
The Alternating Directions Method of Multipliers
as a Message-Passing Algorithm

Jonathan Yedidia
Disney Research Boston

This work is based on a collaboration about the
difference-map and “Divide and Concur”

algorithms with Veit Elser (Cornell)

It was inspired by the paper by Boyd, et.al. (2010)
on the ADMM algorithm, which dates back to

Gabay & Mercier (1976), Glowinski & Marrocco (1975).

“While we have emphasized applications that can be concisely
explained, the algorithm would also be a natural fit for more

complicated problems in areas like graphical models.”

Boyd et.al.:

A general optimization problem

is equivalent to

using infinite-cost functions to
enforce hard constraints.

subject to k constraints on r
minimize E0(r) with r � Rn

minimize
�k

a=0 Ea(r) with r � Rn

The “Factor Graph”
representation of

n variable nodesm factor nodes

r1

r2

r3

r4

r5

r6

E1

E2

E3

E4

E(r) =
Pm

a=1 Ea(r) looks like

In Forney’s equivalent “normal”
representation, variables live on edges.

=

=

=

=

=

=

x11

x12

x21

x23

x32
x33
x34
x35

x36

x46

x45

Equality nodes enforce equality
of neighboring edges.

r1

r2

r3

r4

r5

r6

E1

E2

E3

E4

So any optimization problem can be mapped onto an
equivalent problem on a bipartite Forney factor graph.

x

subject to k constraints on r
minimize E0(r) with r � Rn

minimize E(x) =
�

a Ea(x)

Let’s make a copy z of each edge variable x.
So an equivalent problem is

minimize f(x) + g(z) subject to x = z

f(x) g(z)

x11

x12

x21

x23
x32

x33
x34
x35

x36

x46

z11

z12
z21

z23

z32

z33

z34

z35

z36

z46

x45
z45

To solve it, we introduce a Lagrangian.

x
z

f(x) g(z)

y

L(x, y, z) = f(x) + g(x) + y · (x� z)

Assume convexity of f(x) and g(z), and add
a “penalty term” to get strict convexity.

scalar parameter
{penalty term

x
z

f(x) g(z)

y
The penalty term

doesn’t change the
optimum.

L(x, y, z) = f(x) + g(x) + y · (x� z) + (⇢/2)(x� z)2

x
zy

Here’s the dual problem:

maximize h(y) = argmin
x,z

L(x, y, z)

We can use gradient ascent to
solve the dual problem :

Repeat:

2. yt+1 = yt + ��h
�y = yt + �(xt+1 � zt+1)

1. (xt+1, zt+1) = argmin
x,z

L(x, yt, z)

The choice is normally made as it
enforces dual feasibility of the iterates.

↵ = ⇢

The “Alternating Direction Method of
Multipliers” (ADMM) takes advantage of the

structure to decouple the computations of x and z.

x
zy

Repeat:

If f(x) and g(z) are convex, ADMM is
guaranteed to converge to the optimum.

f(x) + g(z)

1. xt+1 = argmin
x

L(x, yt, zt)

2. yt+1 = y

t + ⇢(xt+1 � z

t)

3. zt+1 = argmin
z

L(xt+1
, y

t+1
, z)

x
zu

We can rescale u = y/�
and obtain the explicit form:

Notice that u is a running sum of the
difference between x and z; it keeps
adjusting to try to equalize them.

Repeat:

1. xt+1 = argmin
x

⇥
f(x) + (⇢/2)(x� z

t + u

t)2
⇤

2. ut+1 = u

t + x

t+1 � z

t

3. zt+1 = argmin
z

⇥
g(z) + (⇢/2)(z � x

t+1 � u

t+1)2
⇤

The ADMM algorithm was derived and proven to converge
to the optimum for convex f(x) and g(z), and is a state-of-
the-art algorithm for many convex optimization problems.

But it is actually a well-defined algorithm for any f(x) and g(z)
that are bounded below, and can serve as a powerful

heuristic algorithm for non-convex optimization problems.

It will be useful to build some intuition.

Repeat:

1. xt+1 = argmin
x

⇥
f(x) + (⇢/2)(x� z

t + u

t)2
⇤

2. ut+1 = u

t + x

t+1 � z

t

3. zt+1 = argmin
z

⇥
g(z) + (⇢/2)(z � x

t+1 � u

t+1)2
⇤

We can introduce “messages.”

x
zu

Repeat:

The computation of “beliefs” x and z is
done locally at the factor nodes using

“messages” m and n.

nt = zt � ut
m

t = x

t + u

t

1. xt+1 = argmin
x

⇥
f(x) + (⇢/2)(x� n

t)2
⇤

2. ut+1 = u

t + x

t+1 � z

t

3. zt+1 = argmin
z

⇥
g(z) + (⇢/2)(z �mt+1)2

⇤

It is useful to introduce some (non-standard) notation.

x = 1{x}� 2{x}� 3{x}� 4{x}

x11

x12

x21

x23
x32

x33
x34
x35

x36

x46

z11

z12
z21

z23

z32

z33

z34

z35

z36

z46

x45
z45

1{x} = {x11, x12}

2{x} = {x21, x23}

3{x} = {x32, x33, x34, x35, x36}

4{x} = {x45, x46}

{z}1 = {z11, z21}

{z}2 = {z12, z32}

{z}3 = {z23, z33}

{z}5 = {z35, z45}

{z}6 = {z36, z46}

{z}4 = {z34}

z = {z}1 � {z}2 � ...� {z}6

The local computation

balances the desire to minimize the local part
of the g(z) function with the desire to agree
with the messages coming from other nodes.

The � parameter lets us vary the relative
strength of these competing influences.

a

{z}t+1
a = argmin

{z}a

⇥
ga({z}a) + (⇢/2)({z}a � {m}t+1

a)2
⇤

{m}a

When a local function
is a hard constraint, e.g.:

then the local computation turns into a
projection onto the constraint set . C

or

C

ga({z}a)

ga({z}a) = 0 for {z}a 2 C
ga({z}a) = 1 for {z}a /2 C

fa(a{x})

{m}ta

{z}ta = argmin
{z}a

⇥
ga({z}a) + (⇢/2)({z}a � {m}ta)2

⇤

{z}ta = PC({m}ta)
{z}ta

In particular, an equality node is a
(convex) hard constraint and the

projection will give the mean: = a
z1a

z2a

z1a

z2a

{m}ta

ztia = h{m}tai for all i

For a constraint satisfaction problem asking for a solution
satisfying a number of hard constraints, ADMM on a factor
graph reduces to the “Divide and Concur” (DC) algorithm.

=

=

=

=

=

=

D C

DC is not guaranteed to converge for
non-convex problems, but if it does
converge, it is guaranteed to have

found a solution.

nt+1 = PC(2PD(n
t)� nt)� (PD(n

t)� nt)

Repeat:

1. mt+1 = 2PD(nt)� nt

2. nt+1 = nt + PC(mt+1)� PD(nt)

Repeat:

or equivalently

DC avoids the simple traps that cause problems
for the naive alternating-projections algorithm.

A

B

A

B

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

C

D

Fig. 1. A simple example of a trap in an iterated projection strategy. If one iteratively projects to the nearest point that satisfies the constraints (A or B),
and then the nearest point where the replica values are equal (the diagonal line) one may be trapped in a short cycle (B to C to B and so on) and never
find the true solution at point A.

To illustrate this point, consider the situation shown in Fig. 1, where we imagine that the space of replicas is only two-

dimensional. Suppose that the diagonal line represents the requirement that all replicas are equal, while the points A and

B are the two replica values that satisfy the other constraints. The only solution point that satisfies the constraints and the

requirement that the replicas are equal is A, but if one starts near the point B, (say at D), then one will move to the nearest
point that satisfies the constraints (B), then the nearest point where the replica values are equal (C), then back to B, and
back to C, and so on. Of course, this is only a toy two-dimensional example, but in non-convex high-dimensional spaces it
is plausible that an iterated projection strategy is prone to falling into such traps.

B. Difference Map

The difference map (DM) is a strategy that improves alternating projections by turning traps in the dynamics into repellers.

It is defined by Gravel and Elser as follows.

rt+1 = rt + β [PC(fD(rt)) − PD(fC(rt))] (1)

where fs(rt) = (1 + γs)Ps(rt)− γsrt for s = C or D with γC = −1/β and γD = 1/β. The parameter β can be chosen to
optimize performance.

We focus here exclusively on the case β = 1, which is usually an excellent choice and corresponds to what Fienup called
the “hybrid input-output” algorithm and which was originally applied in the context of image reconstruction [19][20]. For

β = 1 the dynamics (1) simplify to

rt+1 = PC (rt + 2[PD(rt) − rt]) − [PD(rt) − rt]. (2)

It can be proved that if a fixed point in the dynamics r∗ is reached, i.e., rt+1 = rt = r
∗, then that fixed point must

correspond to a solution of the problem. It is important to note that the fixed point itself is not necessarily a solution. The

solution rsol corresponding to a fixed point r
∗ can be obtained using rsol = PD(r∗) or rsol = PC(r∗ + 2[PD(r∗) − r∗]).

We have found it very useful to think of the difference-map dynamics for a single iteration as a three-step process. The

expression [PD(rt) − rt] represents the change to the current values of the replicas resulting from the divide projection. In

the first step, the values of the replicas move twice the desired amount indicated by the divide projection. We refer to these

new values of the replicas as the “overshoot” values rover
t = rt + 2[PD(rt) − rt]. Then the concur projection is applied to

the overshoot values to obtain the “concurred” values of the replicas rconc
t = PC(rover

t). Finally the overshoot, i.e., the extra
motion in the first step, is subtracted from the concur projection result to obtain the replica value for the next iteration:

rt+1 = rconc
t − [PD(rt) − rt].

In Fig. 2 we return to our previous example and see that the DM dynamics do not get stuck in a trap. Suppose, for

example, that point A is at (0, 0), point B is at (3, 1), and we start initially at point r1 = (2, 2). The divide projection
would take us to point B, but the overshoot takes us twice as far to rover

1 = (4, 0). The concur projection takes us back
to rconc

1 = (2, 2). Finally, the overshoot is corrected so that r2 = (1, 3). The next full iteration takes us to r3 = (0, 4)
(sub-steps are tabulated in Fig. 2). Now however, we are closer to A then to B. Therefore, the next overshoot take us to
r
over
3 = (0,−4), from which we would move to rconc

3 = (−2,−2), and r4 = r
∗ = (−2, 2). Finally we would have reached

a fixed point in the dynamics, corresponding to the solution at A (which can be obtained from the final value of PD(rt) or
r
conc
t).

=A or B

x1

x2

x2

x1

xt+1 = PC(PD(xt))
Repeat:

Alternating Projections:

r1

r2

r3

r∗

rover
1A

B

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

t rt PD(rt) r
over
t r

conc
t

1 (2, 2) (3, 1) (4, 0) (2, 2)
2 (1, 3) (3, 1) (5,−1) (2, 2)
3 (0, 4) (0, 0) (0,−4) (−2,−2)
4 (−2, 2) (0, 0) (2,−2) (0, 0)
5 (−2, 2)

Fig. 2. An example showing how DM dynamics avoids traps. If we start at the point r1, an iterated projections dynamics would be trapped between
point B and r1, and never find the solution at A. DM dynamics will instead be repelled from the trap and move to r2 (via the three sub-steps denoted
with dashed lines rover

1
, rconc

1
= r1, and r2), then move to r3, and then end at the fixed point r4 = r∗, which corresponds to the solution at A.

We can generalize from this example to understand how the DM dynamics turns a trap into a “repeller,” where at each

iteration, one moves away from the repeller by an amount equal to the distance between the constraint involved and the

nearest point that satisfies the requirement that the replicas be equal. Of course, DM dynamics are not a panacea; it is

possible that D&C can get caught in more complicated cycles or “strange attractors” and never find an existing solution;

but least it will does not get caught in simple traps.

C. D&C as a message-passing algorithm

We turn now to an alternative interpretation of D&C, as a message-passing algorithm on a graph. “Messages” and “beliefs”

are similar to those in BP, but message-update and belief-update rules are different. To begin with, we construct a bi-partite

“constraint graph” of variable nodes and constraint nodes, where each variable is connected to the constraints it is involved

in. A constraint graph can be thought of as a special case of a factor graph [18], where each allowed configuration is given

the same weight, and and disallowed configurations have zero weight.

We identify the D&C “replicas” with the edges of the graph. We denote by r[i]a(t) the value of the replica on the edge
joining variable i to constraint a at the beginning of iteration t, i.e., the appropriate element of r[i](t). We similarly denote
by rover

[i]a (t) and rconc
[i]a (t) the “overshoot” and “concurred” values of the same replica. We note that these are all scalars.

We can alternatively think of the initial value of a replica r[i]a(t) as a “message” from the variable node i to the constraint
node a that we denote as mi→a(t). The set of incoming messages to constraint node a, m→a(t) ≡ {mi→a(t) : i ∈ N (a)}
where N (a) is the set of variable indexes involved in constraint a, can therefore be expressed as m→a(t) = r(a)(t).
In the three-step interpretation of the DM dynamics described above, these replica values are next transformed into

overshoot values by moving by twice the amount indicated by the divide projection. Because the overshoot values are

computed locally at a constraint node using the messages into to the constraint node, we can think of the overshoot values

rover
[i]a (t) as messages from the constraint node a to their neighboring variable nodes i, denoted by ma→i(t). The set of
outgoing messages from constraint node a is ma→(t) ≡ {ma→i(t) : i ∈ N (a)}. This set can thus be calculated as
ma→(t) = rover

a (t) = r(a)(t) + 2[P a
D(r(a)(t)) − r(a)(t)] = m→a(t) + 2[P a

D(m→a(t)) −m→a(t)].
The next step of the D&C algorithm takes the overshoot replica values rover

[i]a (t) and computes concurred values rconc
[i]a (t)

using the concur projection. Note that the concurred values for replicas that are connected to the same variable node i are
all equal to each other. We can think of these concurred values as “beliefs,” denoted by bi(t). Just as in BP, the beliefs at a
variable node i are computed using all the messages coming into that variable node. However, while the BP belief is a sum
of incoming messages, the D&C belief is an average:

bi(t) = P i
C(r[i](t)) =

1

|M(i)|
∑

a∈M(i)

ma→i(t) (3)

where M(i) is the set of constraint indexes in which variable i participates.
Finally, the D&C rule for computing the new replica values at the next iteration is to take the concurred values and

subtract a correction for the amount we overshot when we computed the overshot values. In terms of our belief and message

Repeat:

DC’s “difference-map” dynamics turns simple traps
into “repellers.” It also converges much faster than
alternating projections for many convex problems.

Difference-map

rt+1 = PC(rt + 2(PD(rt)� rt))� (PD(rt)� rt)

The DC algorithm provides state-of-the-art results
for many non-convex constraint-satisfaction

problems, including e.g., a variety of packing problems.

density = 0.8393 density = 0.8399

(from S. Gravel Ph.D. thesis, 2009)

previous best packing of 169 spheres improved packing found using DC

The packing example illustrates several advantages of
DC and ADMM algorithms compared with belief

propagation (BP) algorithms:

1. They deal very efficiently with continuous variables.

2. They easily handle unusual hard constraints.

3. They do not need local evidence, and cannot converge
to non-informative fixed-points or pseudo-solutions.

Like sum-product BP, these message-passing algorithms
can be derived from a “variational” argument, but now

we are directly optimizing the energy function instead of
the Bethe approximation to the free energy.

It often makes sense to represent a q-ary discrete
variable using q indicator variables. This turns all the

variables and messages on an edge into q-ary vectors.

This representation in an ADMM algorithm for a
discrete-variable problem will give nearly identical

memory requirements for messages and beliefs as in
a BP algorithm. Analogously to BP, one can loosely
interpret the vectors as probability distributions.

a b zab = (z(1)ab , z
(2)
ab , . . . , z

(q)
ab)

zabxab

mab

The fact that exactly one indicator variable should
be equal to one and the rest equal to zero per

edge will be enforced as a hard constraint.

M W B P E U K Y A X F T D R I V

I W O U L D H M V F N Q T J B E A C S G Y

D E S I G N P L M U X F K B W

A G R I D L Q E M N

L A C K I N G

D U P L I C A T E S

I N E A C H

S R O W E A H C Q V N G B D X

H P A D B L O C K E G F Y N M U J W I

E Q C X B G A N D F L Y H O

V W J G T S B F C O L U M N I E Q K H

R X B S F D P K N J O M W A C

Y A U K D O Q I L C M W R N B F J E H S V P G X T

Q O P C L H M E G Y T K F A V W B I D X U J N S R

N H M I E V W A T U Q X J S G P O K C R Y B F L D

C S L M H J N D I P K G U T R X F O V B E W A Y Q

W T G R N X V U M O E P B J D H A Y K Q S I C F L

P D X W E T F L C G I N

U Q W T R

O V B I H U

G L V P F T U R H X W Y Q

M Q L K G J U O R V

U R Q I S N

X E Y M

Such a representation was used by Elser in a DC
algorithm to solve 25x25 Sudoku problems that are

beyond the reach of other (back-tracking) algorithms.

Like other algorithms based on gradient descent, the
ADMM and DC algorithms are not scale-invariant.
This is reflected in the parameter, which could be

turned into a vector parameter, with a different value
for each edge.

⇢

For DC algorithms, the effect of changing the
vector will be to change the metric by which

projections are measured.

⇢

Like other gradient-descent algorithms, convergence
rates will be improved by setting the scales such
that all the variables have a similar variance in the
dynamics. An algorithm that automatically adjusted

its scales could be very useful.

There are many possible variants of these algorithms.
Consider a DC algorithm described using messages:

1. mt+1 = 2PD(nt)� nt

2. nt+1 = nt + PC(mt+1)� PD(nt)

Repeat:

A straightforward generalization (suggested by Elser) is:

1. mt+1 = PD(nt) + �(PD(nt)� nt)

2. nt+1 = nt + �(PC(mt+1)� PD(nt))

Repeat:

The limit of small β gives a flow (differential) limit.
Such a limit also exists for ADMM algorithms.

−1000
−500

0
500

1000
1500

2000
2500

−6000

−5000
−4000

−3000
−2000

−1000
0

−2000

0

2000

4000

6000

8000

10000

12000

For convex problems, DC and ADMM converge along a
smooth, though possibly highly intricate path.

Three-dimensional slice of a 15-dimensional (β=1) DC message
trajectory for an intersection of polyhedron problem

For non-convex problems with discrete variables, the flow
limit often results in message trajectories that follow straight

line paths punctuated by jumps. For some problems, these
jump points can be calculated, leading to the possibility of
highly efficient event-driven implementations, analogous to

those used in hard-sphere simulations.

See W. Krauth, “Statistical Mechanics: Algorithms and Computations,” 2006

ADMM-based message-passing algorithms have many
promising potential applications, including for example
machine learning, computer vision, control, and protein
folding. In these areas, one typically needs to optimize
complicated functions over many continuous variables.
The naturally parallel and distributed nature of these

algorithms means they fit well with modern multi-core
and cloud-computing trends.

These algorithms also provably converge to the correct
solution for convex problems, although the

convergence rate is sometimes rather slow. Improved
convergence rates might be attained by approaches
which vary the scaling parameter(s) temporally or

spatially, or by event-driven implementations.

