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The class AM

I Arthur-Merlin (AM) protocols: a generalization of NP
protocols [Babai-Moran ’88]

I Explores the power of randomness in interaction with a prover.
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The class AM

I L ∈ AM if there exists a polynomial-time algorithm
M(x , r ,w), with

|r |, |w | ≤ poly(|x |) ,
such that:

1. x ∈ L ⇒ ∀r ∃w : M(x , r ,w) = 1;

2. x /∈ L ⇒ Prr [ ∃w : M(x , r ,w) = 1] ≤ 1/3.

I r = “random challenge”; w = “witness”.
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The class AM

I (ΠY ,ΠN) ∈ AM if there exists a polynomial-time algorithm
M(x , r ,w), with

|r |, |w | ≤ poly(|x |) ,
such that:

1. x ∈ ΠY ⇒ ∀r ∃w : M(x , r ,w) = 1;

2. x ∈ ΠN ⇒ Prr [ ∃w : M(x , r ,w) = 1] ≤ 1/3.

I r = “random challenge”; w = “witness”.
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AM vs. NP

I Clearly AM ⊇ NP.

I Is AM = NP? Is AM ⊆ NSUBEXP?
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“Hardness vs. randomness”

I “Hardness vs. randomness” paradigm: sufficiently strong
circuit lower bounds for exponential-time classes imply
nontrivial derandomization of AM, even up to AM = NP.

[Miltersen, Vinodchandran ’99; Shaltiel, Umans ’09]

I Gives a plausible reason to believe that AM = NP;

I But, not a currently viable approach to actually prove it!
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“Hardness vs. randomness”

I Alternative approaches to AM vs NP?

I (Caution: any proof of AM = NP will imply some new circuit
lower bounds;
but weaker than those needed for hardness vs. randomness
approach.)
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Another approach

1. Identify “easiest” AM-hard problems;

2. Attack them with new algorithmic ideas.

I This work:

gives candidate for (1), based on PCPs;

shows obstacles to one algorithmic approach.
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PCPs for AM

I We give a “PCP characterization of AM”:

I For every L ∈ AM, there’s an AM protocol for L in which
Arthur looks at only O(1) bits of the witness string, and O(1)
bits of the random challenge!
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Related work

I Idea of giving PCP-based complete problems for complexity
classes other than NP is not new.

I Similar analogues of PCP Theorem given for:

1. PH (the Polynomial Hierarchy)
[Ko, Lin ’94], [Haviv, Regev, Ta-Shma ’07]

2. PSPACE
[Condon, Feigenbaum, Lund, Shor ’95], [Drucker ’11]

3. IP = PSPACE
[CFLS ’97]
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Switching views

I PCP Theorem can be described in terms of proof systems, or
in terms of Constraint Satisfaction Problems (CSPs).

I Similarly with our result. We’ll work with CSP viewpoint.
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Stochastic CSPs

I k-CSPs: a family ψ1(z), . . . , ψm(z) of constraints on variables
z : each ψi is k-local.

Let Valψ(z) = fraction of constraints ψi satisfied by z .

I Stochastic CSPs: ψ(r , z)

r = “random challenge” variables;

z = “witness/response” variables.
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A complete problem for AM
I Say that ψ(r , z) is risk-free if

∀r ∃z : Valψ(r , z) = 1 .

I Say that ψ(r , z) is ε-risky if with probability ≥ 2/3 over
uniform r ,

∀z : Valψ(r , z) < 1− ε .
We show:

Theorem 1
There is an ε > 0 and a constant-size alphabet Σ such that,
for stochastic 2-CSPs over Σ, it is AM-complete to distinguish
between the cases

1. ψ(r , z) is risk-free;

2. ψ(r , z) is ε-risky.

Call this promise problem Gap− Stoch− 2CSPΣ,ε.
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Sketch of the proof

I Easy to see that the problem is in AM. Nontrivial direction:
show it’s AM-hard.

I Will show how to reduce any L ∈ AM to
Gap− Stoch− 2CSPΣ,ε.

(Promise problems Π ∈ AM handled same way.)

I Given: an AM protocol M(x , r ,w) for a language L ∈ AM.
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Sketch of the proof

I Step 1: improve the soundness guarantee of M.

Initial soundness = 1/3.

I Can drive down soundness to (1/3)k by k-fold parallel
repetition of M; but, blows up |r | unacceptably.

I Instead, use randomness-efficient soundness amplification of
[Bellare, Goldreich, Goldwasser ’93]. Gives a new protocol
M ′ for L, such that

x /∈ L =⇒ Pr
r

[∃w : M ′(x , r ,w) = 1] ≤ 2−Ω(|r |) .
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Sketch of the proof

I Assume for simplicity that in M ′, we have |r | ≥ |w |. (Can
remove this assumption.)

I Let Cx(r ,w) := M ′(x , r ,w).

Cx implementable by a poly(n)-sized circuit.

I Then, rephrasing:

x /∈ L =⇒ w.h.p. over r ,

(r ,w) is Ω(1)−far in relative distance from C−1
x (1), for all w .
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Sketch of the proof

I Step 2: Transform Cx(r ,w) into probabilistically checkable
format.
Key tool: Prob. checkable proofs of proximity (PCPPs)
[Dinur, Reingold ’04; Ben-Sasson et al. ’04]

Theorem (Dinur ’06)

There is a polytime transformation mapping a circuit C (Y ) to a
2-CSP ψ(Y , z) over a constant-sized alphabet, such that for all y :

1. C (y) = 1 =⇒ ∃z : Valψ(y , z) = 1;

2. If y is δ-far from C−1(1), then ∀z : Valψ(y , z) < 1− Ω(δ).
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Sketch of the proof

I Let ψCx = ψCx (r ,w , z) be the output of Dinur’s reduction,
applied to Cx .
Let r be the random challenge vars; (w , z) witness-variables.

I Easy to check that x 7−→ ψCx is the reduction we are looking
for:

1. x ∈ L =⇒ ψCx is risk-free;

2. x /∈ L =⇒ ψCx is Ω(1)-risky.

I This proves Gap− Stoch− CSPΣ,ε is AM-hard

(for small ε > 0).
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What next?

I Nontrivial derandomization for our AM-complete promise
problem?

...haven’t found one.

I How might we try?
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What next?

I For a stochastic 2-CSP ψ(r , z), what is the complexity of
approximately optimizing over z , for randomly selected r?

I Perhaps easy, if we allow algorithm to depend nonuniformly
on ψ...
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A “randomized optimization” hypothesis

Hypothesis A

For any fixed δ, ε > 0, and any stochastic 2-CSP ψ(r , z) of size n,
there is an “optimizer” circuit OPTψ(r), of size polyδ,ε(n) over r ,
such that with prob. 1− δ,

Valψ (r ,OPTψ(r)) ≥ max
z

(Valψ (r , z))− ε .
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A “randomized optimization” hypothesis

Claim
Hypothesis A implies AM = MA.

I Proof of Claim uses our AM-completeness result.

I If the optimizer circuits in Hyp. A can be NC0 circuits, we’d
get the stronger conclusion AM = NP.
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Evidence against the hypothesis

I But—if NP is sufficiently hard, our plan fails:

Theorem 2
Suppose some L ∈ NP is 2/3-hard on average for circuits of size
2Ω(n).

Then, Hyp A fails.
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Proof sketch for Theorem 2

I Step 1: Our hardness assumption for L =⇒
∃ a poly-time predicate M(r ,w) such that:

1. M(r , ·) is satisfiable w.h.p.; but,

2. For any poly-sized circuit C (r),

Pr
r

[M(r ,C (r)) = 1] = 2−Ω(|r |) (tiny) .

I Assume for simplicity: L balanced: |Ln| = 2n−1.
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Proof sketch for Theorem 2

I Natural idea for M(r ,w):

r consists of many independent random strings of length n;
M(r ,w) accepts iff w supplies proofs that at least a .49

fraction of them lie in L.

I M(r , ·) is satisfiable w.h.p.—by Chernoff bounds!

I Any poly-sized circuit fails to satisfy M(r , ·):

Follows from hardness assumption on L and Direct Product
theorems.

I Problem: uses too much randomness.
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Proof sketch for Theorem 2

I Solution: use Impagliazzo-Wigderson PRG [IW ’97].

I To prove concentration property needed, apply recent Strong
Chernoff Bound for Expander Walks
[Wigderson, Xiao ’05], [WX ’08], [Healy ’08].
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Proof sketch for Theorem 2

I Step 2: convert our predicate M(r ,w) into prob. checkable
form.

I Idea: use PCPPs + error-correcting codes.

I This proves Theorem 2.
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Summary

I Gave a new AM-complete problem, perhaps the “easiest”
known.

I Advocated searching for an algorithmic attack on this problem
to derandomize AM.

I Found obstacles to one natural approach.
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Open Problems

I Complexity of Gap− Stoch− 2CSPΣ,ε when each “random”
variable in ψ(r , z) appears only O(1) times in ψ1, . . . , ψm?

I Better hardness-vs-randomness results using
Gap− Stoch− 2CSPΣ,ε?

I New upper bounds on the power of AM protocols?
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