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High Level Story

Previous Talk by Pinyan Lu is about

• Counting up to the correlation decay (or spatial mixing) threshold of regular trees

• For general spin models & graphs

This Talk is about

• Counting beyond the correlation decay (or spatial mixing) threshold of regular trees

• For specific spin models & graphs



Hard-core Model

Definition
For given (finite) graph G and activity λ > 0, define the distribution µ on 2V as

µ(I ) ∝

{

λ|I | if I ∈ I(G)

0 otherwise
,

where I(G) is the collection of independent sets of G .
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• Computational complexity of sampling independent set I from µ?
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• Harder if λ is large or the maximum degree ∆ is large

Formally

• (Valiant 1979) Exact computation of Z is #P-complete even for λ = 1 and ∆ = 3

• (Weitz 2006) FPTAS for approximating Z for constant ∆ and

λ < λreg (∆) :=
(∆− 1)∆−1

(∆− 2)∆

◦ λreg (∆) is the spatial mixing threshold for the regular tree of degree ∆

• (Sly 2010) NP-hard to approximate Z for ∆ ≥ 3 and λreg(∆) < λ < λreg(∆) + ε

◦ (Galanis et al. 2011) NP-hard for ∆ = 3, ∆ ≥ 6 and λ > λreg (∆)

• Question: For restricted class of graphs (e.g. Z2), FPTAS exists beyond λreg(∆)?
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(∆−2)∆ come from?

• For example, consider the hard-core model µ of square lattices G = Z2.
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even

L = Pr [Origin is occupied | even boundary vertices of L× L box are occupied].

Let p
odd
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◦ We say v is occupied if v is in the independent set sampled from µ.
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Bounds for SM in Square Lattice Z
2

• Weitz’s result implies SM for λ < λreg (4) = 27/16 = 1.6875.

◦ Previous best bound was 1.255 [vandenBerg-Steif 1994]

◦ Conjectured bound is around 3.796 [Gaunt-Fisher 1965]
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2. FPTAS for partition function Z for finite subgraphs of Z2.

3. Unique Gibbs measure for the hard-core model on Z
2.

4. O(n log n) mixing time of the Glauber dynamics on finite subgraphs of Z2.

? Previous bound was λ < 1.6875 by Weitz (2006).

Our High-level Idea

• Weitz (2006) studied general graphs.

• We refine his approach utilizing the structure of Z2 to get a better result

• Our method is generic & applicable to other structured graphs.



Our Proof Approach based on Weitz’s Result (2006)

– DMS Condition
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Our Proof Strategy

Weitz’s self-avoiding-tree representation (2006)

• Given G = (V ,E) and v ∈ V , he constructs a tree Tsaw with root v such that

Pr[v is occupied in G ] = Pr[v is occupied in Tsaw ]

• SM in Tsaw implies SM in G since

◦ Each vertex of Tsaw is a copy of G

◦ Distances between copies in Tsaw ≥ Distances between originals in G

Our proof strategy for square lattice Z
2

SM & FTPAS for Z2

↑ (from Weitz’s work)

SM for self-avoiding-tree Tsaw of Z2

↑ (new)

SM for branching trees with average-degree < 3.8
(new)
← λ < 2.3882
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Branching Tree TM generated by t × t matrix M

• Each vertex of TM has a type

• (Non-root) vertex of type i has Mij children of type j .

◦ e.g. the regular tree of degree ∆ is generated by 1× 1 matrix M = (∆− 1).

In Z
2, we observe Tsaw ⊂ TM ⊂ 4-Regular teee for M =





1 2 0
1 1 1
1 1 0



 .

• Since TM is from considering walks in Z
2 avoiding cycles of length 4

• While Tsaw is from considering walks in Z
2 avoiding cycles of any length

• Hence, it seems promising to overcome the Weitz’s bound

• More promising for bigger M considering avoiding cycles of larger lengths 6, 8, . . .

How to prove SM for subtrees of TM?

• Weitz’s proof is only applicable to the regular case, i.e. 1× 1 matrix M = (∆− 1)
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Summary of our ideas

• Study some contraction (or decaying) inequality for statistics φ.

◦ Recently re-used in anti-ferromagnetic spin systems [Sinclair et al. 2011]

◦ Further, consider different statistics {φi} for different types in branching trees

• Consider fractional boundary conditions at leaves.

• We want to prove ‖∇F (x)‖∞ < 1, where F is decided by M and {φi}.

◦ It is a basic calculus problem given M and {φi}!

How to choose M and {φi} for G ⊂ Z
2?

• Self-avoiding-walk tree of G should be contained in branching tree TM .

◦ Remember we choose M considering {4, 6, 8, . . . }-cycle avoiding-walk-trees

• We choose φi(x) =
1
si
log x

si−x
for some si > 1

◦ Since we found that Weitz’s result λ <
(∆−1)∆−1

(∆−2)∆
follows from si = 1 + 1/∆.

◦ But, we do not know wether this is an optimal choice.
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∆j =
∑

`

Mj`.



Main Theorem : DMS Condition

Theorem
(Strong) SM holds in the hard-core model of G with activity λ < λ∗ if there exist

• t × t branching matrix M

• s = [s1, . . . , st ] > 1 and c = [c1, . . . , ct ] > 0.

so that every self-avoiding-walk tree is contained in branching tree generated by M and

(DMS)c < c

where D and S are diagonal matrices determined by M, s, c, λ∗.

How to find M , s, c, λ∗ for G ⊂ Z
2?

• Remember we choose M considering {4, 6, 8, . . . }-cycle avoiding-walk-trees

◦ Since they should contain self-avoiding-walk trees
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Theorem
(Strong) SM holds in the hard-core model of G with activity λ < λ∗ if there exist

• t × t branching matrix M

• s = [s1, . . . , st ] > 1 and c = [c1, . . . , ct ] > 0.

so that every self-avoiding-walk tree is contained in branching tree generated by M and

(DMS)c < c

where D and S are diagonal matrices determined by M, s, c, λ∗.

How to find M , s, c, λ∗ for G ⊂ Z
2?

• Remember we choose M considering {4, 6, 8, . . . }-cycle avoiding-walk-trees

◦ Since they should contain self-avoiding-walk trees

• Given M, we find s, c, λ∗ doing stochastic hill-climbing on a GPU machine.

Length of avoiding cycles # of Types (size of M) λ∗

≤ 4 3 1.8801
≤ 6 131 2.3335
≤ 8 921 2.3882
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