
Kernel-Size Lower Bounds:
The Evidence from Complexity Theory

Andrew Drucker

IAS

Worker 2013, Warsaw

Andrew Drucker Kernel-Size Lower Bounds

Part 1/3

Andrew Drucker Kernel-Size Lower Bounds

Note

These slides are taken (with minor revisions) from a 3-part tutorial
given at the 2013 Workshop on Kernelization (“Worker”) at the
University of Warsaw. Thanks to the organizers for the opportunity
to present!

Preparation of this teaching material was supported by the National Science
Foundation under agreements Princeton University Prime Award No.
CCF-0832797 and Sub-contract No. 00001583. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

Andrew Drucker Kernel-Size Lower Bounds

Main works discussed

[BDFH’07] H. Bodlaender, R. Downey, M. Fellows, and D.
Hermelin: On problems without polynomial kernels. ICALP
2008, JCSS 2009. (Preprint ’07)

[FS’08] L. Fortnow and R. Santhanam: Infeasibility of
instance compression and succinct PCPs for NP. STOC 2008,
JCSS 2011.

[DvM’10] H. Dell and D. van Melkebeek: Satisfiability allows
no nontrivial sparsification unless the polynomial-time
hierarchy collapses. STOC 2010.

[DM’12] H. Dell and D. Marx: Kernelization of packing
problems. SODA 2012.

[D’12] A. Drucker: New limits to classical and quantum
instance compression. FOCS 2012.

Andrew Drucker Kernel-Size Lower Bounds

Breakdown of the slides

Part 1: introduction to the OR- and AND-conjectures and
their use. Covers [BDFH’07], [DvM’10], [DM’12].

Part 2: Evidence for the OR-conjecture [FS’08]

Part 3: Evidence for the AND-conjecture (and OR-conjecture
for probabilistic reductions) [D’12]

Andrew Drucker Kernel-Size Lower Bounds

Big picture

P vs. NP: The central mystery of TCS.

Can’t understand this problem, but would like to use

P 6= NP

hypothesis to “explain” why many tasks are difficult.

Andrew Drucker Kernel-Size Lower Bounds

Big picture

These talks: describe how (an extension of) P 6= NP can
explain hardness of kernelization tasks.

Our focus: building the initial bridge between these two
domains.

[Many other papers]: clever reductions between kernelization
problems, to show dozens of kernel lower bounds (LBs).

Andrew Drucker Kernel-Size Lower Bounds

Outline

1 Introduction

2 OR/AND-conjectures and their use

3 Evidence for the conjectures

Andrew Drucker Kernel-Size Lower Bounds

Outline

1 Introduction

2 OR/AND-conjectures and their use

3 Evidence for the conjectures

Andrew Drucker Kernel-Size Lower Bounds

Problems and parameters

Input: Formula ψ.

Is ψ satisfiable?

Parameters of interest:

total bitlength;

clauses;

variables;

can invent many more measures.

Andrew Drucker Kernel-Size Lower Bounds

Problems and parameters

Our view in these talks:

computational problems can have multiple interesting
parameters.

won’t define parameters formally, but always will be easily
measureable.

x −→ k(x)

Insist: k(x) ≤ |x |

Andrew Drucker Kernel-Size Lower Bounds

FPT review

A parametrized problem P with associated parameter k is
Fixed-Parameter Tractable (FPT) if some algorithm solves P
in time

f (k(x)) · poly(|x |) .

Andrew Drucker Kernel-Size Lower Bounds

Self-reductions and kernelization

Self-reduction for problem P: a mapping R s.t.

x a “Yes”-instance of P ⇐⇒ R(x) a “Yes”-instance of P

Goal: want R(x) to be smaller than x .

This talk: only interested in poly-time self-reductions.

(Will also discuss reductions between param’d problems...)

Andrew Drucker Kernel-Size Lower Bounds

Kernels

Let F be a function.

Poly-time self-reduction R is an F (k)-kernelization for P
w.r.t. parameter k, if:

∀x : |R(x)| ≤ F (k(x))

.

Output (“kernel”) size bounded by function of the parameter
alone!

Andrew Drucker Kernel-Size Lower Bounds

Virtues of kernels

F (k)-kernels for any (decidable) problem yields an FPT
algorithm.

Many natural FPT algorithms have this form.

Andrew Drucker Kernel-Size Lower Bounds

Virtues of kernels

If F (k) ≤ poly(k) and problem is in NP, we get an FPT alg.
with runtime

poly(|x |)︸ ︷︷ ︸ + exp(poly(k))︸ ︷︷ ︸ .
(compress the instance) (solve reduced instance)

F (k) ≤ poly(k): “Polynomial kernelization”

Andrew Drucker Kernel-Size Lower Bounds

Virtues of kernels

Kernelization lets us compress instances to store for the future.

Also allows us to succinctly describe instances to a second,
more powerful computer.

Andrew Drucker Kernel-Size Lower Bounds

Virtues of kernels

Many great kernelization algs; won’t survey here...

Which problems fail to have small kernels?

Andrew Drucker Kernel-Size Lower Bounds

Kernelization limits

For decidable problems:

F (k)-kernels implies FPT, so...

NOT FPT implies no F (k)-kernels for any F !

E.g., k-Clique is W[1]-complete, so is not FPT or

F (k)-kernelizable, unless

FPT = W[1]

Andrew Drucker Kernel-Size Lower Bounds

Kernelization limits

Leaves possibility that all “natural” problems in FPT have
poly(k)-kernels!

Andrew Drucker Kernel-Size Lower Bounds

Kernelization limits

A few kernel size LBs based on P 6= NP...

“Dual parameter” technique [Chen, Fernau, Kanj, Xia ’05]
shows that k-Planar Vertex Cover has no 1.332k-kernels∗

unless P = NP.

∗ (only applies to reductions that don’t increase k)

Andrew Drucker Kernel-Size Lower Bounds

Kernelization limits

A few kernel size LBs based on P 6= NP...

Similar results for kernels of restricted form, based on
NP-hardness of approximation [Guo, Niedermeier ’07].

These bounds are all Θ(k).

Andrew Drucker Kernel-Size Lower Bounds

Kernelization limits

Lower bound tools were limited, until a paper of
[Bodlaender, Downey, Fellows, Hermelin ’07].

Introduced “OR-” and “AND-conjectures,”

showed that these would rule out poly(k)-kernels for many
problems.

Related, independent work in crypto: [Harnik, Naor ’06]

Andrew Drucker Kernel-Size Lower Bounds

Kernelization limits

Many follow-up works showed the usefulness, versatility of the
OR-conjecture for kernel LBs.

We’ll describe one important example:
[Dell, Van Melkebeek ’10]
(and follow-up by [Dell, Marx ’12])

Andrew Drucker Kernel-Size Lower Bounds

Kernelization limits

[Fortnow, Santhanam ’08] and [D. ’12] showed the OR,
AND-conjectures follow from a “standard” assumption in
complexity, namely

NP * coNP/poly .

(We’ll discuss this assumption...)

Andrew Drucker Kernel-Size Lower Bounds

Kernelization limits

We now have strong kernel-size LBs for most problems that
resisted kernels. E.g.: unless NP ⊂ coNP/poly:

1 k-Path does not have poly(k)-kernels;

2 Same for k-Treewidth;

3 N-Clique (param. N = # vertices), which has a trivial N2

kernel, does not have have kernels of size N2−ε.

(For d-uniform hypergraphs, we have the tight threshold Nd .)

Andrew Drucker Kernel-Size Lower Bounds

Kernelization limits

Before telling this story...

Whats the real significance of these negative results?

Andrew Drucker Kernel-Size Lower Bounds

Possible criticisms

“Kernelizations are assumed to be deterministic. That’s too limited.”

Agreed.

In practice, almost all kernelizations we know are
deterministic. But for meaningful lower bounds, we need to
understand randomized ones as well.

But—since [D.’12], our kernel LBs also apply to randomized
algorithms.

Andrew Drucker Kernel-Size Lower Bounds

Possible criticisms

“Kernelizations are assumed to map problem instances to instances
of the same problem. That’s also too limited.”

But all known kernel LBs for NP problems are insensitive to
the target problem.

They apply to “cross-kernelization” as well.

Andrew Drucker Kernel-Size Lower Bounds

Possible criticisms

“Some applications of kernelization could be achieved under
a broader definition. You’re just ruling out one path to those goals.”

Agreed.

In particular, self-reductions which output many smaller
instances (whose solutions yield a solution to the original instance)

could be nearly as useful for FPT algs. [Guo, Fellows]

We don’t understand full power of these “Turing kernels”
(yet!)

Question explored by
[Hermelin, Kratsch, Soltys, Wahlstrom, Wu ’10].

Andrew Drucker Kernel-Size Lower Bounds

Possible criticisms

Kernelization also useful to succinctly transmit hard problems
to a powerful helper. ⇒ Natural to allow 2-way interaction.

[Dell, Van Melkebeek ’10]: boost our kernel LBs to
communication LBs. (More general!)

OPEN: extend to probabilistic communication.

Andrew Drucker Kernel-Size Lower Bounds

Possible criticisms

“Ultimately, kernelization is just one approach to fast algorithms.
Many of the LBs are for problems which already have good FPT algs.”

...but this criticism also applies to kernel upper-bound research!

Many papers give kernels where good FPT results were already
known.

Andrew Drucker Kernel-Size Lower Bounds

The bottom line

Kernelization is a natural, rich algorithmic paradigm.

It’s worthwhile and interesting to understand its strengths and
limitations.

Andrew Drucker Kernel-Size Lower Bounds

Outline

1 Introduction

2 OR/AND-conjectures and their use

3 Evidence for the conjectures

Andrew Drucker Kernel-Size Lower Bounds

The seed

[Bodlaender, Downey, Fellows, Hermelin ’07] got this project
rolling.

What core idea lies behind their work?

“Many param’d problems can express an OR of a large number of
subproblems, without a blowup in the parameter.

“Those problems should resist small kernels... for a shared reason.”

Andrew Drucker Kernel-Size Lower Bounds

OR(L)

Let L ⊆ {0, 1}∗. Define the problem OR(L) by:

Input: a list
〈
x1, . . . , x t

〉
of binary strings.

Decide: is some x j ∈ L?

Parameter: k := maxj |x j |.

To ease discussion, let OR=(L) be the special case where we
require that

|x i | = |x j | = k ∀i , j .

(even this special case resists small kernels.)

Andrew Drucker Kernel-Size Lower Bounds

AND(L)

Define the problem AND=(L) by:

Input: a list
〈
x1, . . . , x t

〉
of binary strings.

Decide: is every x j ∈ L?

Parameter: k := |x i | = |x j |, j = 1, 2, . . . , t.

Note: Asking about individual satisfiability of the ψjs...

(even this special case resists small kernels.)

Andrew Drucker Kernel-Size Lower Bounds

One approach to kernelization: sparsification

May try to identify instances that are “logically least-likely” to lie
in L, remove them.

Andrew Drucker Kernel-Size Lower Bounds

One approach to kernelization: sparsification

May try to identify instances that are “logically least-likely” to lie
in L, remove them.

Andrew Drucker Kernel-Size Lower Bounds

One approach to kernelization: sparsification

Reasonable idea, but no nontrivial kernel size bounds known
for OR=(L), AND=(L)...

No equivalence between the two tasks either!

Andrew Drucker Kernel-Size Lower Bounds

The conjectures of [BDFH’07]

Let L be any NP-complete language.

OR-conjecture: The problem OR=(L) does not have
poly(k)-kernels.

AND-conjecture: The problem AND=(L) does not either.

Slightly “massaged” forms of the conjectures.

[BDFH’07]: equivalent to respective conjectures for
OR(SAT),AND(SAT) (but we won’t need this)

Andrew Drucker Kernel-Size Lower Bounds

Consequences

[BDFH’07]: The OR-conjecture =⇒ none of these problems have
poly(k)-kernels:

k-Path, k-Cycle, k-Exact Cycle and k-Short Cheap Tour,

k-Graph Minor Order Test and
k-Bounded Treewidth Subgraph Test,

k-Planar Graph Subgraph Test and
k-Planar Graph Induced Subgraph Test,

(k , σ)-
Short Nondeterministic Turing Machine Computation,

w -Independent Set, w -Clique and w -Dominating Set.

Dozens more in later works.

Andrew Drucker Kernel-Size Lower Bounds

Consequences

[BDFH’07]: The AND-conjecture =⇒ none of these problems have
poly(k)-kernels:

k-Cutwidth, k-Modified Cutwidth, and k-Search Number,

k-Pathwidth, k-Treewidth, and k-Branchwidth,

k-Gate Matrix Layout and k-Front Size,

w -3-Coloring and w -3-Domatic Number,

Andrew Drucker Kernel-Size Lower Bounds

Connections

OR, AND-conjectures connect to specific parametrized
problems through various technical lemmas and reductions.

Here we explain one of the simplest such connections.1 Still
quite powerful.

1Related to definitions in [Harnik-Naor ’06], [BDFH’07], [Bodlaender,
Jansen, Kratsch ’11]

Andrew Drucker Kernel-Size Lower Bounds

Connections

Claim

Let L be NP-complete, P a parametrized problem, and suppose
there is a poly-time reduction R from an instance x to OR=(L) to
an equivalent instance of P, with

k(R(x)) ≤ poly(k(x)) .

Then, if P has some poly(k)-kernelization A, so does OR=(L) (and
the OR-conjecture fails).

Proof.

To kernelize an instance x of OR=(L):

x → R(x) → A(R(x)) → (reduce to L) .

Andrew Drucker Kernel-Size Lower Bounds

Connections

Claim

Let L be NP-complete, P a parametrized problem, and suppose
there is a poly-time reduction R from an instance x to AND=(L)
to an equivalent instance of P, with

k(R(x)) ≤ poly(k(x)) .

Then, if P has some poly(k)-kernelization A, so does AND=(L)
(and the AND-conjecture fails).

Proof.

To kernelize an instance x of AND=(L):

x → R(x) → A(R(x)) → (reduce to L) .

Andrew Drucker Kernel-Size Lower Bounds

Using the connections

Let’s see some (easy) examples.

Define k-Path:

Input: 〈G , k〉.

Decide: does G have a simple path of length k?

k-Path is FPT, runtime 2O(k) poly(n) [Alon, Yuster, Zwick ’95].

But no poly(k)-kernel known.

Andrew Drucker Kernel-Size Lower Bounds

Using the connections

Apply our Claim to show that k-Path is hard to kernelize.

How to express an OR of many NP instances of size s, as a
single instance of k-Path, with k ≈ s?

Which L to choose?

Andrew Drucker Kernel-Size Lower Bounds

Using the connections

Andrew Drucker Kernel-Size Lower Bounds

Using the connections

Andrew Drucker Kernel-Size Lower Bounds

Using the connections

Take L = HAMILTONIAN PATH.

Use graph encoding where length-k2 input encodes a graph on
k vertices.

On the input 〈G1, . . . ,Gt〉 to OR=(L) (where | 〈Gi 〉 | = k2),
output 〈

H :=
·⋃

Gj , k

〉
.

H has a simple k-path ⇐⇒ some Gi has a Ham path.

Andrew Drucker Kernel-Size Lower Bounds

Using the connections

Define k-Treewidth:

Input: 〈G , k〉.

Decide: does G have treewidth∗ ≤ k?
∗(tw = a monotone measure of graph “fatness”)

Treewidth an important graph complexity measure for FPT alg.
design.

k-Treewidth FPT, but treewidth is NP-hard to compute exactly.

Andrew Drucker Kernel-Size Lower Bounds

Using the connections

Given graphs G1, . . . ,Gt , if

H :=
·⋃

Gj

then
tw(H) := max

i
(tw(Gi)) ,

so
tw(H) ≤ k ⇐⇒

∧
i

[tw(Gi) ≤ k] .

Basis of proof that (AND-Conjecture) =⇒ k-Treewidth has
no poly(k)-kernels. We take

L := {〈G 〉 : tw(G) ≤ |V (G)|/2 } .

Andrew Drucker Kernel-Size Lower Bounds

Using the connections

In k-Treewidth, k-Path examples, choice of NP-complete
language L was “obvious,” closely related to param’d problem.

Time has shown: sometimes “best” choice of L is not obvious,
makes reductions easier.

(We’ll see an example...)

Andrew Drucker Kernel-Size Lower Bounds

Tight poly kernel LBs

We’ve seen a strong framework for ruling out poly(k) kernels
(modulo the AND-/OR-conjectures).

Shortly after [BDFH’07], Fortnow and Santhanam showed
OR-conjecture is true (for deterministic algorithms) if
NP * coNP/poly. (We’ll come back to this...)

Dell and Van Melkebeek built on [BDFH’07,FS’08] ideas to
give tight kernel LBs for problems that do have
poly(k)-kernels.

How??

Andrew Drucker Kernel-Size Lower Bounds

Tight poly kernel LBs

First step: studied [FS’08] carefully!

[FS’08] implicitly shows something much stronger than the
OR-conjecture.

Important to know this...

Andrew Drucker Kernel-Size Lower Bounds

Restricting t

Recall OR=(L): given x1, . . . , x t each of length k , compute∨
i∈[t]

[x i ∈ L] .

Let t(k) be a function, and let OR=(L)t(·) be the same
problem where we further restrict t = t(k).

Focus on “reasonable” t(·): easily computable, and satisfy

t(k) ≤ poly(k) .

Andrew Drucker Kernel-Size Lower Bounds

Stronger bounds

Theorem

[FS’08, implicit]: Assume NP * coNP/poly. If L is NP-complete
and t(k) ≤ poly(k), no poly-time reduction R from OR=(L)t(·) to
any other problem can achieve output size

|R(x)| ≤ O(t log t) ,

where t = t(k), k = k(x).

E.g., take t(k) := k100.

Then input (x1, . . . , x t(k)) to OR=(L)t(·), of size k · k100,
cannot be reduced to a kernel of size < k100!

Here, OR=(L)t(·) trivially has a k101-kernel, and by [FS’08] it
is nearly optimal!

Andrew Drucker Kernel-Size Lower Bounds

Stronger bounds

Corollary: the k-Path problem on k100-vertex graphs does not
have kernels of size k100.

So [DvM’10] not really the first ones to prove good fixed-poly
kernel LBs.
Their achievement:

1 Express OR=(L) instances very efficiently within a
parametrized problem instance, minimizing parameter blowup;

2 Find a way to “boost” the [FS’08] bound and get truly tight
results.

Andrew Drucker Kernel-Size Lower Bounds

N-Clique

Define the N-Clique problem as:

Input: 〈G , s〉.

(G a graph on N vertices; s ≤ N)

Decide: Does G have a clique of size s?

Parameter: N.

Natural input size: up to N2.

Can we compress?

Andrew Drucker Kernel-Size Lower Bounds

N-Clique

For kernel LBs, goal is to efficiently express an OR of NP
instances within an N-Clique instance.

Can easily express an OR of NP instances by
·⋃

...

Problem: blows up the parameter N linearly!

Wasteful, since most potential edges are not used...

Andrew Drucker Kernel-Size Lower Bounds

N-Clique

Idea: “Pack” many CLIQUE instances into one graph, in a
way that creates no large “unwanted” cliques.

Main effort: Find special “host” graph to contain these
instances.

Andrew Drucker Kernel-Size Lower Bounds

Edge-disjoint clique packing: example

Andrew Drucker Kernel-Size Lower Bounds

The packing lemma

Lemma (Packing Lemma for graphs, DvM ’10)

For any s, t > 0 there is a graph G ∗ on

s · (s + t .5+o(1))

vertices. E (G ∗) is union of t edge-disjoint cliques K1, . . . ,Kt of
size s, and has no other (“unwanted”) s-cliques.
G ∗ can be constructed in time poly(s + t).

With this lemma we can “embed” t instances of an
appropriate problem into K1, . . . ,Kt respectively.

(Details...)

Andrew Drucker Kernel-Size Lower Bounds

The packing lemma

Lemma

For any s, t > 0 there is a graph G ∗ on

s · (s + t .5+o(1))

vertices. E (G ∗) is union of t edge-disjoint cliques K1, . . . ,Kt of
size s, and has no other (“unwanted”) s-cliques.

Cliques Ki ,Kj can intersect in at most one vertex.

Suggests we consider them as lines in a (finite) plane...

Andrew Drucker Kernel-Size Lower Bounds

The packing lemma

Fix any prime p > s.

We’ll build a graph G with sp vertices, and see how large we
can take t...

Vertex set: LP = Fp × {0, 1, . . . , s − 1}. (“left-plane”)

Andrew Drucker Kernel-Size Lower Bounds

The “left-plane”

Andrew Drucker Kernel-Size Lower Bounds

Lines and line-cliques

line in LP:

`[a,b] = {(x , y) ∈ LP : y = ax + b} (a, b ∈ Fp, a 6= 0)

For each line ` define

K` =

{(
(x , y) , (x ′, y ′)

)
: (x , y), (x ′, y ′) ∈ `

}

Andrew Drucker Kernel-Size Lower Bounds

Lines and line-cliques

Andrew Drucker Kernel-Size Lower Bounds

Lines and line-cliques

Andrew Drucker Kernel-Size Lower Bounds

The packing lemma

K`,K`′ are edge-disjoint as needed.
(two points contained in unique line)

Each K` is a clique of size s!
(so sp cliques placed in total.)

Problem: many other s-cliques...

Andrew Drucker Kernel-Size Lower Bounds

The packing lemma

Inspired idea: restrict the slope of lines we use.

Choose “special” A ⊂ F∗p, and take

E (G ∗) =
⋃

slope(`)∈A

K` .

A = large set without length-3 arithmetic progressions
(3-APs).

Andrew Drucker Kernel-Size Lower Bounds

The packing lemma

Key claim: The only s-cliques in G ∗ are the K`’s we included.

1 Why true?

2 What does it get us?

Andrew Drucker Kernel-Size Lower Bounds

What does key claim give?

In our construction, we packed p · |A| cliques of size s into G ∗.

Theorem (Salem, Spencer ’42)

There is a 3-AP-free set A ⊂ F∗p with

|A| ≥ p1−o(1) ,

constructible in time poly(p).

So to pack t cliques, we may take p ≤ s + t .5+o(1).

Number of verts. N = sp ≤ s(s + t .5+o(1)), as needed!

Andrew Drucker Kernel-Size Lower Bounds

Why is key claim true?

First, no “vertical” edges ((x , y), (x , y ′)) in G ∗.

Thus any s-clique must have one element from each “column”

colj = Fp × [j] .

Andrew Drucker Kernel-Size Lower Bounds

Why is key claim true?

If Kbad is an s-clique in G ∗ not equal to some K`, then ∃
some three adjacent columns like so:

Andrew Drucker Kernel-Size Lower Bounds

Why is key claim true?

Claim: a1 + a3 = 2a2

Andrew Drucker Kernel-Size Lower Bounds

Why is key claim true?

Claim: a1 + a3 = 2a2

Andrew Drucker Kernel-Size Lower Bounds

Why is key claim true?

Claim: a1 + a3 = 2a2

Andrew Drucker Kernel-Size Lower Bounds

Why is key claim true?

Claim: a1 + a3 = 2a2

Andrew Drucker Kernel-Size Lower Bounds

Why is key claim true?

y2 − y1 = a3

Andrew Drucker Kernel-Size Lower Bounds

Why is key claim true?

y2 − y1 = a3 y3 − y2 = a1

Andrew Drucker Kernel-Size Lower Bounds

Why is key claim true?

y2 − y1 = a3 y3 − y2 = a1 y3 − y1 = 2a2

Andrew Drucker Kernel-Size Lower Bounds

Why is key claim true?

Conclude: a1 + a3 = 2a2

Andrew Drucker Kernel-Size Lower Bounds

Why is key claim true?

This contradicts (A is 3-AP-free). So Kbad can’t exist!

Andrew Drucker Kernel-Size Lower Bounds

The upshot

Theorem (DvM’10)

Fix any t(k) ≤ poly(k). There is an NP-complete language L, and
a poly-time reduction from OR=(L)t(k) to N-Clique, whose output
instance 〈G , s〉 satisfies

N = |V (G)| ≤ O(k2 + k · t .5+o(1)) .

Now suppose N-Clique had a kernelization R ′ with output size
bound N2−ε.

Let t(k) := kC , for some C � 1/ε. Apply R to the output of
DvM reduction. Maps OR=(L)t(k) instance to an N-Clique
instance of size

O

([
k2 + k · k .5C+o(1)

]2−ε)
= o

(
kC−1

)
.

Andrew Drucker Kernel-Size Lower Bounds

The upshot

But L is NP-complete, so [FS’08] tells us: can’t compress

OR=(L)k
C

instances even to size O(kC log k)

(of any target problem)...

unless NP ⊂ coNP/poly.

Similar proof: N-Clique on d-hypergraphs does not have
Nd−ε-kernels. Same for N-Vertex Cover, others.

Andrew Drucker Kernel-Size Lower Bounds

Simplification

[Dell, Marx ’12]: simpler proofs of these and related results.

Basic idea: to efficiently compress OR=(L) instances into
N-Clique, choose L as an NP-complete language with
“special structure”
(making instances easier to combine in a shared graph)

Andrew Drucker Kernel-Size Lower Bounds

The “fussy clique” problem

Define L = FUSSY-CLIQUE:

Input: A graph G on 2s2 vertices, presented as

V (G) = X1 ∪ . . . ∪ Xs ∪ Y1 ∪ . . . ∪ Ys .

Require:
1 each Xi (Yi) is an independent set of size s;
2 each pair (Xi ,Xj) is a complete bipartite graph (i 6= j). Same

for (Yi ,Yj).

Decide: does G have a clique of size 2s?

NP-complete ([Dell, Marx ’12], essentially)

Andrew Drucker Kernel-Size Lower Bounds

Structure of “fussy” graphs

Andrew Drucker Kernel-Size Lower Bounds

Structure of “fussy” graphs

Andrew Drucker Kernel-Size Lower Bounds

The “fussy clique” problem

Easy to compress OR=(FUSSY-CLIQUE) instance into an
N-Clique instance.

Given: t FUSSY-CLIQUE instances

{Gp,q}p,q≤√t .

Create graph G ∗ on
√

t × 2s2 vertices, in s-vertex parts

Xp,i , Yp,i i ≤ s, p ≤
√

t .

For p, q ≤
√

t, place copy of Gp,q on vertex-set

X p := Xp,1, . . . ,Xp,s ∪ Y q := Yq,1, . . . ,Yq,s .

Andrew Drucker Kernel-Size Lower Bounds

The “fussy clique” problem

Andrew Drucker Kernel-Size Lower Bounds

The “fussy clique” problem

Andrew Drucker Kernel-Size Lower Bounds

Analysis: First: if some Gp,q has an 2s-clique, so does G ∗.

Now suppose G ∗ has an 2s-clique C . Can intersect only one
X p, and one Y q.

Every Gp,q′ using X p adds the same edges within X p.
Similarly for Y q.

Thus, C must be a clique in Gp,q!

Have reduced OR=(FUSSY-CLIQUE)t to an N-Clique
instance 〈G ∗, 2s〉 with N = |V (G ∗)| ≤ O(s2

√
t).

Here | 〈Gp,q〉 | ≈ s4, so reduction is good enough to infer the
same kernel-size lower bounds we got from [DvM’10].

Andrew Drucker Kernel-Size Lower Bounds

