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Introduction

Markov random fields (undirected graphical models): central in many
application areas of science/engineering:
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Introduction

Markov random fields (undirected graphical models): central in many
application areas of science/engineering:

some fundamental problems
◮ counting/integrating: computing marginal distributions and partition

functions

◮ optimization: computing most probable configurations (or top
M -configurations)

◮ graph learning: fitting and selecting models on the basis of data
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Graph structure and factorization

Markov random field: random vector (X1, . . . , Xp) with distribution
factoring according to a graph G = (V,E):

A B C

D

Hammersley-Clifford theorem: factorization over cliques

Q(x1, . . . , xp; θ) =
1

Z(θ)
exp

{ ∑

C∈C

θC(xC)
}



Some pairwise graphical models

1 2 3 4 5

Zero pattern of inverse covariance

1 2 3 4 5

1

2

3

4

5

p× p matrix of weights Θ = [θst]

Ising model (X1, . . . , Xp) ∈ {0, 1}p:

Q(x1, . . . , xp; Θ) =
1

Z(Θ)
exp

{∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt

}
.

Multivariate Gaussian (X1, . . . , Xp) ∼ N(0,Θ−1):

Q(x1, . . . , xp; Θ) =
det(Θ)

(2π)p/2
exp

(
− 1

2
xTΘx

)
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Graphical model learning

drawn n samples from

Q(x1, . . . , xp; Θ) =
1

Z(Θ)
exp

{∑

s∈V

θsx
2
s +

∑

(s,t)∈E

θstxsxt

}

graph G and matrix [Θ]st = θst of edge weights are unknown
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Graphical model learning

drawn n samples from

Q(x1, . . . , xp; Θ) =
1

Z(Θ)
exp

{∑

s∈V

θsx
2
s +

∑

(s,t)∈E

θstxsxt

}

graph G and matrix [Θ]st = θst of edge weights are unknown

data matrix X
n
1 ∈ {0, 1}n×p (or in X

n
1 ∈ Rn×p)

estimator Xn
1 7→ Θ̂

Martin Wainwright (UC Berkeley) Learning in graphical models November 2011 5 / 24



Graphical model learning

drawn n samples from

Q(x1, . . . , xp; Θ) =
1

Z(Θ)
exp

{∑

s∈V

θsx
2
s +

∑

(s,t)∈E

θstxsxt

}

graph G and matrix [Θ]st = θst of edge weights are unknown

data matrix X
n
1 ∈ {0, 1}n×p (or in X

n
1 ∈ Rn×p)

estimator Xn
1 7→ Θ̂

various loss functions are possible:
◮ graph selection: supp[Θ̂] = supp[Θ]?
◮ bounds on Kullback-Leibler divergence D(Q

Θ̂
‖ QΘ)

◮ bounds on |||Θ̂−Θ|||op.
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Markov property and neighborhood structure

Markov properties encode neighborhood structure:

(Xs | XV \s)︸ ︷︷ ︸
d
= (Xs | XN(s))︸ ︷︷ ︸

Condition on full graph Condition on Markov blanket

N(s) = {s, t, u, v, w}

Xs

Xs
Xt

Xu

Xv

Xw

basis of pseudolikelihood method (Besag, 1974)

basis of many graph learning algorithm (Friedman et al., 1999; Csiszar &

Talata, 2005; Abeel et al., 2006; Meinshausen & Buhlmann, 2006)
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Graph selection via neighborhood regression
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1 For each node s ∈ V , compute (regularized) max. likelihood estimate:

θ̂[s] := arg min
θ∈Rp−1

{
− 1

n

n∑

i=1

L(θ;X(i)
\s )︸ ︷︷ ︸

+ λn ‖θ‖1︸︷︷︸

}

local log. likelihood regularization
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Predict Xs based on X\s := {Xs, t 6= s}.

1 For each node s ∈ V , compute (regularized) max. likelihood estimate:

θ̂[s] := arg min
θ∈Rp−1

{
− 1

n

n∑

i=1

L(θ;X(i)
\s )︸ ︷︷ ︸

+ λn ‖θ‖1︸︷︷︸

}

local log. likelihood regularization

2 Estimate the local neighborhood N̂(s) as support of regression vector

θ̂[s] ∈ Rp−1.



Empirical behavior: Unrescaled plots
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Empirical behavior: Appropriately rescaled
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Sufficient conditions for consistent Ising selection
graph sequences Gp,d = (V,E) with p vertices, and maximum degree d.

edge weights |θst| ≥ θmin for all (s, t) ∈ E

draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem (Ravikumar, W. & Lafferty, 2006, 2010)
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graph sequences Gp,d = (V,E) with p vertices, and maximum degree d.

edge weights |θst| ≥ θmin for all (s, t) ∈ E

draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem (Ravikumar, W. & Lafferty, 2006, 2010)

Under incoherence conditions, for a rescaled sample

γLR(n, p, d) :=
n

d3 log p
> γcrit

and regularization parameter λn ≥ c1

√
log p
n , then with probability greater than

1− 2 exp
(
− c2λ

2
nn

)
:

(a) Correct exclusion: The estimated sign neighborhood N̂(s) correctly
excludes all edges not in the true neighborhood.



Sufficient conditions for consistent Ising selection
graph sequences Gp,d = (V,E) with p vertices, and maximum degree d.

edge weights |θst| ≥ θmin for all (s, t) ∈ E

draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem (Ravikumar, W. & Lafferty, 2006, 2010)

Under incoherence conditions, for a rescaled sample

γLR(n, p, d) :=
n

d3 log p
> γcrit

and regularization parameter λn ≥ c1

√
log p
n , then with probability greater than

1− 2 exp
(
− c2λ

2
nn

)
:

(a) Correct exclusion: The estimated sign neighborhood N̂(s) correctly
excludes all edges not in the true neighborhood.

(b) Correct inclusion: For θmin ≥ c3
√
dλn, the method selects the correct

signed neighborhood.
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n % 2d log p samples (Bresler et al., 2008)

information-theoretic lower bound over family Gp,d: any method requires
at least n = Ω(d2 log p) samples (Santhanam & W., 2008)

ℓ1-based method: sharper achievable rates, also failure for θ large enough
to violate incoherence (Bento & Montanari, 2009)

empirical study: ℓ1-based method can succeed beyond phase transition on
Ising model (Aurell & Ekeberg, 2011)

simpler neighborhood-based methods: thresholding, mutual information,
greedy-methods

◮ Anandkumar, Tan & Willsky, 2010a, 2010b
◮ Netrapalli et al., 2010

refined dependence on graph structure (Anandkumar et al; talk later today)

“list-decoding” for graphical models (Vats & Moura, 2011)



US Senate network (2004–2006 voting)
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A challenge

The reality:

In practice, samples X = (X1, . . . , Xp) are not perfectly observed.

Examples:

◮ Missing data (e.g., voting records):

[
X1 X2 X3 X4 . . . Xp

]
=

[
0 1 ∗ 1 . . . 0

]
.

◮ Noisy and corrupted data:

Z = X +W

standard methods for missing data (e.g., EM algorithm) lead to
non-convex problems

very difficult to provide rigorous guarantees
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y = XsZ = X\s

Predict y = Xs based on other variables
Z = X\s := {Xs, t 6= s}.

when (y, Z) is fully observed, solve problem

θ̂ ∈ argmin
θ

{1
2
θT Γ̂θ − 〈γ̂, θ〉+ λ‖θ‖1

}
where Γ̂ = ZTZ

n and γ̂ = ZT y
n .

more general family of estimators: let (Γ̂, γ̂) be any unbiased estimators of

cov(Zi) ∈ R(p−1)×(p−1) and cov(yiZi) ∈ Rp−1.
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(1−α) :

Γ̂ =
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( ẐT Ẑ

n
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,
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{
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T Γ̂θ − 〈γ̂, θ〉+ λ‖θ‖1
}
.



Example: Estimator for missing data

observe corrupted version Z̃ ∈ Rn×(p−1)

Z̃ij =

{
Xij with probability α

⋆ with probability 1− α.

Natural unbiased estimates: set ⋆ ≡ 0 and Ẑ := Z̃
(1−α) :

Γ̂ =
ẐT Ẑ

n
− α diag

( ẐT Ẑ

n

)
, and γ̂ =

ẐT y

n
,

solve optimization problem: θ̂ ∈ argminθ
{

1
2θ

T Γ̂θ − 〈γ̂, θ〉+ λ‖θ‖1
}
.

Challenge:

Matrix Γ̂ not positive semidefinite =⇒ non-convex program.



Theoretical guarantees on statistical error
take n i.i.d. samples multivariate Gaussian in p-dimensions

missing probability α ∈ [0, 1)

inverse covariance matrix Θ∗ ∈ Rp×p:
◮ bounded eigenspectrum
◮ at most d non-zero entries per row
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missing probability α ∈ [0, 1)

inverse covariance matrix Θ∗ ∈ Rp×p:
◮ bounded eigenspectrum
◮ at most d non-zero entries per row

Theorem (Loh & W., 2011)

Solve non-convex program with regularization λn %

√
log p
n . Then with

probability greater than 1− c1 exp(−nλ2
n):

(a) For all j ∈ V , any global optimum satisfies ‖θj − θ∗‖2 - 1
1−α

√
d log p
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Theoretical guarantees on statistical error
take n i.i.d. samples multivariate Gaussian in p-dimensions

missing probability α ∈ [0, 1)

inverse covariance matrix Θ∗ ∈ Rp×p:
◮ bounded eigenspectrum
◮ at most d non-zero entries per row

Theorem (Loh & W., 2011)

Solve non-convex program with regularization λn %

√
log p
n . Then with

probability greater than 1− c1 exp(−nλ2
n):

(a) For all j ∈ V , any global optimum satisfies ‖θj − θ∗‖2 - 1
1−α

√
d log p

n .

(b) Combining neighborhood estimates yields a global estimate s.t.:

|||Θ̂−Θ∗|||op -
1

1− α
d

√
log p

n
.
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Empirical results (rescaled)
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Projected gradient descent

Constrained objective:

θ̂ ∈ argmin
θ

{ 1

n

n∑

i=1

ℓ(θ;Zi)
}

︸ ︷︷ ︸
L(θ)

subject to ‖θ‖1 ≤ ρC .

With (inverse) stepsize γ:

θt+1 = Πρc

(
θt − 1

γ
∇L(θt)

)

θt

θt+1

θt − 1
γ∇L(θt)

stepsize γ > 0 related to smoothness of objective function



Convergence for non-convex objective
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Theoretical guarantee for non-convex objective
data drawn from Gaussian graphical model such that:

◮ maximum degree d
◮ inverse covariance Θ has bounded eigenspectrum

projected gradient descent with fixed step size: used to estimate row
θ∗ = Θ∗

j ∈ Rp

Theorem (Loh & W., 2011)

For n % d log p
(1−α)2 , there is w.h.p. a contraction coefficient κ ∈ (0, 1) such that

for any global optimum θ̂, the gradient descent iterates {θt}∞t=0 satisfy

‖θt − θ̂‖22 ≤ κt ‖θ0 − θ̂‖22︸ ︷︷ ︸
Opt. error

+
log p

n
‖θ̂ − θ∗‖21 + ‖θ̂ − θ∗‖22

︸ ︷︷ ︸
Statistical error

for all iterations t = 0, 1, 2, . . ..



Geometry of result

∆̂0

∆̂1

∆̂t

θ̂

ǫ

θ∗ − θ̂

Optimization error ∆̂t := θt − θ̂ decreases geometrically up to statistical
tolerance:

‖θt+1 − θ̂‖2 ≤ κt ‖θ0 − θ̂‖2 + o( ‖θ∗ − θ̂‖2︸ ︷︷ ︸
Statistical error

) for all iterations t = 0, 1, 2, . .
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Summary

graphical model learning: an interesting “inverse” problem

neighborhood-based approaches:
◮ polynomial-time, truly practical
◮ match information-theoretic limits up to constant factors

challenges for {missing, noisy, hidden } data:

◮ Gaussian case: non-convex methods have similar guarantees
◮ extensions to general variables?
◮ combination with fully hidden variables?

geometry of statistical optimization: other guarantees in non-convex
settings?
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Some papers on graph selection
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