbol{u}))-\phi(\alpha_{v}(\boldsymbol{u}))\right| < \beta \max_{i} \left|\phi(\alpha_{w_{i}}(\boldsymbol{u}+\boldsymbol{d}\boldsymbol{u}))-\phi(\alpha_{w_{i}}(\boldsymbol{u}))\right|,$$

where w_i is a child of v and $\alpha_v(\cdot)$ is an appropriate marginal probability.

- Further, we have $\alpha_v(u) = \frac{1}{1+\lambda \prod_i \alpha_{w_i}(u)}$ and $\alpha_\ell(u) = u \in [0,1]$ for *L*-level leaf ℓ .
- At a high level, by setting $x = [\phi(\alpha_{w_i}(+))], y = [\phi(\alpha_{w_i}(-))] \in [\phi(0), \phi(1)]^{\Delta}$,

We want to prove $\|\nabla F(x)\|_{\infty} < \beta$ for some function F.

• Better inequality & easier to analyze than the previous Lipschitz inequality

Proof Idea for SM in Branching Trees Summary of our ideas

- Study some contraction (or decaying) inequality for statistics ϕ .
 - Recently re-used in anti-ferromagnetic spin systems [Sinclair et al. 2011]
- Consider fractional boundary conditions at leaves.

Summary of our ideas

- Study some contraction (or decaying) inequality for statistics ϕ .
 - Recently re-used in anti-ferromagnetic spin systems [Sinclair et al. 2011]
 - $\circ~$ Further, consider different statistics $\{\phi_i\}$ for different types in branching trees
- Consider fractional boundary conditions at leaves.

Summary of our ideas

- Study some contraction (or decaying) inequality for statistics ϕ .
 - Recently re-used in anti-ferromagnetic spin systems [Sinclair et al. 2011]
 - $\circ~$ Further, consider different statistics $\{\phi_i\}$ for different types in branching trees
- Consider fractional boundary conditions at leaves.
- We want to prove $\|\nabla F(x)\|_{\infty} < 1$, where F is decided by M and $\{\phi_i\}$.

Summary of our ideas

- Study some contraction (or decaying) inequality for statistics ϕ .
 - Recently re-used in anti-ferromagnetic spin systems [Sinclair et al. 2011]
 - $\circ~$ Further, consider different statistics $\{\phi_i\}$ for different types in branching trees
- Consider fractional boundary conditions at leaves.
- We want to prove $\|\nabla F(x)\|_{\infty} < 1$, where F is decided by M and $\{\phi_i\}$.
 - It is a basic calculus problem given M and $\{\phi_i\}!$

Summary of our ideas

- Study some contraction (or decaying) inequality for statistics ϕ .
 - Recently re-used in anti-ferromagnetic spin systems [Sinclair et al. 2011]
 - $\circ~$ Further, consider different statistics $\{\phi_i\}$ for different types in branching trees
- Consider fractional boundary conditions at leaves.
- We want to prove $\|\nabla F(x)\|_{\infty} < 1$, where F is decided by M and $\{\phi_i\}$.
 - $\circ~$ It is a basic calculus problem given M and $\{\phi_i\}!$

How to choose *M* and $\{\phi_i\}$ for $G \subset \mathbb{Z}^2$?

- Self-avoiding-walk tree of G should be contained in branching tree T_M .
 - \circ Remember we choose *M* considering {4, 6, 8, ...}-cycle avoiding-walk-trees

Summary of our ideas

- Study some contraction (or decaying) inequality for statistics ϕ .
 - Recently re-used in anti-ferromagnetic spin systems [Sinclair et al. 2011]
 - $\circ~$ Further, consider different statistics $\{\phi_i\}$ for different types in branching trees
- Consider fractional boundary conditions at leaves.
- We want to prove ||∇F(x)||∞ < 1, where F is decided by M and {φ_i}.
 It is a basic calculus problem given M and {φ_i}!

How to choose *M* and $\{\phi_i\}$ for $G \subset \mathbb{Z}^2$?

- Self-avoiding-walk tree of G should be contained in branching tree T_M .
 - Remember we choose M considering $\{4, 6, 8, \dots\}$ -cycle avoiding-walk-trees
- We choose $\phi_i(x) = \frac{1}{s_i} \log \frac{x}{s_i x}$ for some $s_i > 1$

• Since we found that Weitz's result $\lambda < \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}}$ follows from $s_i = 1 + 1/\Delta$. • But, we do not know wether this is an optimal choice.

Theorem

(Strong) SM holds in the hard-core model of G with activity $\lambda < \lambda^*$ if there exist

- t × t branching matrix M
- $s = [s_1, \ldots, s_t] > 1$ and $c = [c_1, \ldots, c_t] > 0$.

so that every self-avoiding-walk tree is contained in branching tree generated by \boldsymbol{M} and

(DMS)c < c

where D and S are diagonal matrices determined by M, s, c, λ^* .

Theorem

(Strong) SM holds in the hard-core model of G with activity $\lambda < \lambda^*$ if there exist

• t × t branching matrix M

•
$$s = [s_1, \ldots, s_t] > 1$$
 and $c = [c_1, \ldots, c_t] > 0$.

so that every self-avoiding-walk tree is contained in branching tree generated by \boldsymbol{M} and

(DMS)c < c

where D and S are diagonal matrices determined by M, s, c, λ^* .

$$D_{jj} = \sup_{\alpha \in \left[\frac{1}{1+\lambda^*}, 1\right]} \frac{\left(1-\alpha\right) \left(1-\theta_j \left(\frac{1-\alpha}{\lambda^*\alpha}\right)^{1/\Delta_j}\right)}{s_j - \alpha} \qquad S_{jj} = s_j,$$

$$\theta_j := \frac{\left(\prod_{\ell} c_{\ell}^{M_{j\ell}}\right)^{1/\Delta_j}}{\sum_{\ell} c_\ell s_\ell M_{j\ell}/\Delta_j} \qquad \Delta_j = \sum_{\ell} M_{j\ell}.$$

Theorem

(Strong) SM holds in the hard-core model of G with activity $\lambda < \lambda^*$ if there exist

- t × t branching matrix M
- $s = [s_1, \ldots, s_t] > 1$ and $c = [c_1, \ldots, c_t] > 0$.

so that every self-avoiding-walk tree is contained in branching tree generated by \boldsymbol{M} and

(DMS)c < c

where D and S are diagonal matrices determined by M, s, c, λ^* .

How to find *M*, *s*, *c*, λ^* for $G \subset \mathbb{Z}^2$?

- Remember we choose M considering $\{4, 6, 8, \dots\}$ -cycle avoiding-walk-trees
 - Since they should contain self-avoiding-walk trees

Theorem

(Strong) SM holds in the hard-core model of G with activity $\lambda < \lambda^*$ if there exist

- $t \times t$ branching matrix M
- $s = [s_1, \ldots, s_t] > 1$ and $c = [c_1, \ldots, c_t] > 0$.

so that every self-avoiding-walk tree is contained in branching tree generated by \boldsymbol{M} and

(DMS)c < c

where D and S are diagonal matrices determined by M, s, c, λ^* .

How to find *M*, *s*, *c*, λ^* for $G \subset \mathbb{Z}^2$?

• Remember we choose M considering $\{4, 6, 8, \dots\}$ -cycle avoiding-walk-trees

• Since they should contain self-avoiding-walk trees

	Given	М,	we	find	s, c	z, λ^*	doing	stochastic	hill-	climbing	on	a GPU	machine
--	-------	----	----	------	------	----------------	-------	------------	-------	----------	----	-------	---------

Length of avoiding cycles	# of Types (size of M)	λ^*
\leq 4	3	1.8801
\leq 6	131	2.3335
\leq 8	921	2.3882

Reference

Improved Mixing Condition on the Grid for Counting and Sampling Independent Sets Ricardo Restrepo, Jinwoo Shin, Prasad Tetali, Eric Vigoda, Linji Yang, **FOCS 2011**

Thank you !