The Alternating Directions Method of Multipliers
as a Message-Passing Algorithm

Jonathan Yedidia
Disney Research Boston

This work is based on a collaboration about the
difference-map and “Divide and Concur”
algorithms with Veit Elser (Cornell)

It was inspired by the paper by Boyd, et.al. (2010)
on the ADMM algorithm, which dates back to
Gabay & Mercier (1976), Glowinski & Marrocco (1975).

Boyd et.al.:
“While we have emphasized applications that can be concisely
explained, the algorithm would also be a natural fit for more
complicated problems in areas like graphical models.”

A general optimization problem

minimize Fy(r) with r € R"
subject to k constraints on r

is equivalent to

minimize ZZ:O E,(r) with r € R"

using infinite-cost functions to
enforce hard constraints.

The “Factor Graph”

representation of E(r)=>"

m factor nodes

Ey

m

1 E.(r) looks like

n variable nodes

I”

In Forney’s equivalent “norma
representation, variables live on edges.

Equality nodes enforce equality
of neighboring edges.

Ey X45

S0 any optimization problem can be mapped onto an
equivalent problem on a bipartite Forney factor graph.

minimize Fy(r) with r € R"
subject to k£ constraints on r

<

minimize E(z) =) E,(x)

Let’s make a copy z of each edge variable x.
S0 an equivalent problem is

minimize f(x)+ g(z) subject to x = 2

To solve it, we introduce a Lagrangian.

L(z,y,2z) = f(z) +g(x) +y- (v — 2)

Assume convexity of f(x) and g(z), and add
a “penalty term” to get strict convexity. Penalty term

L(z,y,2) = f(z) + 9(z) +y - (z — 2) + (p/2)(x — 2)°
scalar pl’ameter
> The penalty term
doesn’t change the
optimum.
f(x) 9(z)

DN
N

Here’s the dual problem:

maximize h(y) = argmin L(x, y, z)

AN

We can use gradient ascent to
solve the dual problem :

Repeat:
1. (2*t1, 2'1) = argmin L(z,y?, 2)
T,z
2. yttl =yt 4 ag_z — gt a(ztt! — 2t

The choice o = pis normally made as it
enforces dual feasibility of the iterates.

The “Alternating Direction Method of
Multipliers” (ADMM) takes advantage of the f(z) + g(2)

structure to decouple the computations of x and z.

Repeat:

1. ! = argmin L(z,y?, 2?)

2. yttl =yt + p(att! — 21)

3. 2! = argmin L(z!1, ¢+, 2)

<

AN

If /(x) and g(z) are convex, ADMM is
guaranteed to converge to the optimum.

We can rescale u =y/p
and obtain the explicit form:

Repeat:

1. 2t = argmin | f(z) + (p/2)(x — 2% + u")?]

X
2. ultl =t 42ttt — 5t

3. 2 = argmin [g(2) + (p/2)(2 — 2" ! — ']

<

R

Notice that u is a running sum of the
difference between x and z; it keeps
adjusting to try to equalize them.

The ADMM algorithm was derived and proven to converge
to the optimum for convex f(x) and g(z), and is a state-of-
the-art algorithm for many convex optimization problems.

Repeat:

1. 2! = argmin | f(z) + (p/2)(z — 2" + u®)?]

T
2 ut—|—1 _ ut + lIZ‘H_l . Zt

3. 21 = argmin [g(2) + (p/2)(z — a1 — u't)?]

<

But it is actually a well-defined algorithm for any f(x) and g(z)
that are bounded below, and can serve as a powerful
heuristic algorithm for non-convex optimization problems.

It will be useful to build some intuition.

We can introduce “messages.”

t t t
m =T +u n' =z' —ut

S —

—

R

Repeat:
1. 21 = argmin | f(z) + (p/2)(x — n')?]

T

2. ultl =t 4 2ttt — 2t

3. 2" = argmin [g(2) + (p/2)(z — m!t1)?]

z

The computation of “beliefs” x and z is
done locally at the factor nodes using
“messages” m and n.

It is useful to introduce some (non-standard) notation.

{2}1 — {211, 221}

1{$} — {$11, 51312}

{Z}z — {212, 232}

z{m} — {3321,3?23}

{2}3 — {223, 233}

3{513‘} = {$32,$33,$34,CE35,$36}

{2}a = {234}

Z {2}5 — {235, 245}

4{$} — {$45, $46} X45

246 {2}6 = {236, 246}

= 1{zr} ®o{z; ®s{z} & a{z} z={211 & {z}2® ... ® {z}s

(mya

The local computation —

{z}a = ar{gr;lin 9a({z}a) + (p/2)({z}a — {m}e)?]

balances the desire to minimize the local part
of the g(z) function with the desire to agree
with the messages coming from other nodes.

The p parameter lets us vary the relative
strength of these competing influences.

When a local function f.(e{z})Or g.({z}a)
is a hard constraint, e.g.: | , 1) =0 for {21, eC

ga({z}a) = 0o for {z}, ¢ C

then the local computation turns into a
projection onto the constraint set C.

{z}e = argmin [g.({z}a) + (p/2)({z}a — {m}a)”]

{z}a

{z}a = Pe({m}q)

{m},

In particular, an equality node is a
(convex) hard constraint and the
projection will give the mean:

2t = ({m}!) for all i

“2a

{m},

For a constraint satisfaction problem asking for a solution
satisfying a number of hard constraints, ADMM on a factor
graph reduces to the “Divide and Concur” (DC) algorithm.

Repeat:

1. m**! = 2Pp(nt) — nt

2. ntTt =nt + Po(mttl) — Pp(nt)

or equivalently

Repeat:
n'tt = P (2Pp(n') — n') — (Pp(n') — n')

\ DC is not guaranteed to converge for

N

non-convex problems, but if it does
converge, it is guaranteed to have
found a solution.

DC avoids the simple traps that cause problems
for the naive alternating-projections algorithm.

AorB

X2

Alternating Projections:

Repeat:
£+ = Po(Pp(at))

DC’s “difference-map” dynamics turns simple traps
into “repellers.” It also converges much faster than
alternating projections for many convex problemes.

/ r PD (rt) rgver rgonc
I @2 | 31D | &0 | 22
2| (1,3) | (3,1) | (5,1 | (22)
31 (0,4) | (0,0) | (0,—4) | (=2,—2)
I[(-22)] (0,0) | (22| (0,0)
5| (—2,2)
2 o0 bz s d Difference-map

Repeat:
rev1 = Pe(re +2(Pp(ry) — i) — (Pp(re) — 1)

The DC algorithm provides state-of-the-art results
for many non-convex constraint-satisfaction
problems, including e.g., a variety of packing problems.

(from S. Gravel Ph.D. thesis, 2009)

‘4 >‘<6)1¢>1 > 4)Qa
#Q; 4»@ ‘, <Q> 4@» <> <> < >
CRBER > P
Vei . Sxten i@
245 DENITANTTAY- L
PR KT P T
1 X 0 R TRTS
KRR T P P
S L i) B
X TR P PO)
‘4 >’<Q>< ’4a><®§
CA ALK G Y P
. ,/%Qb@-\ﬁgﬁaﬁe,
X T O
(YRR X SR
. S KX KK D
density = 0.8393 density = 0.8399

previous best packing of 169 spheres improved packing found using DC

The packing example illustrates several advantages of
DC and ADMM algorithms compared with belief
propagation (BP) algorithms:

|. They deal very efficiently with continuous variables.
2. They easily handle unusual hard constraints.

3.They do not need local evidence, and cannot converge
to non-informative fixed-points or pseudo-solutions.

Like sum-product BP, these message-passing algorithms
can be derived from a “variational” argument, but now
we are directly optimizing the energy function instead of
the Bethe approximation to the free energy.

It often makes sense to represent a g-ary discrete
variable using g indicator variables. This turns all the
variables and messages on an edge into g-ary vectors.

Xab Zab

a > b Zaobh — (ZEL}))? Zo(,%)a IR Zc(z,cl])))
Mgp

The fact that exactly one indicator variable should
be equal to one and the rest equal to zero per
edge will be enforced as a hard constraint.

This representation in an ADMM algorithm for a
discrete-variable problem will give nearly identical
memory requirements for messages and beliefs as in
a BP algorithm.Analogously to BP, one can loosely
interpret the vectors as probability distributions.

Such a representation was used by Elser ina DC
algorithm to solve 25x25 Sudoku problems that are

beyond the reach of other (back-tracking) algorithms.

> (2= n X|—~|O|T|O|+|x|a|Co|4
—|O|o|= L QS| T|x|[<|x|n]|2|>|w
|n|x|w - mf~[>|oS|o|z|w|<|0
alo|w|O < Olo|2|w|=|a|~|[a|S|~]|z
Fl<<| X4 O Z|Z|wL|—=|O|>|D>|w|wn
L|lw|>D — - = n|X|leg|lp| O
X|o|= - o\ > T|aolo|>|x
SO R B Ola Olw p w|—|X|O]|> >
> z|> T|O >3 ~|ofo|w|<|— O x
x| O — |0 <|w - L (S|a|x|[zZ|O >
S|z v m _ o|(>0|lx|lalo =0
W | w Olo o Zl<|{n|F]|~|4 x
o> — | < ¥|nolo (w|~|D|m =
o|= o | - |z S x[x|o|la (>
=T O of « S| +|O|X|w |~
P - ~|O[>[D]a]O Olwn
< T|=|m Z| 2|0~ |=|w DX
=z ulo Li¥Y|—|w|<|a|D|+ -
oo < | nla|Ql=|=S|zZz|>|w — —
| W Olwnlalo|z|>|~|%x]|2Z L o=
olwn O|F|lw|lala|lw|lz|z|x o o
O | w = A< |o|lun|[x|o|—|=|x o >
=0 — <|O|~|o|D|a|=|a|O > w
a|o|S|x|[<|Oo|T|n|+]|o da|=|>
— nlz|lw|>|x|>|olz|o|=|a O] <

Like other algorithms based on gradient descent, the
ADMM and DC algorithms are not scale-invariant.
This is reflected in the p parameter, which could be

turned into a vector parameter, with a different value

for each edge.

For DC algorithms, the effect of changing the
vector will be to change the metric by which
projections are measured.

Like other gradient-descent algorithms, convergence
rates will be improved by setting the scales such
that all the variables have a similar variance in the
dynamics.An algorithm that automatically adjusted
its scales could be very useful.

There are many possible variants of these algorithmes.
Consider a DC algorithm described using messages:

Repeat:
1. m*tt = 2Pp(nt) — nt

2. nttl =nt + Po(m!*t) — Pp(nt)

A straightforward generalization (suggested by Elser) is:

Repeat:
1. m't!t = Pp(n?) +v(Pp(nt) — n?)

2. nttl =nt + B(Pe(m!*t) — Pp(nt))

The limit of small B gives a flow (differential) limit.
Such a limit also exists for ADMM algorithms.

For convex problems, DC and ADMM converge along a
smooth, though possibly highly intricate path.

12000
10000
8000
6000
4000

2000

-6000 " _1000

Three-dimensional slice of a |5-dimensional (B=1) DC message
trajectory for an intersection of polyhedron problem

For non-convex problems with discrete variables, the flow
limit often results in message trajectories that follow straight
line paths punctuated by jumps. For some problems, these
jump points can be calculated, leading to the possibility of
highly efficient event-driven implementations, analogous to
those used in hard-sphere simulations.

wall collision pair collision

Sl | b | ©
% Q% (g W 05

t=8.12 =325 t=4.03

>
o©
O
e~
9
'@G'

.
C @l
"n

o & @éb B ‘é} 2@@

t =4.04 t=05.16 t=0.84 t =8.606 t=933 t=10.37

See W. Krauth, “Statistical Mechanics: Algorithms and Computations,” 2006

ADMM-based message-passing algorithms have many

promising potential applications, including for example
machine learning, computer vision, control, and protein
folding. In these areas, one typically needs to optimize
complicated functions over many continuous variables.
The naturally parallel and distributed nature of these
algorithms means they fit well with modern multi-core

and cloud-computing trends.

These algorithms also provably converge to the correct
solution for convex problems, although the
convergence rate is sometimes rather slow. Improved
convergence rates might be attained by approaches
which vary the scaling parameter(s) temporally or
spatially, or by event-driven implementations.

