A PCP Characterization of AM

Andrew Drucker MIT

July 7, 2011

Andrew Drucker MIT,

The class AM

- Arthur-Merlin (AM) protocols: a generalization of NP protocols [Babai-Moran '88]
- Explores the power of randomness in interaction with a prover.

The class AM

• $L \in AM$ if there exists a polynomial-time algorithm M(x, r, w), with

$$|r|, |w| \leq \mathsf{poly}(|x|) \;,$$

such that:

1. $x \in L \implies \forall r \quad \exists w : \quad M(x, r, w) = 1;$ 2. $x \notin L \implies \Pr_r[\exists w : \quad M(x, r, w) = 1] \le 1/3.$

 \blacktriangleright r = "random challenge"; w = "witness".

The class AM

 (П_Y, П_N) ∈ AM if there exists a polynomial-time algorithm M(x, r, w), with

 $|r|, |w| \leq \operatorname{poly}(|x|)$,

such that:

1. $x \in \prod_{Y} \Rightarrow \forall r \exists w : M(x, r, w) = 1;$

2. $x \in \prod_N \Rightarrow Pr_r[\exists w : M(x, r, w) = 1] \leq 1/3.$

• r = "random challenge"; w = "witness".

Χ

AM vs. NP

- Clearly $AM \supseteq NP$.
- ► Is AM = NP? Is $AM \subseteq NSUBEXP$?

"Hardness vs. randomness"

<u>"Hardness vs. randomness"</u> paradigm: sufficiently strong circuit lower bounds for exponential-time classes imply nontrivial derandomization of AM, even up to AM = NP.

[Miltersen, Vinodchandran '99; Shaltiel, Umans '09]

- Gives a plausible reason to believe that AM = NP;
- But, not a currently viable approach to actually prove it!

"Hardness vs. randomness"

- Alternative approaches to AM vs NP?
- (Caution: any proof of AM = NP will imply some new circuit lower bounds; but weaker than those needed for hardness vs. randomness approach.)

- 1. Identify "easiest" AM-hard problems;
- 2. Attack them with new algorithmic ideas.

► This work:

gives candidate for (1), based on PCPs;

shows obstacles to one algorithmic approach.

PCPs for AM

- We give a "PCP characterization of AM":
- ► For every L ∈ AM, there's an AM protocol for L in which Arthur looks at only O(1) bits of the witness string, and O(1) bits of the random challenge!

Χ

Χ

Related work

- Idea of giving PCP-based complete problems for complexity classes other than NP is not new.
- Similar analogues of PCP Theorem given for:
 - 1. PH (the Polynomial Hierarchy) [Ko, Lin '94], [Haviv, Regev, Ta-Shma '07]
 - 2. PSPACE

[Condon, Feigenbaum, Lund, Shor '95], [Drucker '11]

3. IP = PSPACE [CFLS '97]

- PCP Theorem can be described in terms of proof systems, or in terms of Constraint Satisfaction Problems (CSPs).
- Similarly with our result. We'll work with CSP viewpoint.

Stochastic CSPs

k-CSPs: a family ψ₁(z),...,ψ_m(z) of constraints on variables
 z: each ψ_i is k-local.

Let $\operatorname{Val}_{\psi}(z) =$ fraction of constraints ψ_i satisfied by z.

- Stochastic CSPs: $\psi(r, z)$
 - *r* = "random challenge" variables;
 - z = "witness/response" variables.

A complete problem for AM

Say that $\psi(r, z)$ is <u>risk-free</u> if

 $\forall r \; \exists z : \; \operatorname{Val}_{\psi}(r, z) = 1$.

Say that ψ(r, z) is <u>ε-risky</u> if with probability ≥ 2/3 over uniform r,

 $orall z: \operatorname{Val}_\psi(r,z) < 1-arepsilon$.

We show:

Theorem 1

There is an $\varepsilon > 0$ and a constant-size alphabet Σ such that, for stochastic 2-CSPs over Σ , it is AM-complete to distinguish between the cases

1.
$$\psi(r, z)$$
 is risk-free;

2. $\psi(r, z)$ is ε -risky.

Call this promise problem $Gap - Stoch - 2CSP_{\Sigma_{\mathcal{E}}}$.

- Easy to see that the problem is in AM. Nontrivial direction: show it's AM-hard.
- Will show how to reduce any L ∈ AM to Gap − Stoch − 2CSP_{Σ,ε}.

(Promise problems $\Pi \in AM$ handled same way.)

• Given: an AM protocol M(x, r, w) for a language $L \in AM$.

- <u>Step 1</u>: improve the <u>soundness</u> guarantee of *M*.
 Initial soundness = 1/3.
- ► Can drive down soundness to (1/3)^k by k-fold parallel repetition of M; but, blows up |r| unacceptably.
- Instead, use <u>randomness-efficient</u> soundness amplification of [Bellare, Goldreich, Goldwasser '93]. Gives a new protocol *M'* for *L*, such that

$$x \notin L \implies \Pr_r [\exists w : M'(x, r, w) = 1] \le 2^{-\Omega(|r|)}$$

- ▶ Assume for simplicity that in M', we have $|r| \ge |w|$. (Can remove this assumption.)
- Let $C_x(r, w) := M'(x, r, w)$.

 C_{\times} implementable by a poly(*n*)-sized circuit.

Then, rephrasing:

$$x \notin L \implies$$
 w.h.p. over r ,

(r, w) is $\Omega(1)$ -far in relative distance from $C_{x}^{-1}(1)$, for all w.

• <u>Step 2</u>: Transform $C_x(r, w)$ into probabilistically checkable format.

Key tool: *Prob. checkable proofs of proximity (PCPPs)* [Dinur, Reingold '04; Ben-Sasson et al. '04]

Theorem (Dinur '06)

There is a polytime transformation mapping a circuit C(Y) to a 2-CSP $\psi(Y, z)$ over a constant-sized alphabet, such that for all y:

1. $C(y) = 1 \implies \exists z : \operatorname{Val}_{\psi}(y, z) = 1;$

2. If y is δ -far from $C^{-1}(1)$, then $\forall z : \operatorname{Val}_{\psi}(y, z) < 1 - \Omega(\delta)$.

- Let ψ_{C_x} = ψ_{C_x}(r, w, z) be the output of Dinur's reduction, applied to C_x.
 Let r be the random challenge vars; (w, z) witness-variables.
- ► Easy to check that x → ψ_{Cx} is the reduction we are looking for:
 - 1. $x \in L \implies \psi_{C_x}$ is risk-free;
 - 2. $x \notin L \implies \psi_{C_x}$ is $\Omega(1)$ -risky.
- ► This proves Gap Stoch CSP_{Σ,ε} is AM-hard (for small ε > 0).

What next?

Nontrivial derandomization for our AM-complete promise problem?

...haven't found one.

How might we try?

What next?

- For a stochastic 2-CSP ψ(r, z), what is the complexity of approximately optimizing over z, for randomly selected r?
- Perhaps easy, if we allow algorithm to depend nonuniformly on \u03c6...

A "randomized optimization" hypothesis

Hypothesis A

For any fixed $\delta, \varepsilon > 0$, and any stochastic 2-CSP $\psi(r, z)$ of size n, there is an "optimizer" circuit $OPT_{\psi}(r)$, of size $poly_{\delta,\varepsilon}(n)$ over r, such that with prob. $1 - \delta$,

 $\operatorname{Val}_{\psi}(r, \operatorname{OPT}_{\psi}(r)) \geq \max_{z} (\operatorname{Val}_{\psi}(r, z)) - \varepsilon$.

A "randomized optimization" hypothesis

Claim Hypothesis A implies AM = MA.

- ▶ Proof of Claim uses our AM-completeness result.
- If the optimizer circuits in Hyp. A can be NC⁰ circuits, we'd get the stronger conclusion AM = NP.

Evidence against the hypothesis

But—if NP is sufficiently hard, our plan fails:

Theorem 2 Suppose some $L \in NP$ is 2/3-hard on average for circuits of size $2^{\Omega(n)}$.

Then, Hyp A fails.

- Step 1: Our hardness assumption for L ⇒
 ∃ a poly-time predicate M(r, w) such that:
 - 1. $M(r, \cdot)$ is satisfiable w.h.p.; <u>but</u>,
 - 2. For any poly-sized circuit C(r),

$$\Pr[M(r, C(r)) = 1] = 2^{-\Omega(|r|)}$$
 (tiny).

• Assume for simplicity: L balanced: $|L_n| = 2^{n-1}$.

Natural idea for M(r, w):

r consists of many independent random strings of length *n*; M(r, w) accepts iff *w* supplies <u>proofs</u> that at least a .49 fraction of them lie in *L*.

- $M(r, \cdot)$ is satisfiable w.h.p.—by Chernoff bounds!
- Any poly-sized circuit fails to satisfy M(r, ·):
 Follows from hardness assumption on L and Direct Product theorems.
- Problem: uses too much randomness.

- Solution: use Impagliazzo-Wigderson PRG [IW '97].
- To prove concentration property needed, apply recent Strong Chernoff Bound for Expander Walks
 [Wigderson, Xiao '05], [WX '08], [Healy '08].

- <u>Step 2:</u> convert our predicate M(r, w) into prob. checkable form.
- ► Idea: use PCPPs + error-correcting codes.
- ► This proves Theorem 2.

Summary

- Gave a new AM-complete problem, perhaps the "easiest" known.
- Advocated searching for an algorithmic attack on this problem to derandomize AM.
- Found obstacles to one natural approach.

Open Problems

- Complexity of Gap Stoch 2CSP_{Σ,ε} when each "random" variable in ψ(r, z) appears only O(1) times in ψ₁,...,ψ_m?
- Better hardness-vs-randomness results using Gap – Stoch – 2CSP_{Σ,ε}?
- New upper bounds on the power of AM protocols?