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This work is based on a collaboration about the 
difference-map and “Divide and Concur” 

algorithms with Veit Elser (Cornell)

It was inspired by the paper by Boyd, et.al. (2010)
on the ADMM algorithm, which dates back to 

Gabay & Mercier (1976), Glowinski & Marrocco (1975). 

“While we have emphasized applications that can be concisely 
explained, the algorithm would also be a natural fit for more 

complicated problems in areas like graphical models.”

Boyd et.al.:



A general optimization problem

is equivalent to 

using infinite-cost functions to 
enforce hard constraints.

subject to k constraints on r
minimize E0(r) with r � Rn

minimize
�k

a=0 Ea(r) with r � Rn



The “Factor Graph” 
representation of 

n variable nodesm factor nodes
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In Forney’s equivalent “normal” 
representation, variables live on edges.
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Equality nodes enforce equality 
of neighboring edges.
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So any optimization problem can be mapped onto an
equivalent problem on a bipartite Forney factor graph.

x

subject to k constraints on r
minimize E0(r) with r � Rn

minimize E(x) =
�

a Ea(x)



Let’s make a copy z of each edge variable x. 
So an equivalent problem is 

minimize f(x) + g(z) subject to x = z

f(x) g(z)
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To solve it, we introduce a Lagrangian.

x
z

f(x) g(z)

y

L(x, y, z) = f(x) + g(x) + y · (x� z)



Assume convexity of f(x) and g(z), and add 
a “penalty term” to get strict convexity.

scalar parameter
{penalty term

x
z

f(x) g(z)

y
The penalty term 

doesn’t change the 
optimum.

L(x, y, z) = f(x) + g(x) + y · (x� z) + (⇢/2)(x� z)2



x
zy

Here’s the dual problem:

maximize h(y) = argmin
x,z

L(x, y, z)

We can use gradient ascent to 
solve the dual problem :

Repeat:

2. yt+1 = yt + ��h
�y = yt + �(xt+1 � zt+1)

1. (xt+1, zt+1) = argmin
x,z

L(x, yt, z)

The choice          is normally made as it 
enforces dual feasibility of the iterates. 

↵ = ⇢



The “Alternating Direction Method of 
Multipliers” (ADMM) takes advantage of the  

structure to decouple the computations of x and z.

x
zy

Repeat:

If f(x) and g(z) are convex,  ADMM is 
guaranteed to converge to the optimum.

f(x) + g(z)

1. xt+1 = argmin
x

L(x, yt, zt)

2. yt+1 = y

t + ⇢(xt+1 � z

t)

3. zt+1 = argmin
z

L(xt+1
, y

t+1
, z)



x
zu

We can rescale u = y/�
and obtain the explicit form:

Notice that u is a running sum of the 
difference between x and z; it keeps 
adjusting to try to equalize them.

Repeat:

1. xt+1 = argmin
x

⇥
f(x) + (⇢/2)(x� z

t + u

t)2
⇤

2. ut+1 = u

t + x

t+1 � z

t

3. zt+1 = argmin
z

⇥
g(z) + (⇢/2)(z � x

t+1 � u

t+1)2
⇤



The ADMM algorithm was derived and proven to converge 
to the optimum for convex f(x) and g(z), and is a state-of-
the-art algorithm for many convex optimization problems.

 
 

But it is actually a well-defined algorithm for any f(x) and g(z) 
that are bounded below, and can serve as a powerful 

heuristic algorithm for non-convex optimization problems.

It will be useful to build some intuition. 

Repeat:

1. xt+1 = argmin
x

⇥
f(x) + (⇢/2)(x� z

t + u

t)2
⇤

2. ut+1 = u

t + x

t+1 � z

t

3. zt+1 = argmin
z

⇥
g(z) + (⇢/2)(z � x

t+1 � u

t+1)2
⇤



We can introduce “messages.”

x
zu

Repeat:

The computation of “beliefs” x and z is 
done locally at the factor nodes using 

“messages” m and n.

nt = zt � ut
m

t = x

t + u

t

1. xt+1 = argmin
x

⇥
f(x) + (⇢/2)(x� n

t)2
⇤

2. ut+1 = u

t + x

t+1 � z

t

3. zt+1 = argmin
z

⇥
g(z) + (⇢/2)(z �mt+1)2

⇤



It is useful to introduce some (non-standard) notation.

x = 1{x}� 2{x}� 3{x}� 4{x}
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z35

z36

z46

x45
z45

1{x} = {x11, x12}

2{x} = {x21, x23}

3{x} = {x32, x33, x34, x35, x36}

4{x} = {x45, x46}

{z}1 = {z11, z21}

{z}2 = {z12, z32}

{z}3 = {z23, z33}

{z}5 = {z35, z45}

{z}6 = {z36, z46}

{z}4 = {z34}

z = {z}1 � {z}2 � ...� {z}6



The local computation 

balances the desire to minimize the local part 
of the g(z) function with the desire to agree 
with the messages coming from other nodes.

The � parameter lets us vary the relative 
strength of these competing influences.

a

{z}t+1
a = argmin

{z}a

⇥
ga({z}a) + (⇢/2)({z}a � {m}t+1

a )2
⇤

{m}a



When a local function  
is a hard constraint, e.g.:

then the local computation turns into a 
projection onto the constraint set   . C

or

C

ga({z}a)

ga({z}a) = 0 for {z}a 2 C
ga({z}a) = 1 for {z}a /2 C

fa(a{x})

{m}ta

{z}ta = argmin
{z}a

⇥
ga({z}a) + (⇢/2)({z}a � {m}ta)2

⇤

{z}ta = PC({m}ta)
{z}ta



In particular, an equality node is a 
(convex) hard constraint and the 

projection will give the mean: = a
z1a

z2a

z1a

z2a

{m}ta

ztia = h{m}tai for all i



For a constraint satisfaction problem asking for a solution 
satisfying a number of hard constraints,  ADMM on a factor 
graph reduces to the “Divide and Concur” (DC) algorithm.
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DC is not guaranteed to converge for 
non-convex problems, but if it does 
converge, it is guaranteed to have 

found a solution. 

nt+1 = PC(2PD(n
t)� nt)� (PD(n

t)� nt)

Repeat:

1. mt+1 = 2PD(nt)� nt

2. nt+1 = nt + PC(mt+1)� PD(nt)

Repeat:

or equivalently



DC avoids the simple traps that cause problems 
for the naive alternating-projections algorithm.
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Fig. 1. A simple example of a trap in an iterated projection strategy. If one iteratively projects to the nearest point that satisfies the constraints (A or B),
and then the nearest point where the replica values are equal (the diagonal line) one may be trapped in a short cycle (B to C to B and so on) and never
find the true solution at point A.

To illustrate this point, consider the situation shown in Fig. 1, where we imagine that the space of replicas is only two-

dimensional. Suppose that the diagonal line represents the requirement that all replicas are equal, while the points A and

B are the two replica values that satisfy the other constraints. The only solution point that satisfies the constraints and the

requirement that the replicas are equal is A, but if one starts near the point B, (say at D), then one will move to the nearest
point that satisfies the constraints (B), then the nearest point where the replica values are equal (C), then back to B, and
back to C, and so on. Of course, this is only a toy two-dimensional example, but in non-convex high-dimensional spaces it
is plausible that an iterated projection strategy is prone to falling into such traps.

B. Difference Map

The difference map (DM) is a strategy that improves alternating projections by turning traps in the dynamics into repellers.

It is defined by Gravel and Elser as follows.

rt+1 = rt + β [PC(fD(rt)) − PD(fC(rt))] (1)

where fs(rt) = (1 + γs)Ps(rt)− γsrt for s = C or D with γC = −1/β and γD = 1/β. The parameter β can be chosen to
optimize performance.

We focus here exclusively on the case β = 1, which is usually an excellent choice and corresponds to what Fienup called
the “hybrid input-output” algorithm and which was originally applied in the context of image reconstruction [19][20]. For

β = 1 the dynamics (1) simplify to

rt+1 = PC (rt + 2[PD(rt) − rt]) − [PD(rt) − rt]. (2)

It can be proved that if a fixed point in the dynamics r∗ is reached, i.e., rt+1 = rt = r
∗, then that fixed point must

correspond to a solution of the problem. It is important to note that the fixed point itself is not necessarily a solution. The

solution rsol corresponding to a fixed point r
∗ can be obtained using rsol = PD(r∗) or rsol = PC(r∗ + 2[PD(r∗) − r∗]).

We have found it very useful to think of the difference-map dynamics for a single iteration as a three-step process. The

expression [PD(rt) − rt] represents the change to the current values of the replicas resulting from the divide projection. In

the first step, the values of the replicas move twice the desired amount indicated by the divide projection. We refer to these

new values of the replicas as the “overshoot” values rover
t = rt + 2[PD(rt) − rt]. Then the concur projection is applied to

the overshoot values to obtain the “concurred” values of the replicas rconc
t = PC(rover

t ). Finally the overshoot, i.e., the extra
motion in the first step, is subtracted from the concur projection result to obtain the replica value for the next iteration:

rt+1 = rconc
t − [PD(rt) − rt].

In Fig. 2 we return to our previous example and see that the DM dynamics do not get stuck in a trap. Suppose, for

example, that point A is at (0, 0), point B is at (3, 1), and we start initially at point r1 = (2, 2). The divide projection
would take us to point B, but the overshoot takes us twice as far to rover

1 = (4, 0). The concur projection takes us back
to rconc

1 = (2, 2). Finally, the overshoot is corrected so that r2 = (1, 3). The next full iteration takes us to r3 = (0, 4)
(sub-steps are tabulated in Fig. 2). Now however, we are closer to A then to B. Therefore, the next overshoot take us to
r
over
3 = (0,−4), from which we would move to rconc

3 = (−2,−2), and r4 = r
∗ = (−2, 2). Finally we would have reached

a fixed point in the dynamics, corresponding to the solution at A (which can be obtained from the final value of PD(rt) or
r
conc
t ).

=A or B

x1

x2

x2

x1

xt+1 = PC(PD(xt))
Repeat:

Alternating Projections:
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t rt PD(rt) r
over
t r

conc
t

1 (2, 2) (3, 1) (4, 0) (2, 2)
2 (1, 3) (3, 1) (5,−1) (2, 2)
3 (0, 4) (0, 0) (0,−4) (−2,−2)
4 (−2, 2) (0, 0) (2,−2) (0, 0)
5 (−2, 2)

Fig. 2. An example showing how DM dynamics avoids traps. If we start at the point r1, an iterated projections dynamics would be trapped between
point B and r1, and never find the solution at A. DM dynamics will instead be repelled from the trap and move to r2 (via the three sub-steps denoted
with dashed lines rover

1
, rconc

1
= r1, and r2), then move to r3, and then end at the fixed point r4 = r∗, which corresponds to the solution at A.

We can generalize from this example to understand how the DM dynamics turns a trap into a “repeller,” where at each

iteration, one moves away from the repeller by an amount equal to the distance between the constraint involved and the

nearest point that satisfies the requirement that the replicas be equal. Of course, DM dynamics are not a panacea; it is

possible that D&C can get caught in more complicated cycles or “strange attractors” and never find an existing solution;

but least it will does not get caught in simple traps.

C. D&C as a message-passing algorithm

We turn now to an alternative interpretation of D&C, as a message-passing algorithm on a graph. “Messages” and “beliefs”

are similar to those in BP, but message-update and belief-update rules are different. To begin with, we construct a bi-partite

“constraint graph” of variable nodes and constraint nodes, where each variable is connected to the constraints it is involved

in. A constraint graph can be thought of as a special case of a factor graph [18], where each allowed configuration is given

the same weight, and and disallowed configurations have zero weight.

We identify the D&C “replicas” with the edges of the graph. We denote by r[i]a(t) the value of the replica on the edge
joining variable i to constraint a at the beginning of iteration t, i.e., the appropriate element of r[i](t). We similarly denote
by rover

[i]a (t) and rconc
[i]a (t) the “overshoot” and “concurred” values of the same replica. We note that these are all scalars.

We can alternatively think of the initial value of a replica r[i]a(t) as a “message” from the variable node i to the constraint
node a that we denote as mi→a(t). The set of incoming messages to constraint node a, m→a(t) ≡ {mi→a(t) : i ∈ N (a)}
where N (a) is the set of variable indexes involved in constraint a, can therefore be expressed as m→a(t) = r(a)(t).
In the three-step interpretation of the DM dynamics described above, these replica values are next transformed into

overshoot values by moving by twice the amount indicated by the divide projection. Because the overshoot values are

computed locally at a constraint node using the messages into to the constraint node, we can think of the overshoot values

rover
[i]a (t) as messages from the constraint node a to their neighboring variable nodes i, denoted by ma→i(t). The set of
outgoing messages from constraint node a is ma→(t) ≡ {ma→i(t) : i ∈ N (a)}. This set can thus be calculated as
ma→(t) = rover

a (t) = r(a)(t) + 2[P a
D(r(a)(t)) − r(a)(t)] = m→a(t) + 2[P a

D(m→a(t)) −m→a(t)].
The next step of the D&C algorithm takes the overshoot replica values rover

[i]a (t) and computes concurred values rconc
[i]a (t)

using the concur projection. Note that the concurred values for replicas that are connected to the same variable node i are
all equal to each other. We can think of these concurred values as “beliefs,” denoted by bi(t). Just as in BP, the beliefs at a
variable node i are computed using all the messages coming into that variable node. However, while the BP belief is a sum
of incoming messages, the D&C belief is an average:

bi(t) = P i
C(r[i](t)) =

1

|M(i)|
∑

a∈M(i)

ma→i(t) (3)

where M(i) is the set of constraint indexes in which variable i participates.
Finally, the D&C rule for computing the new replica values at the next iteration is to take the concurred values and

subtract a correction for the amount we overshot when we computed the overshot values. In terms of our belief and message

Repeat:

DC’s “difference-map” dynamics turns simple traps 
into “repellers.” It also converges much faster than 
alternating projections for many convex problems.

Difference-map

rt+1 = PC(rt + 2(PD(rt)� rt))� (PD(rt)� rt)



The DC algorithm provides state-of-the-art results 
for many non-convex constraint-satisfaction 

problems, including e.g., a variety of packing problems.

density = 0.8393 density = 0.8399

(from S. Gravel Ph.D. thesis, 2009)

previous best packing of 169 spheres improved packing found using DC



The packing example illustrates several advantages of 
DC and ADMM algorithms compared with belief 

propagation (BP) algorithms:

1. They deal very efficiently with continuous variables.

2. They easily handle unusual hard constraints.

3. They do not need local evidence, and cannot converge 
to non-informative fixed-points or pseudo-solutions.

Like sum-product BP, these message-passing algorithms 
can be derived from a “variational” argument, but now 

we are directly optimizing the energy function instead of  
the Bethe approximation to the free energy.



It often makes sense to represent a q-ary discrete 
variable using q indicator variables. This turns all the 

variables and messages on an edge into q-ary vectors.

This representation in an ADMM algorithm for a 
discrete-variable problem will give nearly identical 

memory requirements for messages and beliefs as in 
a BP algorithm. Analogously to BP, one can loosely 
interpret the vectors as probability distributions.

a b zab = (z(1)ab , z
(2)
ab , . . . , z

(q)
ab )

zabxab

mab

The fact that exactly one indicator variable should 
be equal to one and the rest equal to zero per 

edge will be enforced as a hard constraint.



M W B P E U K Y A X F T D R I V

I W O U L D H M V F N Q T J B E A C S G Y

D E S I G N P L M U X F K B W

A G R I D L Q E M N

L A C K I N G

D U P L I C A T E S

I N E A C H

S R O W E A H C Q V N G B D X

H P A D B L O C K E G F Y N M U J W I

E Q C X B G A N D F L Y H O

V W J G T S B F C O L U M N I E Q K H

R X B S F D P K N J O M W A C

Y A U K D O Q I L C M W R N B F J E H S V P G X T

Q O P C L H M E G Y T K F A V W B I D X U J N S R

N H M I E V W A T U Q X J S G P O K C R Y B F L D

C S L M H J N D I P K G U T R X F O V B E W A Y Q

W T G R N X V U M O E P B J D H A Y K Q S I C F L

P D X W E T F L C G I N

U Q W T R

O V B I H U

G L V P F T U R H X W Y Q

M Q L K G J U O R V

U R Q I S N

X E Y M

Such a representation was used by Elser in a DC 
algorithm to solve 25x25 Sudoku problems that are 

beyond the reach of other (back-tracking) algorithms.



Like other algorithms based on gradient descent, the 
ADMM and DC algorithms are not scale-invariant. 
This is reflected in the    parameter, which could be 

turned into a vector parameter, with a different value 
for each edge.

⇢

For DC algorithms, the effect of changing the    
vector will be to change the metric by which 

projections are measured. 

⇢

Like other gradient-descent algorithms, convergence  
rates will be improved by setting the scales such 
that all the variables have a similar variance in the 
dynamics. An algorithm that automatically adjusted 

its scales could be very useful.



There are many possible variants of these algorithms. 
Consider a DC algorithm described using messages:

1. mt+1 = 2PD(nt)� nt

2. nt+1 = nt + PC(mt+1)� PD(nt)

Repeat:

A straightforward generalization (suggested by Elser) is:

1. mt+1 = PD(nt) + �(PD(nt)� nt)

2. nt+1 = nt + �(PC(mt+1)� PD(nt))

Repeat:

The limit of small β gives a flow (differential) limit. 
Such a limit also exists for ADMM algorithms.
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For convex problems, DC and ADMM converge along a 
smooth, though possibly highly intricate path.

Three-dimensional slice of a 15-dimensional (β=1) DC message 
trajectory for an intersection of polyhedron problem



For non-convex problems with discrete variables, the flow 
limit often results in message trajectories that follow straight 

line paths punctuated by jumps. For some problems, these 
jump points can be calculated, leading to the possibility of 
highly efficient event-driven implementations, analogous to 

those used in hard-sphere simulations.

See W. Krauth,  “Statistical Mechanics: Algorithms and Computations,” 2006



ADMM-based message-passing algorithms have many 
promising potential applications, including for example 
machine learning, computer vision, control, and protein 
folding. In these areas, one typically needs to optimize 
complicated functions over many continuous variables. 
The naturally parallel and distributed nature of these 

algorithms means they fit well with modern multi-core 
and cloud-computing trends.

These algorithms also provably converge to the correct 
solution for convex problems, although the 

convergence rate is sometimes rather slow. Improved 
convergence rates might be attained by approaches 
which vary the scaling parameter(s) temporally or 

spatially, or by event-driven implementations.


