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Note

These slides are taken (with minor revisions) from a 3-part tutorial
given at the 2013 Workshop on Kernelization (“Worker”) at the
University of Warsaw. Thanks to the organizers for the opportunity
to present!

Preparation of this teaching material was supported by the National Science
Foundation under agreements Princeton University Prime Award No.
CCF-0832797 and Sub-contract No. 00001583. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.
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Background

Recall: [Fortnow-Santhanam ’08] gave strong evidence for the
OR-conjecture (for deterministic reductions).

Left open:
1 bounding power of two-sided bounded-error compressions of

OR=(L);
2 any strong evidence for the AND-conjecture.

Recently, success on both items. ([D. ’12], this talk)
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To be proved

Theorem (D.’12, special case)

Assume NP * coNP/poly. If L is NP-complete and t(n) ≤ poly(n),

then no PPT reduction R from either of

OR=(L)t(·) , AND=(L)t(·)

to any problem L′, with Pr[success] ≥ .99, can achieve

|R(x)| ≤ t(n) .
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To be proved

Theorem (D.’12, special case)

Assume NP * coNP/poly. If L is NP-complete and t(n) ≤ poly(n),

then no PPT reduction R from

AND=(L)t(·)

to any problem L′, with Pr[success] ≥ .99, can achieve

|R(x)| ≤ .01t(n) .
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Our goal

Assume such an R does exist.
We’ll describe how to use reduction R for AND=(L) to prove
membership in L.

Initial protocol idea will be an interactive proof system to
witness x ∈ L.

This can be converted to an NP/poly protocol for L by
standard results.

Thus L ∈ coNP/poly; and L is NP-complete.
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First, a story to motivate our approach. A story about... apples.1

1In the tutorial I just told the story out loud. It might seem a little silly put
right on the slides; but I think it has pedagogical value.
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Some apples taste good, some taste bad.
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But you’re allergic to apples.
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You can’t eat them, so you can’t tell good from bad directly.
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That’s where Merlin comes in.
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Merlin has a particular apple he really wants to convince you is bad.

Andrew Drucker Kernel-Size Lower Bounds



But you don’t trust Merlin. So what do you do?
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First, you get a blender.
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You throw Merlin’s apple into a blender with a bunch of
other apples, known to be good.
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The result is a smoothie.
It will taste good exactly if all of the “input” apples are good.
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You feed it to Merlin, and ask him if it tastes good.
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But what will Merlin say, if he knows you used his apple?
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So how do you make it harder for Merlin to lie?
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You privately flip a coin.
Heads, you include Merlin’s apple.

Tails, you include only known good apples.
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If Merlin’s apple really is bad,
he’ll be able to taste whether we used it.
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Now suppose Merlin is lying, and his apple is good.

Then the smoothies taste good in
either case, and Merlin is confused!
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Can’t reliably tell you if his apple was used.
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But life is not quite so simple.

First, if the blender isn’t powerful enough,
it might leave chunks of Merlin’s apple
he can identify. Would help him to lie.
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Second, if Merlin’s apple is a Granny Smith,
and all your apples are Red Delicious,

he might again taste the difference (even if Merlin’s apple is good).
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Thus, you will need a sufficient diversity
of good apples, and may also want to randomize

which of your apples you throw in.
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All this is a metaphorical description of our basic strategy, by
which we’ll use a compression reduction for AND=(L) to build
an interactive proof system for L.

Apples correspond to inputs x to the decision problem for L.
Merlin is trying to convince us that a particular x∗ lies in L.

Apples’ goodness corresponds to membership in L. Merlin
claims the “apple” x∗ is bad.
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The blender represents a compression reduction for AND=(L).
We will test Merlin’s “distinguishing ability” just as described.

A “powerful” blender, leaving few chunks, corresponds to a
reduction achieving strong compression.

The need for diverse “input” apples will correspond to a need
to have diverse elements of L to insert into the compression
reduction along with x∗.
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Hopefully this story will be helpful in motivating what follows.

Now, we need to shift gears and develop some math
background for our work.
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Math background

Review: minimax theorem; basic notions from probability,
information theory.

Recall: 2-player, simul-move, zero-sum games.

Theorem (Minimax)

Suppose in game G = (X ,Y ,Val), for each P2 mixed strategy DY ,
there is a P1 move x such that

Ey∼DY
[ Val(x , y) ] ≤ α .

Then, there is a P1 mixed strategy D∗X such that, for every P2
move y,

Ex∼D∗X [ Val(x, y) ] ≤ α .
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Probability distributions

Statistical distance of (finite) distributions:

||D − D′|| =
1

2

∑
u

|D(u)−D′(u)|

Also write ||X − X ′|| for random variables.

Alternate, “distinguishing characterization” often useful...
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Probability distributions

Distinguishing game

Arthur: b ∈r {0, 1}; samples

u ∼

{
D if b = 0,

D′ if b = 1.

Merlin: receives u, outputs guess for b.

Claim

Merlin’s maximum success prob. is

suc∗ =
1

2

(
1 + ||D − D′||

)
.
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Entropy and information

Entropy of a random variable:

H(X ) :=
∑
x

Pr[X = x ] · log2

(
1

Pr[X = x ]

)
Measure of information content of X ...

Same def. works for joint random vars, e.g. H(X ,Y ).

Mutual information between random vars:

I (X ; Y ) := H(X ) + H(Y )− H(X ,Y ) .

“how much X tells us about Y ” (and vice versa)
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Entropy and information

Mutual information between random vars:

I (X ; Y ) := H(X ) + H(Y )− H(X ,Y ) .

Examples:

1 X ,Y independent =⇒ I (X ; Y ) = 0;

2 X = Y =⇒ I (X ; Y ) = H(X ).

Always have 0 ≤ I (X ; Y ) ≤ H(X ),H(Y ).
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Entropy and information

Question: which is bigger,

I (X 1,X 2 ; Y ) or I (X 1; Y ) + I (X 2; Y ) ?

(Consider cases...)
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Entropy and information

Claim

Suppose X = X 1, . . . ,X t are independent r.v.’s. Then,

I
(
X ; Y

)
≥
∑
j

I (X j ; Y ) .

Intuition: Information in X i about Y is “disjoint” from info
in X j about Y ...
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Conditioning

Let X ,Y be jointly distributed r.v.’s.

X[Y=y ] denotes X conditioned on [Y = y ].

I (X ; Y ) small means conditioning has little effect:

Claim

For any X ,Y ,

Ex∼X ||Y[X=x] − Y || ≤
√

I (X ; Y ) .

(follows from “Pinsker inequality”)
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Conditioning

Claim

For any X ,Y ,

Ex∼X ||Y[X=x] − Y || ≤
√

I (X ; Y ) .

Example [BBCR’10]: let X 1, . . . ,X t be uniform, and

Y = MAJ(X 1, . . . ,X t) .

Then:

1 I (X 1; Y ) ≤ 1/t;

2

∣∣∣∣Y − Y[X 1=b]

∣∣∣∣ ≈ 1/
√

t.
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Key lemma

A fact about statistical behavior of compressive mappings:

Lemma (Distributional stability—binary version)

Let F : {0, 1}t → {0, 1}t′<t be given. Let F (Ut) denote output
dist’n on uniform inputs, and

F (Ut |j←b)

denote output distribution with j th input fixed to b. Then,

E j∈r [t], b∈r{0,1} || F (Ut |j←b) − F (Ut) || ≤
√

t ′/t .

Proof.

Follows from previous two Claims (and Jensen ineq).
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Key lemma

A fact about statistical behavior of compressive mappings:

Lemma (Distributional stability—binary version)

Let F : {0, 1}t → {0, 1}t′<t be given. Let F (Ut) denote output
dist’n on uniform inputs, and

F (Ut |j←b)

denote output distribution with j th input fixed to b. Then,

E j∈r [t], b∈r{0,1} || F (Ut |j←b) − F (Ut) || ≤
√

t ′/t .

Similar lemmas and proof used, e.g., in [Raz’95] on parallel repetition. R.

Impagliazzo, A. Nayak, S. Vadhan helped me understand the proof going

through mutual information and Pinsker ineq. My original proof in [D’12] used

a different approach, based on encoding/decoding and Fano’s inequality.
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Back to business

Recall: L is NP-complete, t(n) ≤ poly(n), and R reduces an
AND of t(n) L-instances to a short, equivalent L-instance,
success prob. = .99.

(again, assuming here that target problem L′ = L)
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Initial setting

Fix attention to a single input size n > 0. Fix
t := t(n) ≤ poly(n).

The PPT reduction

R(x) = R(x1, . . . , x t) : {0, 1}n×t → {0, 1}.01t

satisfies: ∀x ,∧
j

[x j ∈ L] =⇒ Pr
R

[ R(x) ∈ L ] ≥ .99 ,

∃ x j ∈ L =⇒ Pr
R

[ R(x) ∈ L ] ≤ .01 .
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Game plan

Basic observation: suppose

x1, . . . , x t ∈ Ln ,

x ∈ Ln .

(color-coded!)

Consider the two computations

R(x1, . . . , x t) , R(x1, . . . , x︸︷︷︸ , . . . , x t)

(coord. j)
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Game plan

Basic observation: suppose

x1, . . . , x t ∈ Ln ,

x ∈ Ln .

(color-coded!)

Consider the two computations

R(x) , R( x [x ; j ] )

(for brevity)
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Game plan

Observation: the output distributions

R(x) , R( x [x ; j ] )

are far apart in statistical distance!

first usually in L, second usually in L...
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Game plan

“Boosted” observation: for any distribution D over Lt
n,

the output distributions

R( D ) , R( D[x ; j ] )

are far apart!

We have: ∣∣∣∣ R( D ) − R( D[x ; j ] )
∣∣∣∣ ≥ .98 .
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Game plan

Plan: let x ∈ {0, 1}n be a string; we wish to be convinced
that x /∈ L.

The distributions

R( D ) , R( D[x ; j ] )

are far apart; but may computationally hard to distinguish.

So: we will ask Merlin to distinguish them!
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A distinguishing task
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A distinguishing task
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A distinguishing task
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A distinguishing task

Andrew Drucker Kernel-Size Lower Bounds



A distinguishing task

Main question: how to choose D and j?

Want: for all x ∈ L, Merlin should be unable to distinguish
between

R( D ) , R( D[x ; j ] )
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A distinguishing task

Also want: D sampleable efficiently using poly(n) advice.

Main technical lemma: Such a D can be constructed!
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The main lemma

Lemma (“Disguising Distributions”)

Given any mapping R : {0, 1}n×t → {0, 1}.01t and language L,
there exists a distribution D∗ over Lt

n such that:

- for any x ∈ Ln,

- if j ∈r [t] is uniformly chosen,

Ej

∣∣∣∣∣∣ R( D∗ ) − R( D∗[x ; j] )
∣∣∣∣∣∣ ≤ .3

Moreover, D∗ can be sampled by a poly(n)-sized circuit.
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The main lemma

Lemma (“Disguising Distributions”—general)

Given any mapping R : {0, 1}n×t → {0, 1}t′ and language L, there
exists a distribution D∗ over Lt

n such that:

- for any x ∈ Ln,

- if j ∈r [t] is uniformly chosen,

Ej

∣∣∣∣∣∣ R( D∗ ) − R( D∗[x ; j] )
∣∣∣∣∣∣ ≤ O(

√
t ′/t)

Moreover, D∗ can be sampled by a poly(n)-sized circuit.
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The main lemma

Lemma (“Disguising Distributions”—general, alternative bound)

Given any mapping R : {0, 1}n×t → {0, 1}t′ and language L, there
exists a distribution D∗ over Lt

n such that:

- for any x ∈ Ln,

- if j ∈r [t] is uniformly chosen,

Ej

∣∣∣∣∣∣ R( D∗ ) − R( D∗[x ; j] )
∣∣∣∣∣∣ ≤ 1− 2−O(t′/t)

Moreover, D∗ can be sampled by a poly(n)-sized circuit.
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The main lemma

Lemma (“Disguising Distributions”)

Given any mapping R : {0, 1}n×t → {0, 1}.01t and language L,
there exists a distribution D∗ over Lt

n such that:

- for any x ∈ Ln,

- if j ∈r [t] is uniformly chosen,

Ej

∣∣∣∣∣∣ R( D∗ ) − R( D∗[x ; j] )
∣∣∣∣∣∣ ≤ .3

Moreover, D∗ can be sampled by a poly(n)-sized circuit.

Intuition: x ∈ Ln is being tossed into R with “others like it”
(all in Ln)...

R highly compressive, so “forgets” most of its input.
→ We’ll force it to forget about x!
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Building disguising distributions

Say that dist’n D over Lt
n disguises a string x ∈ Ln if

Ej

∣∣∣∣∣∣ R( D∗ ) − R( D∗[x ; j] )
∣∣∣∣∣∣ ≤ .3

Need to find samplable D∗ that disguises all x .

Seems hard... hope to apply minimax theorem to make things
easier!
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Building disguising distributions

Define (another) 2-player, simul-move game between

P1 (“Maker”) and P2 (“Breaker”). Fix a large M ≤ poly(n).

Game

P1: Chooses a dist’n D over Lt
n sampled by a ckt of size M.

P2: Chooses an x ∈ Ln.

Payoff to P2:

α := Ej

∣∣∣∣ R( D ) − R( D[x ; j] )
∣∣∣∣

(Potential for confusion: P1’s pure strategies are distributions...)
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Building disguising distributions

Game

P1: Chooses a dist’n D over Lt
n sampled by a ckt of size M.

P2: Chooses an x ∈ Ln.

Payoff to P2:

α := Ej

∣∣∣∣ R( D ) − R( D[x ; j] )
∣∣∣∣

We’ll show that for every P2 mixed strategy x ∼ X , there
exists a P1 move D that causes Ex[α] ≤ .25.

Then, minimax thm. implies: ∃ a dist’n D over dist’ns such
that for all x ,

Ej,D∼D
∣∣∣∣ R( D ) − R( D[x ; j] )

∣∣∣∣ ≤ .25

Andrew Drucker Kernel-Size Lower Bounds



Building disguising distributions

∃ a dist’n D over dist’ns such that for all x ,

Ej,D∼D
∣∣∣∣ R( D ) − R( D[x ; j] )

∣∣∣∣ ≤ .25

=⇒ for all x ,

Ej

∣∣∣∣ R( D ) − R( D[x ; j] )
∣∣∣∣ ≤ .25
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The fact we used:

Claim

Let {Rv}v , {R′v}v
be two families of dist’ns, v a random variable, and let R,R′ be
obtained by sampling from Rv,R′v respectively. Then,

||R − R′|| ≤
∑
v

Pr[v = v ] · ||Rv − R′v || .
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Building disguising distributions

Minimax gave a P1 mixed strategy D such that, for all x ,

Ej

∣∣∣∣ R( D ) − R( D[x ; j] )
∣∣∣∣ ≤ .25

This D may not itself be sampleable in size M!

But, forming a mixture of O(n) samples from D yields a D∗

that is nearly as good, and of complexity O(Mn) ≤ poly(n).

(“strategy-sparsification” concept:
[Lipton-Young ’94, Althofer ’94])
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What we need now

So: to build disguising distributions for R, we just need to prove:

Claim

For every dist’n X over Ln, ∃ a dist’n D over Lt
n such that:

Ej,x∼X
∣∣∣∣ R( D ) − R( D[x; j] )

∣∣∣∣ ≤ .25 .

Will use simplification ideas of Holger Dell (pers. comm.)
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Key lemma

Lemma (Distributional stability—binary version)

Let F : {0, 1}t → {0, 1}t′<t be given. Let F (Ut) denote output
dist’n on uniform inputs, and

F (Ut |j←b)

denote output distribution with j th input fixed to b. Then,

E j∈r [t], b∈r{0,1} || F (Ut |j←b) − F (Ut) || ≤
√

t ′/t .
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Using distributional stability

Corollary

Let X be over Ln. Let x1, . . . , x t , y1, . . . , y t be 2t independent
samples from X , and let D be uniform dist’n on

{x1, y1} × . . .× {x t , y t} ⊂ Lt
n .

Then,

Ej∈r [t]
∣∣∣∣R(D|j←x j) − R(D)

∣∣∣∣ ≤ √.01 = .1 .

Proof: after fixing any tuples x , y , use Dist. Stability Lemma on
induced function Fx ,y . Here t ′ = .01t.
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Using distributional stability

Corollary

Let X be over Ln. Let x1, . . . , x t , y1, . . . , y t be 2t independent
samples from X , and let D be uniform dist’n on

{x1, y1} × . . .× {x t , y t} ⊂ Lt
n .

Then,
Ej∈r [t]

∣∣∣∣R(D|j←x j) − R(D)
∣∣∣∣ ≤ .1 .

Claim: w.h.p. the D built above works as required P1 strategy, in
response to P2 mixed strategy X .

Idea: w.h.p. over construction, x ∼ X , and j, dist’ns

R(D|j←x j) , R(D|j←y j) , R(D|j←x)

are all close to R(D)...
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Using distributional stability

Corollary

Let X be over Ln. Let x1, . . . , x t , y1, . . . , y t be 2t independent
samples from X , and let D be uniform dist’n on

{x1, y1} × . . .× {x t , y t} ⊂ Lt
n .

Then,
Ej∈r [t]

∣∣∣∣R(D|j←x j) − R(D)
∣∣∣∣ ≤ .1 .

Notice: to build an input-distribution D to disguise the insertion
of x ∼ X , we used inputs that were “as similar to x as
possible”—because drawn from the same distribution X .

Makes sense as a strategy!

Andrew Drucker Kernel-Size Lower Bounds



The upshot

Recall: n, t are fixed and R : {0, 1}n×t → {0, 1}.01t .

We have used (minimax + sparsification) to produce a
samplable dist’n D

∗
over Lt

n, such that for all x ∈ Ln,

Ej ||R( D
∗

) − R( D
∗
[x ; j] )|| ≤ .3 .

On the other hand, AND-property of R gives: for all x ∈ Ln,

Ej ||R( D
∗

) − R( D
∗
[x ; j] )|| ≥ .98 .

Now “hide the value of j”... doesn’t increase statistical
distance in 1st case, or affect argument in 2nd case!
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The upshot

Recall: n, t are fixed and R : {0, 1}n×t → {0, 1}.01t .

We have used (minimax + sparsification) to produce a
samplable dist’n D

∗
over Lt

n, such that for all x ∈ Ln,

||R( D
∗

) − R( D
∗
[x ; j] )|| ≤ .3 .

On the other hand, AND-property of R gives: for all x ∈ Ln,

||R( D
∗

) − R( D
∗
[x ; j] )|| ≥ .98 .

Now “hide the value of j”... doesn’t increase statistical
distance in 1st case, or affect argument in 2nd case!
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The upshot

What we’ve done so far: we built a reduction Q computable by
poly(n)-sized circuits:

Input: x ∈ {0, 1}n.

Output: a pair of sampling-circuit descriptions〈
C , C ′x

〉
where:

C samples from R(D
∗
),

C ′ samples from R(D
∗
[x ; j]), j ∈r [t].

Property: if x ∈ Ln, then

||C − C ′x || ≥ .98 ,

while if x ∈ Ln,
||C − C ′x || ≤ .3 .
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The upshot

This, combined with the Arthur/Merlin distinguishing
protocol mentioned earlier gives a (non-uniform)

2-message, private-coin interactive proof system

to witness membership in L.

By standard techniques
[Goldwasser-Sipser ’86, Babai ’85, Adleman’78], this implies
L ∈ NP/poly, i.e., L ∈ coNP/poly.

As L was NP-complete, we get NP ⊂ coNP/poly. Mission
accomplished! So in fact the reduction R is unlikely to exist.
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The statistical distance problem SD≥.9≤.3

Problem (SD)

Input: sampling-circuits 〈C ,C ′〉.

Distinguish: Case (i): ||C − C ′|| ≥ .9;

Case (ii): ||C − C ′|| ≤ .3.

This promise problem has 2-message interactive proof systems to
prove we are in Case (i)—as mentioned. (Proof-of-distance)
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The statistical distance problem SD≥.9≤.3

Problem (SD)

Input: sampling-circuits 〈C ,C ′〉.

Distinguish: Case (i): ||C − C ′|| ≥ .9;

Case (ii): ||C − C ′|| ≤ .3.

But, in fact, also has 2-message Proof-of-closeness interactive
proof systems to prove we are in Case (ii)!

Follows from results of [Fortnow ’87], [Sahai-Vadhan ’99] on
zero-knowledge proofs.

This ⇒ hardness of probabilistic compression for OR=(L)...
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Compression for OR=(L)

Suppose L is any NP-complete language, and
R : {0, 1}n×t → {0, 1}.01t is a PPT reduction for OR=(L)t

with success prob. ≥ .99, target language L.

Then, R is also a PPT reduction for AND=(L), target
language L!
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The modified reduction

Applying our main reduction to L in place of L, we get a reduction
Q ′ computable by poly(n)-sized circuits:

Input: x ∈ {0, 1}n.

Output: a pair of sampling-circuit descriptions〈
C , C ′x

〉
where:

C samples from R(D
∗
),

C ′ samples from R(D
∗
[x ; j]), j ∈r [t].

New property: if x ∈ Ln, then

||C − C ′x || ≥ .98 ,

while if x ∈ Ln,
||C − C ′x || ≤ .3 .
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The modified reduction

Finally, we run the Proof-of-closeness proof system on the
output 〈C ,C ′x〉 to be convinced that the two distributions are
close, i.e., that we are in Case (ii) of SD≥.9≤.3, i.e., x ∈ Ln.

Gives an interactive proof for L.

Again we find L ∈ NP/poly, so again we conclude

NP ⊂ coNP/poly .

So if L is NP-complete, the compression reduction R we
assumed for OR=(L) (with two-sided error) is unlikely to exist.
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The statistical distance problem SD≥.9≤.3

Problem (SD)

Input: sampling-circuits 〈C ,C ′〉.

Distinguish: Case (i): ||C − C ′|| ≥ .9;

Case (ii): ||C − C ′|| ≤ .3.

In instances output by our reduction Q described earlier,
derived from the compression reduction R for AND=(L), the
first circuit C = R(D∗) depends only on the input length n!

Using non-uniformity, we can give a much simpler proof
system to witness Case (ii) in this special case, without using
[Fortnow ’87, Sahai-Vadhan ’99] (this is unpublished work)
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The statistical distance problem with fixed sequence

Problem (SD problem, fixed sequence)

Defining data: A non-uniform sequence {Cn} of sampling
circuits, size(Cn) ≤ poly(n)

Input: a sampling-circuit 〈C ′〉 (of the same size as Cn).

Distinguish: Case (i) : ||Cn − C ′|| ≥ .9;

Case (ii): ||Cn − C ′|| ≤ .3.
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The statistical distance problem with fixed sequence

Proof system idea:

For a given sequence (z1, . . . , zm) of outputs by Cn, let
µ(z i ) := Pr[Cn → z i ]. Let µ′(z i ) := Pr[C ′ → z i ].

If ||Cn − C ′|| ≥ .9 then, for most values z i ← Cn,

µ′(z i ) < .5 · µ(z i ) . (1)

If ||Cn − C ′|| ≤ .3 then, for most values z i ← Cn,

µ′(z i ) > .6 · µ(z i ) . (2)

We can non-uniformly fix a poly(n)-sized list z1, . . . , zm such
that:

1 Eq. (1) holds for most z i , for every C ′ in Case (ii);
2 Eq. (2) holds for most z i , for every C ′ in Case (i).
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The statistical distance problem with fixed sequence

Given C ′, can use Goldwasser-Sipser set-size protocol to
prove Eq. (1) holds for most z i . Just need {µ(z i )} as
non-uniform advice.
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Takeaway

We’ve seen new, stronger barriers to kernelization under the
assumption NP * coNP/poly.

Built a non-uniform proof system for any L for which
AND=(L) is compressible. Improved results for the case when
OR=(L) is compressible too.

We saw that probabilistic interaction with provers gives a
rich framework for building proof systems.

The compression property of our AND-reduction R was used
as an information bottleneck to fool a lying prover.

When building our non-uniform advice, minimax theorem
allowed us to consider probabilistic experiments, where
bottleneck could be quantified using entropy arguments.
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Thanks!
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