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ABSTRACT
We study the computation power of the congested clique, a
model of distributed computation where n players commu-
nicate with each other over a complete network in order to
compute some function of their inputs. The number of bits
that can be sent on any edge in a round is bounded by a
parameter b. We consider two versions of the model: in the
first, the players communicate by unicast, allowing them to
send a different message on each of their links in one round;
in the second, the players communicate by broadcast, send-
ing one message to all their neighbors.

It is known that the unicast version of the model is quite
powerful; to date, no lower bounds for this model are known.
In this paper we provide a partial explanation by show-
ing that the unicast congested clique can simulate power-
ful classes of bounded-depth circuits, implying that even
slightly super-constant lower bounds for the congested clique
would give new lower bounds in circuit complexity. More-
over, under a widely-believed conjecture on matrix multipli-
cation, the triangle detection problem, studied in [8], can be
solved in O(nε) time for any ε > 0.

The broadcast version of the congested clique is the well-
known multi-party shared-blackboard model of communica-
tion complexity (with number-in-hand input). This version
is more amenable to lower bounds, and in this paper we
show that the subgraph detection problem studied in [8] re-
quires polynomially many rounds for several classes of sub-
graphs. We also give upper bounds for the subgraph detec-
tion problem, and relate the hardness of triangle detection in
the broadcast congested clique to the communication com-
plexity of set disjointness in the 3-party number-on-forehead
model.
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1. INTRODUCTION
The congested clique model, studied in [30, 32, 8, 28],

features n players that communicate with each other in syn-
chronous rounds over a complete network. In each round,
each player can send b bits on each of its communication
links, for a total of Θ(bn2) bits sent per round. In the ver-
sion of the model considered in [30, 32, 8, 28], players can
send different messages on different links; we denote this
version of the model by CLIQUE-UCASTn,b. In this paper
we study the computation power of CLIQUE-UCASTn,b, and
also of another variant, denoted CLIQUE-BCASTn,b, where
in each round each player can only broadcast a single b-bit
message over all its links. The CLIQUE-BCASTn,b model is
essentially the classical multi-party, number-in-hand model
of communication complexity, with communication over a
shared blackboard [27], since writing on the blackboard can
be viewed as broadcasting a message to all players.

In both models we are interested in the round complexity

of computing functions f : {0, 1}n
2

→ {0, 1}, where initially
n2 bits of input are equally partitioned between the players
(with each player receiving n bits), and the goal is for some
player to eventually output the value of f . We are espe-
cially interested in the subgraph detection problem, studied
in [8]: here, the joint input to the players is interpreted as
an undirected n-node graph G, with player i receiving the
list of edges adjacent to the i-th node of G, and the goal is
to determine whether G contains a particular subgraph H.

As noted in [28], part of what makes the CLIQUE-UCAST
model interesting is that it does not have any “informa-
tion bottlenecks”, and it is therefore not amenable to the
type of arguments typically used for restricted-bandwidth
networks (e.g., [23, 39, 12, 26, 20]). For this reason, any
lower bounds for CLIQUE-UCAST would have to rely on new,
“bottleneck-free” lower bound techniques. To date, no such
lower bounds have been proven, and in this paper we pro-
vide a partial explanation: we show that CLIQUE-UCAST
is sufficiently strong to simulate some well-studied parallel
circuit models, such as ACC and TC0. Proving lower bounds



for explicit functions in these models is a notoriously diffi-
cult and elusive goal in the theory of Boolean circuit com-
plexity. Our results imply that even weak lower bounds for
CLIQUE-UCAST would imply progress on these fundamental
problems; specifically, even a slightly super-constant lower
bound on the number of rounds required to compute some
explicit function in CLIQUE-UCASTn,1 would imply a new
lower bound on ACC, and an Ω(log logn) lower bound for
CLIQUE-UCASTn,logn would imply new a lower bound for
threshold circuits (the class TC). It seems, then, that “in-
formation bottlenecks” are essential to our ability to prove
strong lower bounds, and without them we are subject to the
same extremely difficult challenges facing the circuit com-
plexity community.

We remark that, as with circuits, non-explicit lower bounds
for the CLIQUE-UCAST model are not hard to show. In
the full version we give a counting-based lower bound that
shows that there exists a function that takes (n−O(logn))/b
rounds to compute in CLIQUE-UCASTn,b. Since n/b rounds
are sufficient for any node to learn the inputs of all other
nodes (assuming n bits of input per node), this non-explicit
lower bound is very close to optimal.

The other variant we consider, CLIQUE-BCAST, is used
to study many areas in theoretical computer science, from
streaming [1] to cryptology [14] and mechanism design [7].
Beyond being a fundamental model of communication com-
plexity, it can also be viewed as a very abstract model of
wireless communication over a single-hop network: although
the theoretical distributed computing community typically
assumes that in a wireless network only one node can suc-
cessfully broadcast in each round, recent advances in cod-
ing (e.g., [15, 44] and others) can allow multiple packets to
come through. Especially for the purpose of proving lower
bounds, it seems reasonable to consider a model that allows
all messages to be delivered.

From the perspective of lower bounds, a major differ-
ence between the CLIQUE-UCASTn,b and CLIQUE-BCASTn,b
models is that in the broadcast model, only Θ(nb) “unique
bits” (discounting duplicate messages) cross each balanced
cut, compared to Θ(n2b) in the unicast model. This differ-
ence restores our ability to apply bottleneck arguments, and
we show that in CLIQUE-BCAST, the subgraph detection
problem considered in [8] is polynomially hard for several
classes of subgraphs. As is often the case when working with
restricted-bandwidth models, our lower bounds are obtained
by reduction from 2-party communication complexity. We
also provide upper bounds showing that in some (though
not all) cases our lower bounds are tight. Some of our up-
per and lower bounds also apply to general communication
networks.

One major open problem left open by our work is the com-
plexity of triangle detection, also studied in [8], where it is

shown that the problem can be solved in time Õ(n1/3/T 2/3)
in CLIQUE-UCASTn,O(logn) when the input graph has at
least T triangles. In Section 2.1 we show that if matrix
multiplication can be solved by arithmetic circuits with size

O(nδ), then we can solve triangle detection in O(nδ/n
2

)
rounds in CLIQUE-UCASTn,1. It is believed plausible that
matrix multiplication can be solved in size O(n2+ε) for any
ε > 0, and this would imply an O(nε)-round triangle detec-
tion algorithm for CLIQUE-UCASTn,1.

In the CLIQUE-BCAST model, triangles are not amenable
to our lower bound technique, because a triangle cannot be

“partitioned” between two players — when the vertices are
partitioned between the players, one of the two will always
“see” all three edges of the triangle. Here we draw a con-
nection to the 3-party number-on-forehead (NOF) model of
communication complexity, in which each player can see the
input of the other two players, but not its own input [27].
We show that a lower bound of f(N) on the communication
complexity of N -element set disjointness in the 3-party NOF

model would imply a lower bound of Θ(f(n2/eO(
√

logn))/(nb))
rounds for triangle detection in CLIQUE-BCASTn,b; currently
the best unconditional lower bound on randomized 3-party
NOF set disjointness with N elements is Ω(

√
N) [41], which

is not strong enough to yield a non-trivial bound on tri-
angle detection. For deterministic algorithms, however, it
has very recently been shown that Ω(N) bits are required
for 3-party NOF set disjointness, yielding a lower bound of

Ω(n/(eO(
√

logn)b) for deterministic triangle detection. In ad-
dition, for the randomized case, we are able to obtain a con-
ditional and restricted lower bound, through a connection
made in [35] between 3-party NOF set disjointness and the
computational hardness of SAT. Even a small polynomial
improvement in the lower bound for randomized 3-party
NOF set disjointness would yield an unconditional polyno-
mial lower bound for randomized triangle detection.

Related work. The CONGEST model [33], introduced to
study networks with restricted bandwidth, has received much
attention recently [12, 13, 20, 23, 26, 39]. Most work on the
model considers a setting where nodes communicate over
some network graph G, and studies the complexity of de-
tecting properties of G or computing various graph struc-
tures (e.g., minimum spanning trees [9, 34, 39]). Many of
these results use reductions from two-player communication
complexity, a technique we also use in Section 3.2.

Upper bounds for various problems in the congested clique
are given in [30, 32, 8, 29, 28]. Of particular relevance to

our work is [8], which gives an upper bound of Õ(n(d−2)/d)
on the round complexity of detecting a fixed d-vertex sub-
graph in CLIQUE-UCASTn,O(logn); we give upper and lower
bounds on subgraph detection in the broadcast version of
the congested clique in Section 3.

In [28] it is shown that any “balanced” routing demand,
where the number of messages that must be routed between
each pair of players does not exceed O(n), can be scheduled
deterministically inO(1) rounds in CLIQUE-UCASTn,O(logn).
We use the routing algorithm of [28] in our simulation of cir-
cuits in Section 2.

2. FROM CIRCUITS TO THE CONGESTED
CLIQUE

In this section we show that the CLIQUE-UCAST model
is powerful enough to simulate circuits with “simple” gates
and a quasi-linear number of wires.

We model a circuit as a directed acyclic graph (DAG),
where the nodes represent gates from some class G of Boolean
functions. The complexity measures we are interested in are
the depth of the circuit, which is the length of the longest
path from any input (source node) to any output (sink node),
and the number of wires (edges).

We now formalize what we mean by “simple gates”. The
following definition is a variant of worst-partition communi-
cation complexity, discussed in the textbook [27].



Definition 1. A function f : {0, 1}m → {0, 1} is b-
separable, for b ∈ [m], if for any partition I = (I1, . . . , Ik) of

[m] there are functions
{
gj : {0, 1}|Ij | → {0, 1}b

}k
j=1

and h :

{0, 1}bk → {0, 1} s.t. f(x1, . . . , xm) = h(g1(xI1), . . . , gk(xIk )).

We say that a gate G is b-separable if the function it com-
putes is b-separable. We will analyze circuits whose gates are
b-separable for small b; related restrictions on circuits have
been studied previously in circuit complexity, e.g. in [24].

Theorem 2. Suppose that f : {0, 1}n
2

→ {0, 1} is com-
puted by a circuit C of depth D, comprising b-separable gates
with unbounded fan-in and fan-out. Let N = n2 · s be the
number of wires in C. Then for any input partition which
assigns to each player p no more than n(b+ s) input wires,
there is an O(D)-round protocol P for the CLIQUE-UCAST
model with n players and bandwidth O(b+ s), that computes
f under the input partition.

Proof. For a gate G ∈ C, let in(G) ⊆ C and out(G) ⊆
C denote the set of inputs and outputs of G, respectively.
We represent inputs to the circuit as gates that have no
inputs (in(G) = ∅) and outputs as gates that have no output
(out(G) = ∅).

We define the weight of G, denoted w(G), to be the sum of
its in-degree and its out-degree: w(G) := |in(G)|+ |out(G)|.
We say that G is heavy if w(G) ≥ n · s, otherwise we say
that G is light. Let CH ⊆ C be the set of heavy gates in C,
and let CL := C \ CH be the light gates.

We construct an assignment I : C → [n] of gates (includ-
ing inputs and outputs) to players, such that

(1) Each player p is assigned at most one heavy gate, that
is, |I−1(p) ∩ CH | ≤ 1; and

(2) For each player p, the total weight of light gates assigned
to p does not exceed 2n · s.

Here I−1(p) := {G ∈ C | I(G) = p}. We say that player p
owns a gate G or a wire incoming or outgoing from G if
I(G) = p.

Construction of I. Since C has a total of n2 · s wires, the
number of heavy gates cannot exceed n, so we can assign
each heavy gate to a unique player. As for the light gates,
we go over them in arbitrary order, and assign each gate
G to some player p that does not already own more than
2n · s − w(G) wires. To see that there is always some such
player, suppose for the sake of contradiction that we need
to assign a light gate G, but each player already owns more
than 2n · s − w(G) wires. Since G is light we have w(G) <
n · s, so the total number of wires already assigned exceeds
n · (2n · s−w(G)) > n · (2n · s− n · s) = n2 · s, contradicting
our assumption that C has a total of n2 · s wires.

Evaluating the circuit. We partition the gates of C into
layers L0, . . . , LD, where the first layer, defined by L0 :=
{G ∈ C | in(G) = ∅}, represents the inputs of C, and for each
r > 0, Lr :=

{
G ∈ C | in(G) ⊆

⋃
r′<r Lr′

}
\
(⋃

r′<r Lr′
)

are
the gates whose inputs all belong to layers smaller than r,
but which are not themselves in some smaller layer. Because
the depth of the circuit is D, there are exactly D layers. We

evaluate the circuit in D stages, each corresponding to one
layer of the circuit and requiring O(1) rounds.

The input layer, L0, does not require any evaluation. Sup-
pose that we have already evaluated the circuit up to layer
Lr−1, and we now wish to evaluate Lr. For each G ∈ Lr we
proceed as follows:

(a) If G is heavy then we use the fact that G is b-separable.
Let p1, . . . , pk be the players that own inputs to G, and
let H = {H1, . . . , Hk} be the partition of in(G) induced
by I, where we have Hi = {G′ ∈ in(G) | I(G′) = pi}.
Let g1, . . . , gk and h be the functions from Definition 1
with respect to H. Each player pi computes gi(Hi) and
sends its b-bit value to player I(G), who then applies h
to obtain the value of G.

(b) If G is light and G′ ∈ in(G) is heavy, then player I(G′)
sends the value of G′ to player I(G), unless it has already
done so in the past. (It is crucial to avoid duplication of
heavy-gate outputs.)

(c) The remaining wires are both inputs and outputs of light
gates. These wires induce a demand pattern, where each
player I(G) needs to learn all the values of “light inputs”
G′ ∈ in(G) ∩ CL. Because each player is responsible for
no more than 2n · s incoming or outgoing wires for light
gates, the demand pattern is balanced, with each player
requiring no more than 2n ·s bits from any other player.
We route all these wires in O(1) rounds using Lenzen’s
algorithm [28].

It is not hard to see that since each player owns at most one
heavy gate, the total number of bits sent from any player p
to any other player q in stage r is O(s+ b).

Finally, to handle any input assignment which is roughly-
balanced (each player receives at most n(b+ s) inputs), we
can use Lenzen’s algorithm to route the inputs from their
originally-assigned players to the player assigned them under
I, using no more than O(b + s) bits per message and O(1)
rounds.

Remark 3. Although the simulation is stated for func-
tions, it is easy to see that it extends to operators, functions
with multi-bit outputs. We partition the outputs between the
players, such that no player is required to output more than
O(b+s) bits, and use Lenzen’s algorithm to route the outputs
to the correct players. This will be useful when we discuss
matrix multiplication below.

From the simulation above we conclude:

Theorem 4. For any s, b, R ≥ 0, if f : {0, 1}n
2

→ {0, 1}
cannot be computed in CLIQUE-UCASTn,O(b+s) in R rounds,
then for some constant c > 1, f cannot be computed by
circuits of depth c ·R using b-separable gates and n2 ·s wires.

This means that any attempt to prove lower bounds for
this model runs up against the following open problems in
bounded-depth circuit complexity:

Threshold circuits [31]. A threshold circuit is a circuit
with unbounded fan-in, made up of gates that compute
threshold functions — Boolean predicates of the form a1x1+
a2x2 . . . + akxk ≥ b, where a1, . . . , ak, b ∈ Z+ are called
weights, and x1, . . . , xk are the (Boolean) inputs to the gate.
At present, the best lower bound known for bounded-depth



threshold circuits that compute Boolean functions is from [21,
42], where it is shown that a threshold circuit of depth d that

computes the parity ofN -bit inputs requiresN1+cK−d

wires,
where c > 0 and K ≤ 3 are explicit constants. This holds
for circuits with arbitrary weights; however, despite exten-
sive study, no better bounds are known for the unweighted
case (where all weights are set to one) beyond depth 3 [16,
18, 37, 40].

The lower bound decays quickly with d, becoming trivial
(linear) at d = Θ(log logn). Since unweighted threshold
gates are Θ(logn)-separable, our simulation implies that for
some fixed constants α, β > 0, obtaining a lower bound of
α log logn on the round complexity of some explicit function
in CLIQUE-UCASTn,β logn would imply a better lower bound
than that of [21, 42] for the number of wires in unweighted
threshold circuits.

ACC and CC [36]. Circuits in ACC[m] use unbounded fan-
in AND, OR, NOT and MODm gates, where m is constant.
MODm gates test whether or not (x1+. . .+. . . xk) mod m =
0; for example, a MOD2 gate computes the parity of its
inputs. A CC[m] circuit is one comprising only unbounded
fan-in MODm gates.

Although there are exponential lower bounds on the size
of constant-depth ACC[m] circuits when m is prime or a
prime power [43], the general case remains very challenging;
even the possibility that all of NP has depth-3, poly-size cir-
cuits consisting only of MOD6 gates, with a linear number
of gates, has not been ruled out [17]. (In a recent break-
through, Williams showed that the larger class NEXP does
not have poly-size, constant-depth ACC[m] circuits for any
m [46]; however only lower bounds for problems in NP are
generally considered “explicit”.)

Currently, the best explicit lower bound on the number of
wires appears in [6], where it is shown that constant-depth
CC[m] circuits (where m may be composite) require a super-
linear number of wires to compute AND or MODq, where q
is coprime to m. Specifically, the lower bound is the follow-
ing: for depth 2, Ω(n logn) wires are required; for depth 3,
Ω(n log∗ n) wires; for depth 4, Ω(n log∗∗ n), and so on. In
general, the bound for depth d is Ω(n·λd(n)), where λ1(n) =

dlog2 ne and λd+1(n) = min
{
i ∈ N | λ(i)

d ≤ 1
}

. Here f (i) de-

notes f iterated i times.
Let λ−1(n) := min {d ∈ N | λd(n) ≤ 1}. The lower bound

of [6] becomes trivial at depth λ−1(n). Since MOD6 gates
are O(1)-separable, we get that for some constants α, β > 0,
a lower bound of α · λ−1(n) for CLIQUE-UCASTn,β would
imply a bound better than [6] on ACC[m] for composite m.

The circuit lower bounds referred to above are the best
currently known in terms of asymptotic behavior as the
depth increases. For fixed depths (typically 2 or 3), or for
computing operators, some better bounds are known, but
the asymptotic behavior remains the same (in the case of
operators, up to a multiplicative constant in the depth).

2.1 Matrix Multiplication vs. Triangle
Detection

The triangle detection problem received special attention
in [8], which gives an elegant randomized algorithm that

runs in time Õ(n1/3/T 2/3) when the input graph has at least
T triangles. In the full version we show that, under a certain

widely-believed conjecture on the complexity of matrix mul-
tiplication, triangle detection can be solved in time O(nε) for
any ε > 0 in CLIQUE-UCASTn,1.

We give an overview of the connection here. The connec-
tion between matrix multiplication and triangle detection
is well-known [22, 45]: if one cubes the adjacency matrix
of a graph over the Boolean semiring, triangles appear as
non-zero entries on the diagonal. A simple randomized re-
duction due to Adi Shamir (described in [45, Thm. 4.1])
allows one to reduce this computation to a small number of
matrix multiplications over the field F2. Now, it is widely
conjectured (although there is no consensus) that for every
ε > 0, matrix multiplication over any field F, and in par-
ticular over F2, can be computed (as a formal polynomial
mapping) by arithmetic circuits of size O(n2+ε); and it is
known [5] that such circuits also imply the existence of cir-
cuits for matrix multiplication with few wires and polylog-
arithmic depth. (This fact is shown by exploiting the block
structure of matrix multiplication; see [5, Prop. 15.1] and
the full version.)

By using the simulation from Theorem 2 (and Remark 3),
we can translate small, shallow arithmetic circuits over F2

into a fast CLIQUE-UCASTn,1 protocol in which every entry
of the output matrix is known to some player; each player
can then announce whether or not it sees any non-zero di-
agonal entries, thereby solving triangle detection.

3. SUBGRAPH DETECTION IN THE CON-
GESTED CLIQUE WITH BROADCAST

We now turn our attention to the broadcast version of the
congested clique, CLIQUE-BCAST, and study the problem
of detecting whether a given fixed-size subgraph H is a sub-
graph of the input graph G. We assume that H is of fixed
(constant) size, and we are interested in the complexity of
the problem as the number of participants n grows. We start
by describing a simple algorithm that solves the problem in
the CLIQUE-BCAST model. We then describe lower bounds
for subgraph detection in the CLIQUE-BCAST model; some
of our lower bounds also hold for the CONGEST-UCAST
model, where the communication topology is the same as
the input graph G, rather than the clique.

Our bounds are based on Turán numbers for graphs, which
are defined as follows.

Definition 5 (Turán Number). For a graph H and
an integer n ≥ 1, the Turán number ex(n,H) for graph H is
the maximal possible number of edges of an n-node graph G
such that G does not contain a subgraph isomorphic to H.

Of particular relevance to us in this section are the Turán
numbers for any odd-length cycle (or in general for non-
bipartite graphs), which is Θ(n2), and for the 4-cycle C4,

which is Θ(n3/2).

3.1 Upper Bounds on Subgraph Detection
The degeneracy of a graph G is the smallest integer k

such that every subgraph of G has a node of degree at most
k. In [2], Becker et al. give a one-round algorithm for the
CLIQUE-BCAST model that allows all players to learn the
entire input graph, assuming it has known degeneracy of (at
most) k. In the algorithm of [2], the players simultaneously
each broadcast O(k logn) bits, and based on these messages
they are able to completely reconstruct the input graph.



We can use the algorithm from [2] to solve subgraph de-
tection in the CLIQUE-BCASTn,b model. We first observe
that the degeneracy of H-free graphs can be bounded from
above in terms of the corresponding Turán number:

Claim 6. Let H be a graph, and let G be an n-node H-
free graph. Then the degeneracy of G is at most 4·ex(n,H)/n.

Proof. Consider an n′-node subgraph G′ of G (for some
n′ ≤ n). Since G′ is also H-free, it has at most ex(n′, H)
edges, so one of the nodes of G′ must have degree at most 2 ·
ex(n′, H)/n′. It therefore suffices to show that for all n′ ≤ n
we have ex(n′, H)/n′ ≤ 2 · ex(n,H)/n. This follows because
ex(n,H) is non-decreasing in n, and because ex(2n,H) ≥ 2 ·
ex(n,H), since we can take two disjoint copies of an extremal
H-free n-node graph to obtain an H-free 2n-node graph with
2 · ex(n,H) edges.

Plugging this upper bound on the degeneracy into the al-
gorithm of [2], we obtain the following upper bound for solv-
ing the H-subgraph problem in the CLIQUE-BCAST model.

Theorem 7. For any (fixed) graph H, the H-subgraph
detection problem can be solved in the CLIQUE-BCASTn,b
model in O

( ex(n,H)
n

· logn
b

)
rounds.

The running time above is obtained by taking the single
O(ex(n,H) log(n)/n)-bit message produced by each node in
the algorithm of [2], dividing it into chunks of b bits each,

and broadcasting the chunks over O
( ex(n,H)

n
· logn

b

)
rounds.

If H has chromatic number χ(H) ≥ 3, the upper bound
given by Theorem 7 is O(n log(n)/b); this is trivial to achieve
by simply having each node broadcast its entire neighbor-
hood. For bipartite graphs H, however, the theorem does
give non-trivial upper bounds. For example, using known
bounds on Turán numbers we get that the algorithm detects
cycles of length 2` for any ` ≥ 2 in time O(n1/` log(n)/b) [4,
10], and for 2 ≤ r ≤ s, Kr,s-subgraph detection can be

solved in time O(n2−1/r log(n)/b) [25]. If H is a tree or a
forest of a fixed size, we have ex(n,H) = O(1), so Theorem
7 implies that the H-subgraph detection problem can be
solved in time O(log(n)/b). In the full version we show that
4-cycle detection can also be solved in the same asymptotic
time, O(

√
n log(n)/b), even when nodes can only communi-

cate over the edges of the input graph G.

Detecting subgraphs of unknown Turán number. The
simple algorithm above requires nodes to know ex(n,H).
However, for most bipartite graphs H, even the asymptotic
behavior of ex(n,H) is not known (although there are some
upper and lower bounds). We now sketch how to adapt the
algorithm such that even if ex(n,H) is not known to the

nodes, the algorithm runs in time Õ(ex(n,H)/(nb)), and
with high probability it returns an H-subgraph of G if there
is one. The modified algorithm is based on the observation
that if G contains an H-subgraph, an appropriate random
subgraph of G with Θ(ex(n,H)) edges still contains a copy
of H, with high probability.

Let us recall the exact properties of the one-round algo-
rithm A described in [2]. The algorithm is deterministic
and has an integer parameter k ≥ 1. When run on a graph
G with parameter k, every node simultaneously writes an
O(k logn)-bit message on the blackboard. If the degeneracy
of G is at most k, in the end, all nodes learn the complete

topology of G. Otherwise, all nodes learn that the degener-
acy of G is more than k. In the following, let A(G, k) denote
algorithm A when applied to graph G and with parameter
k.

Our algorithm will make exponentially-increasing guesses
ki = 2i for the degeneracy of G, where i = 1, 2, . . . , dlogne,
and call A using the current guess. Let us first dispense with
some easy cases. If G does not contain a copy of the sub-
graph H, then, as we saw in Claim 6, the degeneracy of G is
at most 4 ex(n,H)/n. Within at most O(log(ex(n,H)/n)) =
O(logn) steps we will reach an appropriate guess for the de-
generacy, and when we call A with this guess, all nodes will
learn the entire topology of G, and detect that G is H-free.
A similar case is whenG does contain a copy ofH, but its de-
generacy is nevertheless bounded by O(ex(n,H)/n). In both
cases the running time is bounded byO(ex(n,H) log(n)/(nb)),
which we obtain by splitting the messages produced by A
into chunks of b bits, such that each chunk can be broadcast
in one round.

We therefore focus on the case where the degeneracy k
of G satisfies k � ex(n,H)/n. Our goal now is to reduce
the degeneracy by sampling a subgraph of G, in such a way
that the subgraph we sample will still contain a copy of
H. By Claim 6, as long as we select a subgraph that is
“not too sparse”— specifically, as long as our subgraph has
degeneracy 4 ex(n,H)/n or greater—it will still contain a
copy ofH. However, we do want a subgraph with degeneracy
at most c · ex(n,H)/n for some constant c > 4, so that we
can call A and obtain the desired running time.

It can be shown that if each edge of G is independently
sampled with some probability p ∈ [0, 1], then as long as
k · p = Ω(logn), the random subgraph induced by all the
sampled edges has degeneracy Θ(k · p). Thus, a good strat-
egy would be to sample each edge of G with probability p =
Θ(ex(n,H)/(kn)), reducing the degeneracy to Θ(ex(n,H)/n)
but not less than 4 ex(n,H)/n. Unfortunately, it is not clear
how to quickly perform the sampling in a distributed way
in the CLIQUE-BCAST model in such a way that each node
will know which of its edges have been selected (which is
necessary to run the algorithm from [2]). Indeed, when we
sample each edge independently with probability p < 1/2,
the entropy of the sample, viewed as a Boolean assignment
to the edges of G, exceeds the expected number of edges
in the sampled subgraph. Learning this information seems
to require too much communication. We therefore use non-
uniform sampling, and show that the degeneracy of the sam-
pled subgraph still behaves as expected.

In addition to the above, we also do not know the “right”
probability p = Θ(ex(n,H)/(kn)), because we know neither
ex(n,H) nor the degeneracy k of G. As we said, we will be
guessing the degeneracy, but in addition we will also make
exponentially-decreasing guesses for p.

More specifically, the sampling is done as follows. Let n be
the number of nodes of G = (V,E). We define ` := blog2 nc
and N := 2` to be the largest power of 2 not exceeding n.
Each node v ∈ V independently picks an integer Xv uni-
formly from {0, . . . , N − 1}. For each integer j ∈ {0, . . . , `},
we define a random subgraph Gj = (V,Ej) of G, which
roughly speaking corresponds to sampling each edge with
probability p = 2−j (but the edges are not independent of
each other). For each j ∈ {0, . . . , `}, the edge set Ej is



defined as follows:

Ej :=
{
{u, v} ∈ E : Xu ≡ Xv (mod 2j)

}
.

The graphs G0, . . . , G` can be constructed simultaneously
in O(log(n)/b) rounds: each node v ∈ V broadcasts its ran-
dom number Xv to all its neighbors, who can then determine
which of their edges are in Ej for each j ∈ {0, . . . , `}. Since
Xv ∈ [n], this requires O(log(n)/b) rounds.

For each edge e ∈ E, the probability that e ∈ Ej is exactly
2−j . In general, the edges are not independent, but for any
specific node v ∈ V , the edges of node v are independent
of each other; therefore, for any subset S ⊆ V , the number
of nodes in S that are adjacent to v in Ej is binomially
distributed with parameters |S| and 2−j .

We now show that the degeneracy of the sampled sub-
graphs behaves as expected: it is roughly k·p, where p = 2−j

is the sampling probability of an edge. In the following, for
each j ∈ {0, . . . , `}, let Kj be a random variable denoting
the degeneracy of Gj .

Lemma 8. Let c > 0 be a sufficiently large constant. With
high probability, for each j ∈ {0, . . . , `} such that k · 2−j ≥
c logn we have 0.9k · 2−j ≤ Kj ≤ 1.1k · 2−j.

Proof Sketch. Fix j ∈ {0, . . . , `} such that k · 2−j ≥
c logn. First let us bound the degeneracy Kj of Gj from be-
low, by exhibiting a subgraph of Gj that has minimal degree
at least 0.9k ·2−j (w.h.p.). To this end, let F = (VF , EF ) be
a subgraph of G that has some node v ∈ VF with degree k
(we know that such a subgraph exists by definition of the de-
generacy), and let Fj := (VF , EF ∩Ej). As explained above,
the distribution of the degree of v with respect to EF ∩ Ej
is binomial with expectation 2−j · k, because each neighbor
of v in F survives independently of the other neighbors with
probability 2−j . Since k · 2−j ≥ c · logn, when we select
c large enough a standard Chernoff bound implies that the
degree of v in Fj is at least 0.9k · 2−j w.h.p., and therefore
the degeneracy of Gj is also at least 0.9k · 2−j .

Now let us show that w.h.p. the degeneracy Kj is also
bounded from above by 1.1k · 2−j . Because G = (V,E) has
degeneracy k, there is an ordering v1, . . . , vn of V such that
for each r ∈ [n], the degree of vr in the subgraph G[V≥r]
induced by nodes V≥r := {vr, . . . , vn} is at most k. (To
find such an ordering, start with a node that has degree at
most k in all of G, then at each step consider the subgraph
induced by the remaining nodes; since G has degeneracy k,
some node has degree at most k in this subgraph, and we
can select this node and continue.) By the same reasoning as
above, for any r ∈ [n], the expected degree of vr in Gj [V≥r]
is at most k · 2−j . A standard Chernoff bound and a union
bound over all r ∈ [n] show that w.h.p. each node vr has
degree at most 1.1k · 2−j in Gj [V≥r].

To show that Gj has degeneracy at most 1.1k · 2−j , let
F = (VF , EF ) be a subgraph of Gj ; we must find some node
with degree at most 1.1k · 2−j in F . Let r be the minimum
index such that vr ∈ VF . Then F is a subgraph of Gj [V≥r],
and the degree of vr in F is no greater than its degree in
Gj [V≥r], namely 1.1k · 2−j .

Combining all the ingredients above, we obtain the follow-
ing algorithm for H-subgraph detection. We assume that
calling A(Gj , k) sets a flag success, which indicates whether
or not the parameter k was large enough for the nodes to
learn the entire topology of Gj (i.e., at least as large as the
true degeneracy Gj).

sample G0, . . . , G`;
for i = 1, 2, . . . , dlog2 ne do

ki := 2i;
for j ∈ {0, . . . , `} do

run algorithm A(Gj , ki);
if success and H-subgraph H ′ detected then

return H ′

else if success then
return “no H-subgraph”

Theorem 9. If G is H-free, the algorithm outputs “no
H-subgraph” and terminates after O

(
ex(n,H) log2 n/(nb)

)
rounds. If G contains a subgraph isomorphic to H, the
algorithm finds such a subgraph with high probability after
O
(

ex(n,H) log2 n/(nb) + log3 n/b
)

rounds.

3.2 Lower Bounds
Our lower bounds on subgraph detection are obtained by

reduction from the 2-party set disjointness problem. The re-
ductions all use the same basic method: we split the nodes
in [n] into two sets A,B, “owned” by Alice and Bob respec-
tively. We also fix an n-vertex “template graph” G′ which
contains many copies of H. The players then use their in-
puts X,Y to construct a subgraph G of G′, with each player
controlling the edges internal to the set of nodes it owns, in
such a way that a copy of H appears in G iff X and Y are
not disjoint.

The key technical challenge is designing G′ in such a way
that no copies of H appear inside the subgraphs GA, GB
induced by A and B, so that the answer to the H-subgraph-
detection problem always depends on both X and Y . We
will now describe a family of graphs that achieve this re-
quirement. In the following definition we introduce a second
graph F , whose edges will serve as the elements of the set
disjointness instance.

Definition 10. Let H = (VH , EH) and F = (VF , EH) be
two graphs. We say that G′ is a (H,F )-lower bound graph
if G′ satisfies the following properties:

(1) G′ contains two vertex-disjoint subgraphs FA = (VA, EA)
and FB = (VB , EB) that are both isomorphic to F .

(2) There exist isomorphisms ϕA : VF → VA, ϕB : VF → VB
from F to FA and FB, respectively, such that

I. For every edge {u, v} ∈ EF , G′ contains a subgraph
H ′ = (VH′ , EH′), where

(a) H ′ is isomorphic to H,

(b) {ϕA(u), ϕA(v)} and {ϕB(u), ϕB(v)} are both
edges of H ′,

(c) VH′∩(VA ∪ VB) = {ϕA(u), ϕA(v), ϕB(u), ϕB(v)}.
II. The subgraphs described above are the only sub-

graphs of G′ isomorphic to H; that is, if H ′ is a
subgraph of G′ that is isomorphic to H, then there
is an edge {u, v} ∈ EF such that (b) and (c) hold.

We associate with each (H,F )-lower bound graph a fixed
FA = (VA, EA), FB = (VB , EB), ϕA and ϕB satisfying the
requirements above (if there is more than one choice, we



choose arbitrarily). For an edge e = {u, v} ∈ EF and a
mapping ϕ, we let ϕ(e) = {ϕ(u), ϕ(v)} denote the image of
e under ϕ.

An essential property of Definition 10 is the following:

Observation 11. Suppose that G = (V,E) is a subgraph
of an (H,F )-lower bound graph G′ = (V ′, E′) such that E′ \
(EA ∪ EB) ⊆ E. Then G contains a copy of H iff for some
edge e ∈ EF we have ϕA(e), ϕB(e) ∈ E.

We will map this property into a set disjointness instance,
with Alice controlling the edges of FA and Bob controlling
those of FB . We will generally aim to have F be as dense as
possible, to increase the size of the set disjointness instance.

In some cases we will be able to apply our reductions to
show lower bounds for the more general CONGEST model,
where the input graph G is also the communication network,
and nodes communicate by unicast over the edges of G. We
denote this model by CONGEST-UCAST. Here, the param-
eter determining the efficiency of the reduction will be the
size of the cut between the nodes owned by each player.

Definition 12. We say that an (H,F )-lower bound graph
G′ = (V ′, E′) is δ-sparse, for δ > 0, if there is a partition
A,B of V ′ such that VA ⊆ A, VB ⊆ B and the size of the
cut (A,B) is at most δ · |V ′|.

Before describing how we can construct lower bound graphs
for specific H and F , let us show how we can use these
graphs to obtain a reduction from 2-party set disjointness
to H-subgraph-detection.

Lemma 13. Suppose that for H = (VH , EH) and F =
(VF , HF ), there exists an n-node (H,F )-lower bound graph
G′ = (V ′, E′). Then the number of rounds required to solve
H-subgraph-detection in CLIQUE-BCASTn,b with constant er-
ror probability is at least Ω(|EF |/(nb)).

Further, if the (H,F )-lower bound graph G′ is δ-sparse
for some δ > 0, the number of rounds required to solve
H-subgraph-detection in CONGEST-UCASTn,b with constant
error probability is at least Ω(|EF |/(δnb)).

Proof Sketch. The proof follows by reduction from 2-
party set disjointness with |EF | elements, each representing
an edge of F . We partition the nodes of G′ between Alice
and Bob, with each player simulating Θ(n) nodes, including
all nodes of FA (for Alice) or all nodes of FB (for Bob). The
players construct a subgraph of G′, putting in edges of FA
or FB only if the corresponding edge appears in their input,
and then simulate the H-subgraph detection algorithm. By
Observation 11, G′ contains a copy of H iff the players’
inputs are non-disjoint.

We now show how to construct (H,F )-lower bound graphs
for specific H and F . In the following, we derive lower
bounds for the cases where H is a clique, a cycle, or a com-
plete bipartite graph.

3.3 Detecting Cliques
Let ` ≥ 4 be an integer, and consider the problem of

detecting whether a given network graph G contains K`, a
clique of size `.

Lemma 14. For any ` ≥ 4, N ≥ 4, and n ≥ 1 such that
4(N − 1) + ` ≤ n, there is a (K`,KN,N )-lower bound graph
G′ = (V ′, E′) with n nodes. (Here KN,N is the complete
bipartite graph on 2N nodes.)

Proof. First assume that n = 4(N − 1) + ` nodes. Let
Si := {vi,1 . . . , vi,N} for i = 1, 2, 3, 4, and let the vertices
of G′ be V ′ :=

(⋃4
i=1 Si

)
∪ {u1, . . . , u`−4}. The edges are

defined as follows:

• For each j ∈ [N ], {v1,j , v2,j} ∈ E′ and {v3,j , v4,j} ∈
E′,

• For each (i, i′) ∈ {1, 2} × {3, 4} and j, j′ ∈ [N ],
{vi,j , vi′,j′} ∈ E, and finally,

• Each of the nodes u1, . . . , u`−1 is connected to all other
nodes of G′.

The proof that G′ satisfies Definition 10 appears in the full
version; intuitively, it is because anyK4-subgraph ofG′ must
include exactly one node from each of the sets S1, S2, S3, S4

(these being independent sets of G′), and because S1, S2 and
S3, S4 are connected by perfect matchings, one must take
four nodes of the form v1,i, v2,i, v3,j , v4,j , which requires the
edge {i, j} to exist in both players’ inputs.

Theorem 15. In the CLIQUE-BCASTn,b model, for every
fixed ` ≥ 4, K`-subgraph detection requires at least Ω(n/b)
rounds.

Proof. Fix n, and let N = b(n − `)/4c + 1 = Θ(n). By
Lemma 14, there is a (K`,KN,N )-lower bound graph on n
vertices. Because KN,N has N2 = Θ(n2) edges, Lemma 13
implies the theorem.

Remark 16. Although we have assumed that the subgraph
H we are trying to detect is of constant size, the proof above
continues to work for cliques K` of size up to (1 − ε)n for
any constant ε ∈ (0, 1).

3.4 Detecting Cycles
We now prove a lower bound on the H-subgraph-detection

problem when H is a cycle C` of length ` ≥ 4. We will use
the following definitions and notation from extremal graph
theory:

Definition 17. For an integer n > 0 and a graph H,
let ex(n,H) denote the maximum number of edges of any
graph on n vertices that does not contain H as a subgraph.
We say that G = (V,E) is an extremal H-free graph if
|E| = ex(|V |, H).

Lemma 18. Fix ` ≥ 4, let N be an even integer, and let
n ≥ ` · (N/2). Then for some extremal C`-free graph F on
N vertices, there exists a (C`, F )-lower bound graph on n
vertices.

Proof. Assume for simplicity that n = ` · (N/2) (as in
Lemma 14, it is straightforward to generalize to larger n by
adding isolated nodes). If ` is odd, then ex(N, `) = N2/4,
and we let F be the complete bipartite graph KN/2,N/2 =
([N ], [N/2] × ([N ] \ [N/2])). If ` is even, then ex(N, `) =

Ω(N3/2), and we let F be any extremal C`-free graph.
We construct G′ = (V ′, E′) as follows. V ′ consists of

two sets, VA = {vA,1, . . . , vA,N} and VB = {vB,1, . . . , vB,N},
as well as (` − 4)N/2 additional nodes, which we denote
by ui,j where either i ∈ [N/2] and 0 ≤ j ≤ b`/2c − 1, or
i ∈ [N ] \ [N/2] and 0 ≤ j ≤ d`/2e − 1. As for the edges,
for any i, j ∈ [N ], {vA,i, vA,j} ∈ E′ iff {i, j} ∈ EF , and
similarly, {vBi , vB,j} ∈ E′ iff {i, j} ∈ EF . In addition, we
connect each pair vA,i, vB,i by a path Pi comprising all the
nodes of the form ui,j for some j. The length of the path is
b`/2c − 1 if i ≤ N/2, or d`/2e − 1 if i > N/2.



By Lemma 13, we obtain:

Theorem 19. For every fixed ` ≥ 4, C`-subgraph detec-
tion requires at least Ω(ex(n,C`)/(nb)) rounds, both in the
CLIQUE-BCASTn,b and in the CONGEST-UCASTn,b models.

A note on triangle detection. Theorems 15 and 19 both
fail to address the complexity of detecting triangles; the
technique we used cannot give any non-trivial lower bounds
on C3-subgraph detection. In our reductions, each node in
the graph is simulated by at least one of the two players.
(It is not hard to see that any black-box reduction, where we
only access the distributed algorithm by executing it, must
have this feature.) In order to simulate a node, the player
must know the input edges adjacent to the node. In the case
of triangles this means that for any three nodes a, b, c, some
player simulates at least two of the nodes; even if this player
does not simulate the third node, since each node “knows”
the edges adjacent to it, the player can determine all by itself
whether there is a triangle on a, b, c or not.

Since the problem is, informally, too much overlap be-
tween the players’ inputs, it seems reasonable to turn to a
model of communication complexity that features such over-
laps; and this is exactly what we will do in Section 3.6.

3.5 Detecting Complete Bipartite Subgraphs
Finally, let us give a lower bound for detecting K`,m, the

complete bipartite subgraph with ` vertices on one side and
m on the other. For this result we need the following fact
from [11]:

Observation 20. [11] If ex(n,H) = k and H is bipar-
tite, then there exists a bipartite H-free graph on n vertices
with at least k/2 edges.

Let F be a bipartite C4-free graph on N vertices with at
least ex(N,C4)/2 edges.

Lemma 21. For every fixed `,m ≥ 2, N ≥ 2 and n ≥
2N + `+m− 4, there is a (K`,m, F )-lower bound graph on
n vertices.

Proof. As usual, assume for simplicity that n = 4N +
` + m − 4, otherwise add isolated nodes to make up the
difference. Let F = (L ∪ R,EF ), where L,R ⊆ [N ] are the
vertices of F .

We construct G′ = (V ′, E′) as follows. Define VA =
{u1, . . . , uN} and VB = {v1, . . . , vN}. We set V ′ := VA ∪
VB ∪WL ∪WR, where WL :=

{
wL1 , . . . , w

L
`−2

}
and WR :={

wR1 , . . . , w
R
m−2

}
, and in E′ we include the following edges:

• For each i, j ∈ [N ], {ui, uj} ∈ E′ and {vi, vj} ∈ E′

iff {i, j} ∈ F . Let ϕA(i) = ui and ϕB(i) = vi be
isomorphisms from F to FA, FB respectively.

• All nodes in WL are connected to all nodes in ϕA(R)∪
ϕB(L) ∪WR, and all nodes in WR are connected to
all nodes in ϕA(L) ∪ ϕB(R) ∪WL.

• We include all edges of the form {ui, vi} for i ∈ [N ].

For each edge {i, j} ∈ EF , the subgraph induced by the
nodes {ui, uj , vi, vj} ∪ W is isomorphic to K`,m: assume
w.l.o.g. that i ∈ L and j ∈ R. The sets WL ∪ {ui, vj}

and WR ∪ {uj , vi} are of size ` and m respectively. The
nodes in WL are connected to all nodes in WR as well as
to uj ∈ ϕA(R), vi ∈ ϕB(L), and similarly for the other side.
Node ui is connected to uj (because of the isomorphism from
F ) and to vi, and similarly vj is connected to vi and uj , and
there are no other edges in the induced subgraph. Therefore
the induced subgraph is isomorphic to K`,m.

Now suppose that H is a K`,m-subgraph of G′, and let
LH , RH be the two sides of H. LH and RH must each
include at least two nodes from VA ∪ VB , as |WL| = ` − 2
and |WR| = m − 2 (and no mixing between WL,WR is
possible because WL ×WR ∈ E′). However, it cannot be
that LH and LR both contain two nodes from the same set
VA or VB , because FA and FB are both C4-free. Therefore
the following combinations are possible:
• LH includes at least two distinct nodes ui, uj ∈ VA,

and LR does not. Then LR contains at least one node
vk ∈ VB . But this is impossible, because each node
in LR must be connected to each node in LH , but the
only edges between VA and VB are of the form {us, vs}
for some s ∈ [N ]. We cannot have both {ui, vk} ∈ E′
and {uj , vk} ∈ E′.
• LR includes at least two nodes from VA, and LH does

not: similar. Also similar are the cases where either
LH or LR include two nodes from VB .
• LH includes exactly one node ui ∈ VA and one node
vj ∈ VB , and LR includes one node up ∈ VA and one
node vq ∈ VB . Then either WL ⊆ LH and WR ⊆ RH ,
or WR ⊆ LH and WL ⊆ RH ; assume that the first
holds (otherwise rename LH and LR). This shows that
condition (c) holds.
In addition, since H is isomorphic to K`,m, we must
have {ui, up} , {vj , up} , {ui, vq} , {vj , vq} ∈ E′, which
implies, by construction, that {i, p} ∈ EF , j = p, i = q
and {j, q} ∈ EF ; in other words, we have one edge
{i, j} ∈ EF such that ϕA({i, j}) and ϕB({i, j}) both
appear in H, as required for (b).

Because ex(N,C4) = Θ(N3/2), we obtain the following:

Theorem 22. For any `,m ≥ 1, K`,m-subgraph detection
in CLIQUE-BCASTn,b requires Ω(

√
n/b) rounds.

3.6 Lower Bounds on Triangle Detection
We will now show that the hardness of finding triangles in

CLIQUE-BCAST is related to that of solving set disjointness
in the 3-party number-on-forehead model and obtain a lower

bound of Ω(n/(eO(
√
n)b)) on deterministic triangle detection

in CLIQUE-BCASTn,b. For randomized algorithms, current
lower bounds on 3-party NOF set disjointness are not strong
enough to yield a non-trivial lower bound, but we can state
a conditional and restricted lower bound assuming that SAT
is computationally hard.

Our reduction from set disjointness uses a family of tripar-
tite graphs with many edge-disjoint triangles. Such families
can be easily obtained from dense graphs with many large
disjoint induced matchings [38], which have been of inter-
est to the theory community in various contexts including
scheduling traffic in single-hop broadcast networks [3] and
linearity testing [19]. The construction we will use is the
following:

Claim 23 ([38]). There is a family of graphs {Gn}n>0

with the following properties:



(1) Gn is a tripartite graph Gn = (A ∪ B ∪ C,E), where
|A| = |B| = n and |C| = n/3,

(2) Gn contains n2/eO(
√

logn) triangles, and each edge of
Gn belongs to exactly one triangle.

Let m(n) be the number of triangles in Gn (we have m(n) ≥
n2/eO(

√
logn)), and let R3-NOF

ε (Disjm) denote the random-
ized communication complexity of solving set disjointness
with m elements and success probability 1− ε in the 3-party
NOF model.

Theorem 24. The number of rounds required to solve tri-
angle detection in CLIQUE-BCASTn,b with error probability

ε is at least R3-NOF
ε (Disjm)/O(n · b).

Proof. Fix n, and let T = {t1, . . . , tm}, where m =

m(n) = n2/eO(
√

logn), be the set of edge-disjoint triangles of
Gn. Note that because Gn is tripartite, each triangle ti ∈ T
can be represented as {ai, bi, ci} ∈ A × B × C. Moreover,
since each edge of Gn belongs to exactly one triangle, for
each edge e there is exactly one index i(e) ∈ [m] such that
e is part of the triangle ti(e).

Let A be a CLIQUE-BCAST(7/3)n,b algorithm for triangle-
detection with a running time of R rounds. We use A to con-
struct an 3-party number-on-forehead protocol P for Disjm
as follows: given input XA, XB , XC ⊆ [m], the three parties
construct a subgraph GX of Gn, in which

• All nodes A∪B∪C are present, with Alice simulating
the nodes in A, Bob simulating the nodes in B, and
Charlie simulating the nodes in C;

• An edge e of Gn is present in GX iff e ∈ A × B and
i(e) ∈ XC , or e ∈ B × C and i(e) ∈ XA, or e ∈ C ×A
and i(e) ∈ XB .

Recall that since we are working with the number-on-forehead
model, the set XC is known to Alice and Bob, XA is known
to Bob and Charlie, and XB is known to Alice and Charlie.
Therefore each of the three players can tell whether an edge
adjacent to any node it needs to simulate is present in GX
or not.

To simulate a run of A on input GX , each player locally
simulates the states of the nodes it“owns”, and in each round
it writes to the shared blackboard all the messages sent by
these nodes. After reading the blackboard, each player feeds
all messages to each of its nodes and computes their states
for the next round.

The subgraph GX contains a triangle iff there is some
triangle ti ∈ T whose edges all appear inGX , and this occurs
iff for some i ∈ [m] we have i ∈ XA ∩ XB ∩ XC . When A
terminates, with probability at least 1 − ε there is at least
one player that knows whether GX contains a triangle, and
hence also whether XA, XB and XC are disjoint. This player
then writes the answer on the blackboard.

The total cost of the simulation is (7/3)n · b · R + 1 bits,
and since our protocol solves Disjm with error probability
at most ε, we must have R ≥ R3-NOF

ε (Disjm)/O(n).

At present, the best lower bounds on 3-NOF DisjN are the
following: for randomized algorithms, the best bound is the
Ω(
√
N) bound due to Sherstov [41], and for deterministic

algorithms, Rao and Yehudayoff have recently shown a lower
bound of Ω(N). The deterministic lower bound gives us the
following:

Corollary 25. Deterministic triangle detection in the

CLIQUE-BCASTn,b model requires Ω(n/(eO(
√

logn)b)) rounds.

The randomized lower bound is just shy of yielding a non-
trivial bound for randomized triangle detection. However,
we do obtain a conditional lower bound: in [35], Pătraşcu
and Williams discuss a strong form of the Exponential Time
Hypothesis which asserts that there is no SAT algorithm
with running time O(2δn) for any δ < 1. They show that
under this assumption, there is no protocol for 3-NOF Disjn
with communication complexity o(n) in which the players’

local computation is performed in time 2o(n).

Corollary 26. If for all δ < 1 there is no SAT algo-
rithm with running time O(2δn), then there is no triangle de-
tection algorithm for CLIQUE-BCASTn,polylog(n) with round

complexity O(n/e
√

logn) in which the nodes’ local computa-

tion is in time 2o(n).
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[24] M. Koucký, P. Pudlák, and D. Thérien.
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