
Kernel-Size Lower Bounds:
The Evidence from Complexity Theory

Andrew Drucker

IAS

Worker 2013, Warsaw

Andrew Drucker Kernel-Size Lower Bounds



Part 2/3

Andrew Drucker Kernel-Size Lower Bounds



Note

These slides are a slightly revised version of a 3-part tutorial given
at the 2013 Workshop on Kernelization (“Worker”) at the
University of Warsaw. Thanks to the organizers for the opportunity
to present!

Preparation of this teaching material was supported by the National Science
Foundation under agreements Princeton University Prime Award No.
CCF-0832797 and Sub-contract No. 00001583. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.
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To be proved

Evidence for the OR, AND conjectures:

Theorem

Assume NP * coNP/poly. If L is NP-complete, t(k) ≤ poly(k),

1 [Fortnow-Santhanam’08] No deterministic poly-time reduction
R from OR=(L)t(·) to any problem can have output size

|R(x)| ≤ O(t log t) .

2 [D.’12] No probabilistic poly-time reduction R from

OR=(L)t(·) , AND=(L)t(·)

to any problem, with Pr[success] ≥ .99], can achieve

|R(x)| ≤ t .
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Background

Let’s back up and discuss:

What does NP * coNP/poly mean?

Why believe it?
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Background: circuits

We use ordinary model of Boolean circuits: ∧,∨,¬ gates,
bounded fanin.

Say that decision problem L has poly-size circuits, and write
L ∈ P/poly, if

∃ { Cn : {0, 1}n → {0, 1} }n>0 :

size(Cn) ≤ poly(n), Cn(x) ≡ L(x) .

Non-uniform complexity class: def’n of Cn may depend
uncomputably on n!

Example: if L ⊆ 1∗, then L ∈ P/poly. Also, BPP ⊂ P/poly.
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Background: nondeterminism

Recall: decision problem L is in NP if:

∃ poly-time algorithm A(x , y) on n + poly(n) input bits :

x ∈ L ⇐⇒ ∃ y : A(x , y) = 1 .

“Non-uniform NP”
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Background: nondeterminism

Say that decision problem L is in NP/poly if:

∃ poly-sized ckts {Cn(x , y)}n on n + poly(n) input bits :

x ∈ Ln ⇐⇒ ∃ y : Cn(x , y) = 1 .

“Non-uniform NP”
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Background: nondeterminism

Recall that coNP = {L : L ∈ NP}.

Complete problem: UNSAT = {ψ : ψ is unsatisfiable}.

coNP/poly = {L : L ∈ NP/poly}.
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Uniform and nonuniform complexity

Connect questions about non-uniform computation to uniform
questions?

Yes!

Need a broader view of nondeterminism...
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Games and computation

Given a circuit C (y1, y2, . . . , yk) with k input blocks, consider
2-player game where Player 1 wants C → 1, P0 wants C → 0.

Take turns setting y1, . . . , yk .
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Games and computation

Define d-ROUND GAME (∃) as:

Input: a d-block circuit C (y1, . . . , yd).

Decide: on 2-player game where P1 goes first, can P1 force a
win? (C = 1)

Define complexity class
Σp
d

as set of languages poly-time (Karp)-reducible to d-ROUND
GAME (∃).

“d th level of Polynomial Hierarchy”
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Games and computation

Facts: NP = Σp
1 (“solitaire”); Σp

d ⊆ Σp
d+1.

Common conjecture: for all d > 0, Σp
d 6= Σp

d+1.

Otherwise we could efficiently reduce a (d + 1)-round game to
an equivalent d-round one, and

how the heck do you do that??
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Games and computation

Games allow us to connect uniform and non-uniform
complexity questions:

Theorem (Karp-Lipton ’82)

Suppose NP is in P/poly.
Then, for all d > 2,

Σp
d = Σp

2 .
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Games and computation

Games allow us to connect uniform and non-uniform
complexity questions:

Theorem (Yap ’83)

Suppose NP is in coNP/poly.
Then, for all d > 3,

Σp
d = Σp

3 .
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Games and computation

So: the assumption

NP * coNP/poly

can be based on an (easy-to-state, likely) assumption:

“One cannot efficiently reduce a 100-round game
to an equivalent 3-round game!”
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The minimax theorem

An extremely useful tool.

Many applications in complexity theory, beginning with
[Yao’77].

Gives alternate (but similar) proof of [Fortnow-Santhanam’08]
result;

seems crucial for best results in [D.’12].

Andrew Drucker Kernel-Size Lower Bounds



The minimax theorem

Setting: a 2-player, simultaneous-move, zero-sum game.

Players 1, 2 have finite sets X ,Y . (“possible moves”)

“Payoff function” Val(x , y) : X × Y → [0, 1].

Val(x , y) defines “payoff from P1 to P2,” given moves
(x , y).

(P1 trying to minimize Val(x , y), P2 trying to maximize)
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The minimax theorem

Mixed strategy for P1: A distribution DX over X .

(Mixed strategies can be useful...)

Minimax thm says: for P1 to do well against all P2
strategies...

it’s enough if P1 can do well against any fixed mixed strategy.
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The minimax theorem

Theorem (Minimax—Von Neumann)

Suppose that for every mixed strategy DY for P2, there is a P1
move x ∈ X such that

Ey∼DY
[Val(x , y)] ≤ α .

Then, there is a P1 mixed strategy D∗X such that, for all P2 moves
y,

Ex∼D∗
X

[Val(x, y)] ≤ α .

Follows from LP duality theorem.
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Back to business

Time to apply these tools.

Let’s restate the [Fortnow-Santhanam’08] result.

Will switch from k’s to n’s...
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Back to business

Theorem (FS’08, restated)

Let L be an NP-complete language, L′ another language, and
t(n) ≤ poly(n).
Suppose there is a poly-time reduction

R(x) = R(x1, . . . , x t(n))

taking t(n) inputs of length n, and producing output such that

R(x) ∈ L′ ⇐⇒
∨
j

[x j ∈ L] .

Suppose too we have the output-size bound

|R(x)| ≤ O(t(n) log t(n)) .

Then, NP ⊆ coNP/poly.
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Simplifying

To ease discussion:

Assume L′ = L;

Fix t(n) = n10;

Assume ∣∣∣R (x1, . . . , xn10)∣∣∣ ≡ n3 .

(No more ideas needed for general case!)

Andrew Drucker Kernel-Size Lower Bounds



Proof strategy

Recall L is NP-complete. To prove theorem, enough to show
that

L ∈ coNP/poly , i.e., L ∈ NP/poly .

Thus, want to use R to build a non-uniform proof system
witnessing membership in L.
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Shadows

For x ∈ {0, 1}n, say that x = (x1, . . . , xn
10

) contains x if

x occurs as one of the x j ’s.

Define the shadow of x ∈ {0, 1}n by

shadow(x) := {z = R(x) : x contains x} ⊆ {0, 1}n3 .
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Shadows

Fact: if some z /∈ L is in the shadow of x , then x /∈ L.

(by OR-property of R...)

This is our basic form of evidence for membership in L!

(z will be non-uniform advice...)
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The main claim

Claim (FS ’08)

There exists a set Z ⊆ Ln3 , with

|Z | ≤ poly(n) ,

such that for every x ∈ Ln ,

shadow(x) ∩ Z 6= ∅ .

Intuition: the massive compression by R =⇒ some z is the image
of many sequences x , hence is in many shadows. Can collect these
“popular” z ’s to hit all shadows (of Ln).

Claim easily implies L ∈ NP/poly... take Z as non-uniform advice.
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Shadows

To prove x ∈ L...

nondeterministically choose x ⊃ x and z ∈ Z ,
and check:

Conclusion: x ∈ L.
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Proof by game

To prove Claim, consider the following simul-move game between
P1 (“Maker”) and P2 (“Breaker”):

Game

P1: chooses z ∈ Ln3 ;

P2: chooses x ∈ Ln;

Payoff to P2: Val(x , z) = 1 if z /∈ shadow(x), otherwise 0.

Lemma

There is a P1 strategy (dist’n D∗ over Ln3) such that for any x,

Ez∼D∗ [Val(z, x)] ≤ o(1) .

Our Claim follows easily, with |Z | = O(n). (Repeated sampling!)
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Proof by game

Lemma

There is a P1 strategy (dist’n D∗ over Ln3) such that for any x,

Ez∼D∗ [Val(z, x)] ≤ o(1) .

By minimax theorem, it’s enough to beat any fixed P2 mixed
strategy

Dn (dist’n over Ln ) .

Idea: use P1 strategy induced by outputs of R on inputs from
Dn...
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Proof by game

Say that z ∈ Ln3 is bad, if

Pr
x∼Dn

[z ∈ shadow(x)] ≤ 1− 1/n .

We’ve beaten strategy Dn if some z is not bad.
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Proof by game

Let D⊗tn denote t ind. copies of Dn.

Define dist’n R by

R = R
(
D⊗n10n

)
.

We claim that

Pr
z∼R

[z is bad ] = o(1) .
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Proof by game

Let x = (x1, . . . , xn
10

) ∼ D⊗n10n , and

z = R(x) .

Consider any bad z . For [z = z ], we must have

xj ∈ shadow(z) ∀j ,

with happens with probability

≤ (1− 1/n)n
10
< 2−n

9
.

Union bound over all bad z completes proof:

Pr [z is bad] ≤ 2n
3

2n9
= o(1) .
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Summary

If
R(x) : {0, 1}n×n10 → {0, 1}n3

is a compressive mapping with the “OR-property” for L, then
there are z ∈ Ln3 lying in the “shadow” of many x ∈ Ln.

We collect a small set Z of these non-uniformly, use it to
prove membership in Ln.

Note: nondeterminism still required to verify membership in
Ln: we have to guess extensions x → x which map to z!

Minimax theorem made our job easier.
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Summary

Fortnow-Santhanam technique applies to randomized
algorithms avoiding false negatives. Also to
co-nondeterministic alg’s (observed in [DvM ’10]).

[FS ’08] also used their tools to rule out “succinct PCPs” for
NP...

Left open: evidence again two-sided error OR-compression;
any strong evidence against AND-compression.

poly(k)-kernelizability of problems like k-Treewidth left open...
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Side note: a mystery

Fortnow-Santhanam prove we cannot efficiently compress

OR=(L)
t(n)
n instances to size O(t(n) log t(n)).

Input size is t(n) · n.

There is still a big gap here; consequences of compression to
size O(t(n) ·

√
n)? If, e.g., L = SAT?

Same issue with [D’12] bounds...
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