Learning in graphical models: Missing data and rigorous guarantees with non-convexity

Martin Wainwright

UC Berkeley Departments of Statistics, and EECS

Based on joint work with:

John Lafferty (CMU) Po-Ling Loh (UC Berkeley) Pradeep Ravikumar (UT Austin)

Introduction

• Markov random fields (undirected graphical models): central in many application areas of science/engineering:

Introduction

- Markov random fields (undirected graphical models): central in many application areas of science/engineering:
- some fundamental problems
 - counting/integrating: computing marginal distributions and partition functions
 - ▶ optimization: computing most probable configurations (or top M-configurations)
 - ▶ graph learning: fitting and selecting models on the basis of data

Graph structure and factorization

• Markov random field: random vector (X_1, \ldots, X_p) with distribution factoring according to a graph G = (V, E):

• Hammersley-Clifford theorem: factorization over cliques

$$\mathbb{Q}(x_1, \dots, x_p; \theta) = \frac{1}{Z(\theta)} \exp \left\{ \sum_{C \in \mathcal{C}} \theta_C(x_C) \right\}$$

Some pairwise graphical models

- $p \times p$ matrix of weights $\Theta = [\theta_{st}]$
- Ising model $(X_1, ..., X_p) \in \{0, 1\}^p$:

$$\mathbb{Q}(x_1,\ldots,x_p;\Theta) = \frac{1}{Z(\Theta)} \exp\big\{\sum_{s\in V} \theta_s x_s + \sum_{(s,t)\in E} \theta_{st} x_s x_t\big\}.$$

• Multivariate Gaussian $(X_1, \ldots, X_p) \sim N(0, \Theta^{-1})$:

$$\mathbb{Q}(x_1,\ldots,x_p;\Theta) = \frac{\det(\Theta)}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}x^T\Theta x\right).$$

Some pairwise graphical models

p × p matrix of weights Θ = [θ_{st}]
Ising model (X₁,..., X_p) ∈ {0,1}^p:

$$\mathbb{Q}(x_1, \dots, x_p; \Theta) = \frac{1}{Z(\Theta)} \exp \left\{ \sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \right\}.$$

• Multivariate Gaussian $(X_1, \ldots, X_p) \sim N(0, \Theta^{-1})$:

$$\mathbb{Q}(x_1,\ldots,x_p;\Theta) = \frac{\det(\Theta)}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}x^T\Theta x\right).$$

Some pairwise graphical models

p×p matrix of weights Θ = [θ_{st}]
Ising model (X₁,..., X_p) ∈ {0,1}^p:

$$\mathbb{Q}(x_1,\ldots,x_p;\Theta) = \frac{1}{Z(\Theta)} \exp\big\{\sum_{s\in V} \theta_s x_s + \sum_{(s,t)\in E} \theta_{st} x_s x_t\big\}.$$

• Multivariate Gaussian $(X_1, \ldots, X_p) \sim N(0, \Theta^{-1})$:

$$\mathbb{Q}(x_1,\ldots,x_p;\Theta) = \frac{\det(\Theta)}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}x^T\Theta x\right).$$

Graphical model learning

• drawn n samples from

$$\mathbb{Q}(x_1, \dots, x_p; \Theta) = \frac{1}{Z(\Theta)} \exp\left\{\sum_{s \in V} \theta_s x_s^2 + \sum_{(s,t) \in E} \theta_{st} x_s x_t\right\}$$

• graph G and matrix $[\Theta]_{st} = \theta_{st}$ of edge weights are unknown

Graphical model learning

 $\bullet\,$ drawn n samples from

$$\mathbb{Q}(x_1, \dots, x_p; \Theta) = \frac{1}{Z(\Theta)} \exp\left\{\sum_{s \in V} \theta_s x_s^2 + \sum_{(s,t) \in E} \theta_{st} x_s x_t\right\}$$

• graph G and matrix $[\Theta]_{st} = \theta_{st}$ of edge weights are unknown

- data matrix $\mathbf{X}_1^n \in \{0,1\}^{n \times p}$ (or in $\mathbf{X}_1^n \in \mathbb{R}^{n \times p}$)
- estimator $\mathbf{X}_1^n \mapsto \widehat{\Theta}$

Graphical model learning

• drawn n samples from

$$\mathbb{Q}(x_1, \dots, x_p; \Theta) = \frac{1}{Z(\Theta)} \exp\left\{\sum_{s \in V} \theta_s x_s^2 + \sum_{(s,t) \in E} \theta_{st} x_s x_t\right\}$$

- graph G and matrix $[\Theta]_{st} = \theta_{st}$ of edge weights are unknown
- data matrix $\mathbf{X}_1^n \in \{0,1\}^{n \times p}$ (or in $\mathbf{X}_1^n \in \mathbb{R}^{n \times p}$)
- estimator $\mathbf{X}_1^n \mapsto \widehat{\Theta}$
- various loss functions are possible:
 - graph selection: $\operatorname{supp}[\widehat{\Theta}] = \operatorname{supp}[\Theta]$?
 - ▶ bounds on Kullback-Leibler divergence $D(\mathbb{Q}_{\widehat{\Theta}} \parallel \mathbb{Q}_{\Theta})$
 - bounds on $\|\widehat{\Theta} \Theta\|_{\text{op}}$.

Markov property and neighborhood structure

• Markov properties encode neighborhood structure:

- basis of pseudolikelihood method
- basis of many graph learning algorithm (Friedman et al., 1999; Csiszar & Talata, 2005; Abeel et al., 2006; Meinshausen & Buhlmann, 2006)

Martin Wainwright (UC Berkeley)

Learning in graphical models

(Besag, 1974)

Graph selection via neighborhood regression

Predict X_s based on $X_{\setminus s} := \{X_s, t \neq s\}.$

Graph selection via neighborhood regression

Predict X_s based on $X_{\setminus s} := \{X_s, t \neq s\}.$

() For each node $s \in V$, compute (regularized) max. likelihood estimate:

$$\widehat{\theta}[s] := \arg \min_{\theta \in \mathbb{R}^{p-1}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\theta; X_{\backslash s}^{(i)}) + \lambda_n \underbrace{\|\theta\|_1} \right\}$$

local log. likelihood

regularization

Graph selection via neighborhood regression

Predict X_s based on $X_{\setminus s} := \{X_s, t \neq s\}.$

() For each node $s \in V$, compute (regularized) max. likelihood estimate:

$$\widehat{\theta}[s] := \arg \min_{\theta \in \mathbb{R}^{p-1}} \left\{ \begin{array}{cc} -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\theta; X_{\backslash s}^{(i)}) & + & \lambda_n \underbrace{\|\theta\|_1} \\ \text{local log. likelihood} & \text{regularization} \end{array} \right\}$$

② Estimate the local neighborhood $\widehat{N}(s)$ as support of regression vector $\widehat{\theta}[s] \in \mathbb{R}^{p-1}$.

Empirical behavior: Unrescaled plots

Empirical behavior: Appropriately rescaled

 $D_{1} + C_{1} + C_{1$

Sufficient conditions for consistent Ising selection

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- edge weights $|\theta_{st}| \ge \theta_{\min}$ for all $(s, t) \in E$
- draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem (Ravikumar, W. & Lafferty, 2006, 2010)

Sufficient conditions for consistent Ising selection

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- edge weights $|\theta_{st}| \ge \theta_{\min}$ for all $(s, t) \in E$
- draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem (Ravikumar, W. & Lafferty, 2006, 2010)

Under incoherence conditions, for a rescaled sample

$$\gamma_{LR}(n,p,d) \hspace{.1in} := \hspace{.1in} rac{n}{d^3\log p} \hspace{.1in} > \hspace{.1in} \gamma_{ ext{crit}}$$

and regularization parameter $\lambda_n \geq c_1 \sqrt{\frac{\log p}{n}}$, then with probability greater than $1 - 2 \exp\left(-c_2 \lambda_n^2 n\right)$:

(a) Correct exclusion: The estimated sign neighborhood $\widehat{N}(s)$ correctly excludes all edges not in the true neighborhood.

Sufficient conditions for consistent Ising selection

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- edge weights $|\theta_{st}| \ge \theta_{\min}$ for all $(s, t) \in E$
- draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem (Ravikumar, W. & Lafferty, 2006, 2010)

Under incoherence conditions, for a rescaled sample

$$\gamma_{LR}(n,p,d) \hspace{.1in}:=\hspace{.1in} rac{n}{d^3\log p} \hspace{.1in} > \hspace{.1in} \gamma_{ ext{crit}}$$

and regularization parameter $\lambda_n \geq c_1 \sqrt{\frac{\log p}{n}}$, then with probability greater than $1 - 2 \exp\left(-c_2 \lambda_n^2 n\right)$:

- (a) Correct exclusion: The estimated sign neighborhood $\widehat{N}(s)$ correctly excludes all edges not in the true neighborhood.
- (b) Correct inclusion: For $\theta_{\min} \ge c_3 \sqrt{d\lambda_n}$, the method selects the correct signed neighborhood.

• thresholding estimator (poly-time for bounded degree) works with $n \succeq 2^d \log p$ samples (Bresler et al., 2008)

- thresholding estimator (poly-time for bounded degree) works with $n \succeq 2^d \log p$ samples (Bresler et al., 2008)
- information-theoretic lower bound over family $\mathcal{G}_{p,d}$: any method requires at least $n = \Omega(d^2 \log p)$ samples (Santhanam & W., 2008)

- thresholding estimator (poly-time for bounded degree) works with $n \succeq 2^d \log p$ samples (Bresler et al., 2008)
- information-theoretic lower bound over family $\mathcal{G}_{p,d}$: any method requires at least $n = \Omega(d^2 \log p)$ samples (Santhanam & W., 2008)
- ℓ_1 -based method: sharper achievable rates, also failure for θ large enough to violate incoherence (Bento & Montanari, 2009)

- thresholding estimator (poly-time for bounded degree) works with $n \succeq 2^d \log p$ samples (Bresler et al., 2008)
- information-theoretic lower bound over family $\mathcal{G}_{p,d}$: any method requires at least $n = \Omega(d^2 \log p)$ samples (Santhanam & W., 2008)
- ℓ_1 -based method: sharper achievable rates, also failure for θ large enough to violate incoherence (Bento & Montanari, 2009)
- empirical study: ℓ_1 -based method can succeed beyond phase transition on Ising model (Aurell & Ekeberg, 2011)

- thresholding estimator (poly-time for bounded degree) works with $n \succeq 2^d \log p$ samples (Bresler et al., 2008)
- information-theoretic lower bound over family $\mathcal{G}_{p,d}$: any method requires at least $n = \Omega(d^2 \log p)$ samples (Santhanam & W., 2008)
- ℓ_1 -based method: sharper achievable rates, also failure for θ large enough to violate incoherence (Bento & Montanari, 2009)
- empirical study: ℓ_1 -based method can succeed beyond phase transition on Ising model (Aurell & Ekeberg, 2011)
- $\bullet\,$ simpler neighborhood-based methods: thresholding, mutual information, greedy-methods
 - Anandkumar, Tan & Willsky, 2010a, 2010b
 - ▶ Netrapalli et al., 2010

• refined dependence on graph structure (Anandkumar et al; talk later today)

- thresholding estimator (poly-time for bounded degree) works with $n \succeq 2^d \log p$ samples (Bresler et al., 2008)
- information-theoretic lower bound over family $\mathcal{G}_{p,d}$: any method requires at least $n = \Omega(d^2 \log p)$ samples (Santhanam & W., 2008)
- ℓ_1 -based method: sharper achievable rates, also failure for θ large enough to violate incoherence (Bento & Montanari, 2009)
- empirical study: ℓ_1 -based method can succeed beyond phase transition on Ising model (Aurell & Ekeberg, 2011)
- $\bullet\,$ simpler neighborhood-based methods: thresholding, mutual information, greedy-methods
 - ▶ Anandkumar, Tan & Willsky, 2010a, 2010b
 - ▶ Netrapalli et al., 2010
- refined dependence on graph structure (Anandkumar et al; talk later today)
- "list-decoding" for graphical models

(Vats & Moura, 2011)

US Senate network (2004–2006 voting)

A challenge

The reality:

In practice, samples $X = (X_1, \ldots, X_p)$ are not perfectly observed.

A challenge

The reality:

In practice, samples $X = (X_1, \ldots, X_p)$ are not perfectly observed.

- Examples:
 - Missing data (e.g., voting records):

$$\begin{bmatrix} X_1 & X_2 & X_3 & X_4 & \dots & X_p \end{bmatrix} = \begin{bmatrix} 0 & 1 & * & 1 & \dots & 0 \end{bmatrix}.$$

Noisy and corrupted data:

$$Z = X + W$$

A challenge

The reality:

In practice, samples $X = (X_1, \ldots, X_p)$ are not perfectly observed.

- Examples:
 - Missing data (e.g., voting records):

$$\begin{bmatrix} X_1 & X_2 & X_3 & X_4 & \dots & X_p \end{bmatrix} = \begin{bmatrix} 0 & 1 & * & 1 & \dots & 0 \end{bmatrix}.$$

Noisy and corrupted data:

$$Z = X + W$$

- standard methods for missing data (e.g., EM algorithm) lead to non-convex problems
- very difficult to provide rigorous guarantees

Predict $y = X_s$ based on other variables $Z = X_{\setminus s} := \{X_s, t \neq s\}.$

Predict $y = X_s$ based on other variables $Z = X_{\setminus s} := \{X_s, t \neq s\}.$

• when (y, Z) is fully observed, solve problem

$$\widehat{\theta} \in \arg\min_{\theta} \left\{ \frac{1}{2n} \|y - Z\theta\|_2^2 + \lambda_n \|\theta\|_1 \right\}$$

Predict $y = X_s$ based on other variables $Z = X_{\setminus s} := \{X_s, t \neq s\}.$

• when (y, Z) is fully observed, solve problem

$$\widehat{\theta} \in \arg\min_{\theta} \left\{ \frac{1}{2} \theta^T \widehat{\Gamma} \theta - \langle \widehat{\gamma}, \theta \rangle + \lambda \|\theta\|_1 \right\} \quad \text{where } \widehat{\Gamma} = \frac{Z^T Z}{n} \text{ and } \widehat{\gamma} = \frac{Z^T y}{n}.$$

Predict $y = X_s$ based on other variables $Z = X_{\backslash s} := \{X_s, t \neq s\}.$

• when (y, Z) is fully observed, solve problem

$$\widehat{\theta} \in \arg\min_{\theta} \left\{ \frac{1}{2} \theta^T \widehat{\Gamma} \theta - \langle \widehat{\gamma}, \theta \rangle + \lambda \|\theta\|_1 \right\} \quad \text{where } \widehat{\Gamma} = \frac{Z^T Z}{n} \text{ and } \widehat{\gamma} = \frac{Z^T y}{n}.$$

• more general family of estimators: let $(\widehat{\Gamma}, \widehat{\gamma})$ be any unbiased estimators of

$$\operatorname{cov}(Z_i) \in \mathbb{R}^{(p-1) \times (p-1)}$$
 and $\operatorname{cov}(y_i Z_i) \in \mathbb{R}^{p-1}$.

• observe corrupted version $\widetilde{Z} \in \mathbb{R}^{n \times (p-1)}$

$$\widetilde{Z}_{ij} = \begin{cases} X_{ij} & \text{with probability } \alpha \\ \star & \text{with probability } 1 - \alpha. \end{cases}$$

 \bullet observe corrupted version $\widetilde{Z} \in \mathbb{R}^{n \times (p-1)}$

$$\widetilde{Z}_{ij} = \begin{cases} X_{ij} & \text{with probability } \alpha \\ \star & \text{with probability } 1 - \alpha. \end{cases}$$

• Natural unbiased estimates: set $\star \equiv 0$ and $\widehat{Z} := \frac{\widetilde{Z}}{(1-\alpha)}$:

$$\widehat{\Gamma} = rac{\widehat{Z}^T \widehat{Z}}{n} - lpha \operatorname{diag}ig(rac{\widehat{Z}^T \widehat{Z}}{n}ig), \quad ext{and} \quad \widehat{\gamma} = rac{\widehat{Z}^T y}{n},$$

 \bullet observe corrupted version $\widetilde{Z} \in \mathbb{R}^{n \times (p-1)}$

$$\widetilde{Z}_{ij} = \begin{cases} X_{ij} & \text{with probability } \alpha \\ \star & \text{with probability } 1 - \alpha. \end{cases}$$

• Natural unbiased estimates: set $\star \equiv 0$ and $\widehat{Z} := \frac{\widetilde{Z}}{(1-\alpha)}$:

$$\widehat{\Gamma} = \frac{\widehat{Z}^T \widehat{Z}}{n} - \alpha \operatorname{diag}\left(\frac{\widehat{Z}^T \widehat{Z}}{n}\right), \text{ and } \widehat{\gamma} = \frac{\widehat{Z}^T y}{n},$$

• solve optimization problem: $\widehat{\theta} \in \arg\min_{\theta} \left\{ \frac{1}{2} \theta^T \widehat{\Gamma} \theta - \langle \widehat{\gamma}, \theta \rangle + \lambda \|\theta\|_1 \right\}.$

 \bullet observe corrupted version $\widetilde{Z} \in \mathbb{R}^{n \times (p-1)}$

$$\widetilde{Z}_{ij} = \begin{cases} X_{ij} & \text{with probability } \alpha \\ \star & \text{with probability } 1 - \alpha. \end{cases}$$

• Natural unbiased estimates: set $\star \equiv 0$ and $\widehat{Z} := \frac{\widetilde{Z}}{(1-\alpha)}$:

$$\widehat{\Gamma} = \frac{\widehat{Z}^T \widehat{Z}}{n} - \alpha \operatorname{diag}\left(\frac{\widehat{Z}^T \widehat{Z}}{n}\right), \text{ and } \widehat{\gamma} = \frac{\widehat{Z}^T y}{n},$$

• solve optimization problem: $\widehat{\theta} \in \arg\min_{\theta} \left\{ \frac{1}{2} \theta^T \widehat{\Gamma} \theta - \langle \widehat{\gamma}, \theta \rangle + \lambda \|\theta\|_1 \right\}.$

Challenge:

Matrix $\widehat{\Gamma}$ not positive semidefinite \implies non-convex program.

Theoretical guarantees on statistical error

- \bullet take *n* i.i.d. samples multivariate Gaussian in *p*-dimensions
- missing probability $\alpha \in [0, 1)$
- inverse covariance matrix $\Theta^* \in \mathbb{R}^{p \times p}$:
 - bounded eigenspectrum
 - \blacktriangleright at most d non-zero entries per row

Theoretical guarantees on statistical error

- $\bullet\,$ take n i.i.d. samples multivariate Gaussian in p-dimensions
- missing probability $\alpha \in [0, 1)$
- inverse covariance matrix $\Theta^* \in \mathbb{R}^{p \times p}$:
 - bounded eigenspectrum
 - at most d non-zero entries per row

Theorem (Loh & W., 2011)

Solve non-convex program with regularization $\lambda_n \succeq \sqrt{\frac{\log p}{n}}$. Then with probability greater than $1 - c_1 \exp(-n\lambda_n^2)$:

(a) For all $j \in V$, any global optimum satisfies $\|\theta_j - \theta^*\|_2 \preceq \frac{1}{1-\alpha} \sqrt{\frac{d\log p}{n}}$.

Theoretical guarantees on statistical error

- \bullet take *n* i.i.d. samples multivariate Gaussian in *p*-dimensions
- missing probability $\alpha \in [0, 1)$
- inverse covariance matrix $\Theta^* \in \mathbb{R}^{p \times p}$:
 - bounded eigenspectrum
 - at most d non-zero entries per row

Theorem (Loh & W., 2011)

Solve non-convex program with regularization $\lambda_n \succeq \sqrt{\frac{\log p}{n}}$. Then with probability greater than $1 - c_1 \exp(-n\lambda_n^2)$:

(a) For all $j \in V$, any global optimum satisfies $\|\theta_j - \theta^*\|_2 \preceq \frac{1}{1-\alpha} \sqrt{\frac{d\log p}{n}}$.

(b) Combining neighborhood estimates yields a global estimate s.t.:

$$\|\widehat{\Theta} - \Theta^*\|_{op} \precsim \frac{1}{1-\alpha} d\sqrt{\frac{\log p}{n}}$$

Empirical results (unrescaled)

Empirical results (rescaled)

Projected gradient descent

• stepsize $\gamma > 0$ related to smoothness of objective function

Convergence for non-convex objective

Theoretical guarantee for non-convex objective

- data drawn from Gaussian graphical model such that:
 - $\blacktriangleright\,$ maximum degree d
 - \blacktriangleright inverse covariance Θ has bounded eigenspectrum
- projected gradient descent with fixed step size: used to estimate row $\theta^* = \Theta_j^* \in \mathbb{R}^p$

Theorem (Loh & W., 2011)

For $n \succeq \frac{d \log p}{(1-\alpha)^2}$, there is w.h.p. a contraction coefficient $\kappa \in (0,1)$ such that for any global optimum $\hat{\theta}$, the gradient descent iterates $\{\theta^t\}_{t=0}^{\infty}$ satisfy

$$\|\theta^{t} - \widehat{\theta}\|_{2}^{2} \leq \kappa^{t} \underbrace{\|\theta^{0} - \widehat{\theta}\|_{2}^{2}}_{Opt. \ error} + \underbrace{\frac{\log p}{n} \|\widehat{\theta} - \theta^{*}\|_{1}^{2} + \|\widehat{\theta} - \theta^{*}\|_{2}^{2}}_{Statistical \ error}$$

for all iterations $t = 0, 1, 2, \ldots$

Geometry of result

Optimization error $\widehat{\Delta}^t:=\theta^t-\widehat{\theta}$ decreases geometrically up to statistical tolerance:

$$\begin{aligned} \|\theta^{t+1} - \widehat{\theta}\|^2 &\leq \kappa^t \, \|\theta^0 - \widehat{\theta}\|^2 + o(\underbrace{\|\theta^* - \widehat{\theta}\|^2}_{\text{Statistical error}}) \qquad \text{for all iterations } t = 0, 1, 2, \end{aligned}$$

Summary

- graphical model learning: an interesting "inverse" problem
- neighborhood-based approaches:
 - polynomial-time, truly practical
 - ▶ match information-theoretic limits up to constant factors

Summary

- graphical model learning: an interesting "inverse" problem
- neighborhood-based approaches:
 - polynomial-time, truly practical
 - ▶ match information-theoretic limits up to constant factors
- challenges for {missing, noisy, hidden } data:
 - ▶ Gaussian case: non-convex methods have similar guarantees
 - extensions to general variables?
 - combination with fully hidden variables?

Summary

- graphical model learning: an interesting "inverse" problem
- neighborhood-based approaches:
 - polynomial-time, truly practical
 - ▶ match information-theoretic limits up to constant factors
- challenges for {missing, noisy, hidden } data:
 - ▶ Gaussian case: non-convex methods have similar guarantees
 - extensions to general variables?
 - combination with fully hidden variables?
- geometry of statistical optimization: other guarantees in non-convex settings?

Some papers on graph selection

- Ravikumar, P., Wainwright, M. J. and Lafferty, J. (2010).
 High-dimensional Ising model selection using l₁-regularized logistic regression. Annals of Statistics.
- Santhanam, P. and Wainwright, M. J. (2008). Information-theoretic limitations of high-dimensional graphical model selection. Presented at *International Symposium on Information Theory*, 2008.
- Loh, P. and Wainwright, M. J. (2011). High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity. *Arxiv*, *September 2011*.