Efficient Probabilistically Checkable Debates

Andrew Drucker MIT

Polynomial-time Debates

- Given: language L, string x;
- Player 1 argues that $x \in L$; Player 0 argues $x \notin L$.
- *k*-round debate:

$$y = (y^1, y^2, \dots, y^k)$$

• $y^i = i^{th}$ move; P1 plays odd-numbered moves; $|y^i| \le poly(|x|)$.

Polynomial-time Debates

- Polynomial-time verifier: Boolean function V(x, y)
- V is a **debate system for** L if

 $x \in L \iff$ P1 wins under optimal play (can force V(x, y) = 1)

Theorem (Chandra, Stockmeyer '76) L has a poly(n)-round, polynomial-time debate system

 $\iff L \in \mathsf{PSPACE}.$

• Debate characterization of PSPACE lets us prove many natural problems are PSPACE-complete!

Applications

• E.g., *n*-by-*n* Checkers, Hex, many other 2-player games are PSPACE-complete:

- What happens if we restrict the form of the debate verifier?
- Say that a debate system is **probabilistically checkable** if V(x, y) inspects only O(1) bits of the debate string y

(and decides debate with perfect completeness and 1/3 soundness, say).

INPUT: X

Andrew Drucker MIT,

INPUT: X

Andrew Drucker MIT,

Andrew Drucker MIT,

Theorem (Condon, Feigenbaum, Lund, Shor '95) $L \in \mathsf{PSPACE} \Leftrightarrow$

L has a poly(*n*)-round, **probabilistically checkable** debate system (**PCDS**),

with a verifier using $O(\log n)$ bits of randomness.

("PCP Characterization of PSPACE")

PCP Characterizations of Complexity Classes

- Analogous PCP characterizations were shown for:
 - Polynomial Hierarchy [Ko, Lin '94];
 - IP = PSPACE [CFLS '97];
 - 3 AM [D. '11].

Our result

We strengthen [CFLS]:

Theorem

Suppose $L \in PSPACE$ has a poly-time debate system defined by uniform circuits of size s = s(n).

Then, L has a PCDS with a debate of total bitlength $\widetilde{O}(s)$,

whose verifier uses $\log s + \log(\operatorname{polylog}(s))$ bits of randomness.

Applications

- Like the PCP Theorem, the PCDS Theorem of **[CFLS]** has implications for *hardness of approximation*.
- (For PSPACE-hardness, naturally!)

A natural PSPACE-complete problem

• Input: a 3-CNF formula

 $\psi(z_1,\ldots,z_t)$

- Game: Players take turns assigning values to z_1, z_2, \ldots
- P1 wants to *maximize* fraction of satisfied clauses; P0 wants to *minimize*.
- Let

$Val(\psi)$

= (fraction of satisfied clauses of ψ under optimal play).

- PSPACE-complete to compute $Val(\psi)$ exactly.
- [CFLS] implies: PSPACE-complete to compute Val(ψ) to within a suff. small additive error ε > 0.

Application

- Improved parameters —> better conditional hardness results!
- Suppose computing Val(ψ) exactly requires T(n) = n^{ω(1)} time on length-n inputs (infinitely often).
- Then, [CFLS] ⇒ computing Val(ψ) ± ε requires time T(n^α), for some α < 1.
- Our improvement implies: computing Val(ψ) ± ε requires T(n/ polylog n) time.

- A brief sketch of our construction...
- Main Step: Efficiently transform an ordinary debate system for *L* ∈ PSPACE into one that is "stable."

Stable debate systems

- Given: an ordinary debate system $V(x; y^1, \ldots, y^k)$ for L.
- Say that V is stable if:

for all $x \notin L$, Player 0 can force $y = (y^1, \dots, y^k)$ to be $\Omega(1)$ -far in relative distance from any y' for which V(x; y') = 1.

- How to turn ordinary debates into stable ones?
- **Our tool:** new application of *error-resilient communication protocols.*

Error-resilient communication

- Analogue of error-correcting encoding for 2-way communication [Schulman '93]
- Alice and Bob want to hold a chatroom conversation, of a total length ${\cal T}$ bits.
- Unreliable channel: adversary can corrupt a δ fraction of the transmitted bits (adaptively).

Error-resilient communication

Theorem (Schulman, '93 — Informal)

There is a protocol to simulate T-bit conversations, that uses T' = O(T) bits of communication and succeeds against up to T'/240 corrupted bits.

- [Braverman, Rao '11]: new protocol \mathcal{P}_{BR} with better parameters: tolerates nearly 1/8 fraction of errors—and, simpler!
- Both protocols make inspired use of special codes called *tree codes*.

- perfect execution of \mathcal{P}_{BR} : no transmission errors occur
- else, noisy execution

Our application

- Let V be an ordinary debate system for L, definable by size-s(n) circuits.
- In V', suppose we can "force" players to encode their moves in V using a perfect execution of P_{BR}. Then:
- Claim: V' is stable!
- **Proof:** enough to show: perfect executions with distinct outcomes are well-separated in Hamming distance.

Proof idea

Suppose this perfect execution

is T'/10-close in Hamming distance to this one:

Proof idea

• Then, this noisy execution

has $\leq T'/10$ transmission errors, and causes \mathcal{P}_{BR} to fail. Can't happen!

Efficient Probabilistically Checkable Debates

Forcing compliance

- So, V' is stable.—Technicality: stable for perfect executions...
- How to make the debaters follow \mathcal{P}_{BR} ?
- (Need to do so *efficiently*.)

Forcing compliance

Lemma

There is an O(1)-round debate system D_{BR} , definable by uniform circuits of size O(T), to decide whether a communication transcript w is a valid perfect execution of $\mathcal{P}_{BR}[T]$.

- Use D_{BR} as a "sub-debate" to make our overall debate stable.
- Property that O(1) rounds are used is important: can easily make D_{BR} itself stable (using error-correcting codes).

Forcing compliance

Lemma

There is an O(1)-round debate system D_{BR} , definable by uniform circuits of size O(T), to decide whether a communication transcript w is a valid perfect execution of $\mathcal{P}_{BR}[T]$.

- Proving the lemma—our main technical challenge:
 - No explicit examples of tree codes known! (Debaters have to "guess and check" a code to use.)
 - One officient decoder known for any tree code.
 - Most significantly, the use of tree codes in the Braverman-Rao protocol is somewhat complex, and our efficiency requirements are severe.

Stable \rightarrow prob. checkable

- **Final step:** convert our stable debate system into a probabilistically checkable one.
- Key tool: *PCPs of Proximity (PCPPs)* [Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan '04; Dinur, Reingold '04].
- Powerful variant of PCPs; we use an efficient construction from **[Dinur '07]**.

Stable \rightarrow prob. checkable

- Basic idea:
 - Run our stable debate for L;
 - Ask Player 1 to "certify" his victory, using a PCPP.
- PCPP-like objects also used in [CFLS] (in a different way).

More on error-resilient communication

- A small peek...
- First, what are "conversations" exactly?

Setting: binary tree of depth T

Setting: binary tree of depth T

Alice's input: X, a degree-1 subset of *odd-depth* edges.

Setting: binary tree of depth T

Alice's input: X, a degree-1 subset of *odd-depth* edges.

Bob's input: *Y*, a degree-1 subset of *even-depth* edges

Setting: binary tree of depth T

Alice's input: X, a degree-1 subset of *odd-depth* edges.

Bob's input: *Y*, a degree-1 subset of *even-depth* edges

Output: the path *P* determined by *X*, *Y*

Our application:

- X, Y = P1, P0 strategies in V
- P = resulting debate string

- Also known as the Pointer Jumping problem (PJ_T) .
- [Schulman '93]: ∃ an error-resilient protocol to solve PJ_T using *O*(*T*) bits of communication.

• *k*-ary tree code of depth *d*:

$$C:[k]^{\leq d}\longrightarrow \Sigma$$

• Labeling of edges of the complete k-ary tree of depth d.

Example

Here k = 2, d = 3, $\Sigma = \{a, b, c\}.$

Example

For a path P, define

 $\overline{C}(P)$

as the concatenation of labels along P.

$$\mathsf{E.g.,}\ \overline{C}(0,0)=(a,c)$$

Example

Note: if *P*, *P'* agree for *t* steps, so will $\overline{C}(P)$ and $\overline{C}(P')$.

The distance property

Say that C is a tree code of distance $\alpha \in [0, 1]$, if:

For all pairs P, P' of equal length, $\overline{C}(P)$ and $\overline{C}(P')$ differ on at least an α fraction of places where they *could* differ!

The distance property

- Braverman-Rao protocol for PJ_T requires 5-ary tree codes of depth d = Θ(T), distance α = Ω(1), alphabet size |Σ| = O(1).
 (Schulman: similar.)
- These exist, but no *explicit* construction is known.
- (Explicit $\leftrightarrow C(\cdot)$ computable in time poly(T).)
- Schulman gave a probabilistic construction using O(T) bits of randomness—good enough for our application!

Schulman's tree codes

- Fix k (arity of tree); let $p = O_k(1) \gg k$ be a prime.
- The random seed: $r = (r_1, \ldots, r_d) \in \mathbb{F}_p^d$ (d = depth).
- The tree code:

$$C_{(r)}(x_1,\ldots,x_t) := \sum_{j=1}^t x_j \cdot r_{t+1-j}.$$

• Has distance Ω(1) w.h.p.!

- Debates where P0 plays *randomly* also characterize PSPACE **[Shamir '90]**.
- [CFLS '97]: these debates can also be made prob. checkable.
- Give a similar efficiency improvement for these debates?

Thanks!