Non-standard Advice Sources for Quantum Computation

Andrew Drucker

MIT

October 2011

Based on joint works with Scott Aaronson

["A Full Characterization of Quantum Advice", STOC '10];

["Advice Coins for Classical and Quantum Computation", ICALP '11]

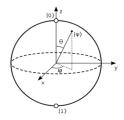
Big picture

- Non-uniform computation: models idea of "preprocessing" or "special hardware" for a fixed input length *n*.
- Two standard, equivalent formulations (for either classical or quantum poly-time algorithms):
 - **1** poly(n)-length advice string a_n depending only on input length n;
 - 2 poly(n)-sized circuit C_n
- Resulting complexity classes: P/poly, BQP/poly

Big picture

- Both model classical non-uniform advice!
- Other possibilities for quantum algorithms...
- Other models could have more to say about the "effective information content" of quantum systems.

Alternative models



- First natural idea: quantum advice [Nishimura, Yamakami '03]
- Length-dependent quantum state $|\psi_n\rangle$, on poly(n) qubits
- Provided to a (uniform) family of poly-sized quantum circuits;
 measure to get computationally useful info!
- Resulting complexity class: BQP/qpoly

Alternative models

- Second natural (?) idea: advice coins [E. Demaine]
- Coin with arbitrary real bias $p_n \in (0,1)$; <u>flip</u> to reveal computationally useful info!

Alternative models

- Interesting case: space-bounded computation
- Resulting complexity class: BQPSPACE/coin

Our results

- New methods to bound the power of non-standard advice.
- Precise characterizations of BQP/qpoly, BQPSPACE/coin in terms of classes involving classical non-uniform advice only:
 - BQP/qpoly = a restricted subclass of QMA/poly;
 - BQPSPACE/coin = PSPACE/poly.

Exploiting special structure in QM

- For each advice type, first step: clarify the object of study.
- Fix a quantum alg. A, input length n, and an advice source src (quantum state $|\psi\rangle$ or coin bias p).

For an input $x \in \{0,1\}^n$, define

 $P^{src}(x) = \text{acceptance probability of } A^{src}(x).$

Exploiting special structure in QM

• Using previous work, we identify collective structure of the functions

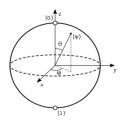
$$\{P^{src}(x)\}_{src},$$

as we range over src.

Exploiting special structure in QM

- Not just a "random collection" of functions;
 QM ⇒ strong constraints!
 - **Q** Quantum advice states: $\{P^{|\psi\rangle}(x)\}_{||\psi\rangle| \leq n^c} = a$ "skinny" (low-dimensional) collection of functions, in an appropriate sense;
 - 2 Advice coins: $\{P^p(x)\}_{p\in(0,1)} =$ "algebraically nice" collection.

 <u>Second step:</u> give specific algorithmic techniques to exploit this structure.



• Given:

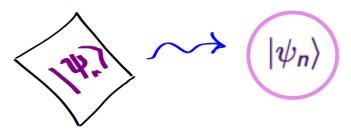
$$L \in \mathsf{BQP/qpoly} \quad \longleftrightarrow \quad \{C_n, |\psi_n\rangle\},$$

with $|C_n| = poly(n)$, $|\psi_n\rangle$ an advice state on n^c qubits.

Given:

$$L \in \mathsf{BQP/qpoly} \quad \longleftrightarrow \quad \{\mathit{C}_n, |\psi_n\rangle\},$$
 with $|\mathit{C}_n| = \mathsf{poly}(n)$, $|\psi_n\rangle$ an advice state on n^c qubits.

• **Ideal goal:** classical description $desc(|\psi_n\rangle)$ that lets us efficiently synthesize a "good-enough copy" of $|\psi_n\rangle$.



- Would imply BQP/qpoly = BQP/poly...
- But... don't know how!
- Don't even know how to recognize a copy of $|\psi_n\rangle$ when presented with it!

- **Relaxed goal:** Classical description $desc(|\psi_n\rangle)$ to let us efficiently recognize a <u>simulator</u> state $|\psi'_n\rangle$.
- Use $|\psi_n'\rangle$ (indirectly) to simulate $C_n^{|\psi_n\rangle}$.

- Yields: $L \in QMA/poly$. (Idea: have Merlin send $|\psi_n'\rangle$; check it against $desc(|\psi_n\rangle)$; and use it!)
- Merlin here can be <u>oblivious</u>: advice can be chosen <u>independent</u> of the input x.
- In paper we show: $L \in \mathsf{QMA/poly}$ is <u>precisely</u> this restricted subclass of $L \in \mathsf{QMA/poly}$.

Sanity check

- Why should a "good-enough" description of $|\psi_n\rangle$ be possible with poly(n) bits?
 - $\approx 2^{2^n}$ "essentially different" states on *n* qubits!

- Solution: we only care about measurements performed by <u>small</u> circuits!
- Earlier work [Aaronson '04, '07] ⇒
 information-theoretic descriptions with poly(n) bits.

Quantum advice

 \bullet For any $|\psi\rangle$ on $\mathit{n^c}$ qubits, let

$$P^{|\psi\rangle}(x) :=$$
 acceptance prob. of $C_n^{|\psi\rangle}(x)$.

Key fact

[Ambainis, Nayak, Ta-Shma, Vazirani '99; Aaronson '07]: the function collection $\{P^{|\psi\rangle}\}_{||\psi\rangle|=n^c}$ has polynomially bounded <u>fat-shattering</u> dimension.

- (A relative of Holevo's Theorem...)
- Such collections: similar in important respects to a <u>finite collection</u> of size $2^{\text{poly}(n)}$!

Quantum advice

• For the "good" advice $|\psi_n\rangle$, we have:

$$P^{|\psi_n\rangle}(x) \in [0, 1/3] \cup [2/3, 1], \quad \forall x \in \{0, 1\}^n.$$

Say that $|\psi_n\rangle$ is "decisive."

• For any decisive state $|\psi\rangle$, let

$$F^{|\psi\rangle}(x) := \lfloor P^{|\psi\rangle}(x) \rceil \in \{0,1\}$$

be the "rounded" version of $P^{|\psi\rangle}$.

Quantum advice

- Fat-shattering bound \Longrightarrow at most $2^{\text{poly}(n)}$ functions $F:\{0,1\}^n \to \{0,1\}$ obtainable in this way!
- Let $\mathcal{F} =$ this collection.
- Major simplifying assumption: let's pretend that

$$\{P^{|\psi\rangle}\}_{||\psi\rangle|=n^c} = \mathcal{F}.$$

Describing quantum advice classically

- So, given: a collection \mathcal{F} of $2^{\text{poly}(n)}$ Boolean functions. (Think of Merlin as sending members of \mathcal{F} as black-boxes!)
- Want to give <u>classical</u> description of the "good" function

$$F^* = \left|P^{\ket{\psi_n}}
ight| \in \mathcal{F},$$

that helps us compute F^* with Merlin's help.

Definition

Say that a function $F \in \mathcal{F}$ is <u>simply-isolatable</u> if, by specifying values of F on some poly(n) inputs x^1, \ldots, x^m , we can uniquely determine F within \mathcal{F} .

$$\mathcal{F} = \left\{ \boxed{1111}, \boxed{0100}, \boxed{1000} \right\}$$

Definition

Say that a function $F \in \mathcal{F}$ is <u>simply-isolatable</u> if, by specifying values of F on some poly(n) inputs x^1, \ldots, x^m , we can uniquely determine F within \mathcal{F} .

• If F^* is simply-isolatable, we're done:

Take classical advice = $((x^1, F^*(x^1)), \dots, (x^m, F^*(x^m)))$.

Lets us recognize F^* , distinguish from other $F \in \mathcal{F}$.

- Problem: F^* may not be simply-isolatable!
- Toy example:

$$F^* \equiv 0, \qquad \mathcal{F} = F^* \cup \text{(all singleton functions)}$$

$$n = 2$$
:

Solution:

$$\boxed{ \boxed{ 0 \hspace{0.1cm} 0 \hspace{0.1cm} 0 \hspace{0.1cm} 0 \hspace{0.1cm} 0 \hspace{0.1cm}] \hspace{0.1cm} = \hspace{0.1cm} \mathsf{MAJ} \left(\boxed{ \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 0 \hspace{0.1cm}]} \hspace{0.1cm}, \hspace{0.1cm} \boxed{ \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm}]} \hspace{0.1cm}, \hspace{0.1cm} \boxed{ \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm}]} \right)$$

• Express F^* as the pointwise majority of simply-isolatable functions!

Majority-certificates

Lemma ("Majority-certificates lemma")

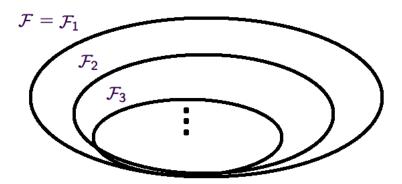
For any collection \mathcal{F} of Boolean n-variate functions (with $|\mathcal{F}| \leq 2^{\mathsf{poly}(n)}$), and any $F^* \in \mathcal{F}$, we can write

$$F^* \equiv MAJ(F_1, \dots, F_{m=poly(n)}),$$

where each F_i is simply-isolatable.

- Lets us describe F^* by describing F_1, \ldots, F_m .
- Ask Merlin for a copy of F_1, \ldots, F_m ; check each individually!
- Gives our QMA/poly protocol for L.

- First, convince ourselves: $|\mathcal{F}| = 2^{\text{poly}(n)} \Longrightarrow \mathcal{F}$ contains at least one simply-isolatable function!
- Idea: Take repeated "minority votes".



Main sub-claim:

Claim

For every distribution \mathcal{D} over inputs $x \in \{0,1\}^n$, there exists an $F \in \mathcal{F}$ that is simply-isolatable, and for which

$$\Pr_{\mathbf{x} \sim \mathcal{D}}[F(\mathbf{x}) \neq F^*(\mathbf{x})] \leq 1/10.$$

Claim

For every distribution \mathcal{D} over inputs $x \in \{0,1\}^n$, there exists an $F \in \mathcal{F}$ that is simply-isolatable, and for which

$$\Pr_{x \sim \mathcal{D}}[F(x) \neq F^*(x)] \le 1/10.$$
 (**)

Proof Sketch.

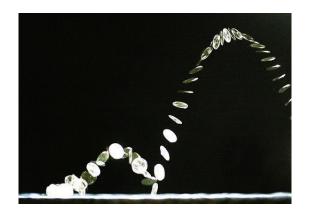
- Let $x^1, \ldots, x^{m' = poly(n)}$ be i.i.d. from \mathcal{D} .
- If we specify the values $(x^i, F^*(x^i))$, w.h.p. they will be inconsistent with all $F \in \mathcal{F}$ violating (**)!
- On the other hand, they're consistent with <u>some</u> members of \mathcal{F} (e.g., F^* itself). Among these is a simply-isolatable function.

• Next, Minimax Theorem $\implies \exists$ a distribution \mathcal{D}' over simply-isolatable functions $F \in \mathcal{F}$, such that

$$\forall x, \qquad \Pr_{F \sim \mathcal{D}'}[F(x) = F^*(x)] \geq .9.$$

• Our Lemma follows by taking m = poly(n) samples $F_1, \ldots, F_m \sim \mathcal{D}'$.

Advice coins



- Coins: a source of randomness.
- But also an information source.
- Flipping a coin, we can learn about coin bias itself!

Advice coins

Definition (Informal)

Let BQPSPACE/coin = set of languages L decidable by a poly-space, quantum Turing machine $A^{\rho}(x)$, given access to a non-uniform family of "advice coins" with biases

$${p(n)}_{n>0}$$
,

one bias for each input length n.

- Model details:
 - Measure at each step to see if A has accepted.
 - Allowed to reject inputs by running forever.

Our main result

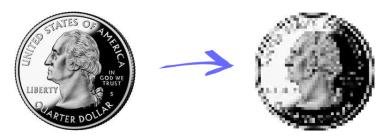
Theorem

BQPSPACE/coin = BQPSPACE/poly.

- (Previously known: BQPSPACE/poly = PSPACE/poly.)
- **Proof sketch:** Let $L \in \mathsf{BQPSPACE}/\mathsf{coin}$ be given, solved by $M, \{p(n)\}...$

A first attempt

• Natural idea: simulate a BQPSPACE/coin machine by <u>rounding</u> advice bias to the first poly(n) bits.



• Fails! Machines too sensitive to tiny changes in coin bias.

The "rational behavior" lemma

Define

$$a_x(p) =$$
(acceptance prob. of $M(x)$ on coin bias p).

Lemma

For $p \in (0,1)$, $a_x(p)$ is a rational function in p, of degree $2^{\text{poly}(n)}$.

Coefficients are integers of abs. value $\leq 2^{\text{poly}(n)}$, and computable on demand in PSPACE.

The "rational behavior" lemma

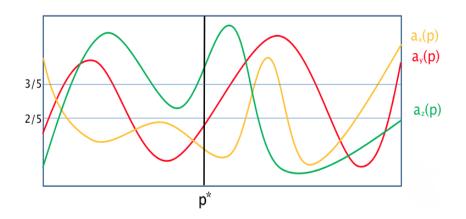
- Proof of the lemma uses a result of [Aaronson, Watrous '09] to compute limiting behavior of space-bounded computation.
- Uses space-efficient algorithms for matrix inversion.
- Continuity needs to be proved separately—a bit tricky!

Using our lemma

• Our goal: use advice to define a "good enough" bias \tilde{p} , such that $M^{\tilde{p}}(\cdot)$ decides L_n with (2/5,3/5)-bounded error.

• Will yield: *L* ∈ BQPSPACE/poly.

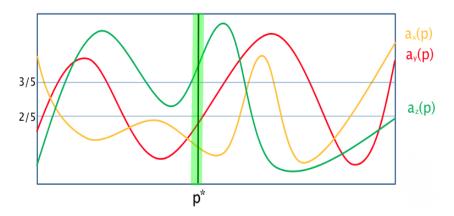
Using our lemma



• **Pictured:** Acceptance probabilities as fcn. of p, for every length-n input.

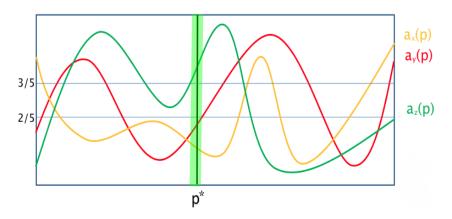
 $p^* = p(n)$ is the "good" advice bias.

Using our lemma

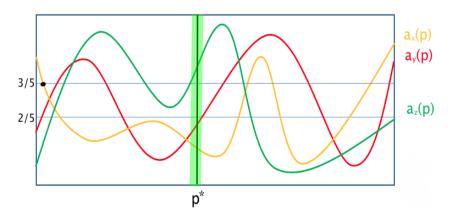


- Enough to obtain \tilde{p} in interval above!
- <u>Idea:</u> let advice string $a_n =$ number of crossings of (2/5, 3/5)-lines lying to the <u>left</u> of p^* .

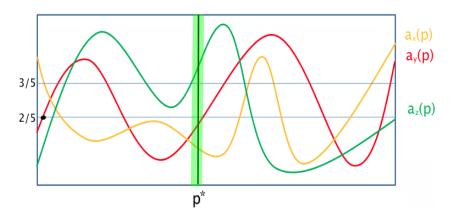
(At most $2^{\text{poly}(n)}$, so poly-sized advice!)



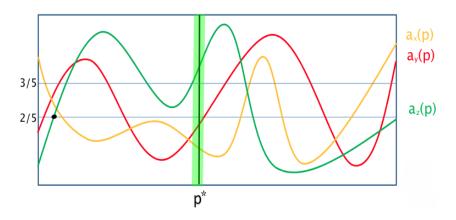
- Wonderful fact: can enumerate these crossings in increasing order, in PSPACE!
- Application of polylog-space algorithm for root isolation of univariate polynomials [Neff '94].



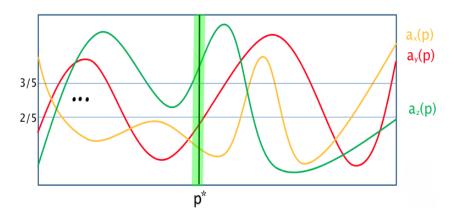
- Wonderful fact: can enumerate these crossings in increasing order, in PSPACE!
- Application of polylog-space algorithm for root isolation of univariate polynomials [Neff '94].



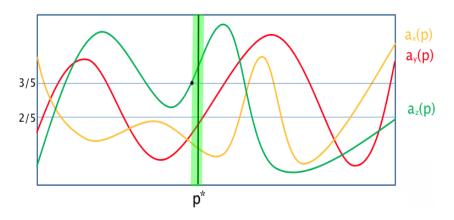
- Wonderful fact: can enumerate these crossings in increasing order, in PSPACE!
- Application of polylog-space algorithm for root isolation of univariate polynomials [Neff '94].



- Wonderful fact: can enumerate these crossings in increasing order, in PSPACE!
- Application of polylog-space algorithm for root isolation of univariate polynomials [Neff '94].



- Wonderful fact: can enumerate these crossings in increasing order, in PSPACE!
- Application of polylog-space algorithm for root isolation of univariate polynomials [Neff '94].



- Wonderful fact: can enumerate these crossings in increasing order, in PSPACE!
- Application of polylog-space algorithm for root isolation of univariate polynomials [Neff '94].

- Remaining challenge: distinct crossings z, z' can be very close together.
- But, not too close: known root-separation bounds for integer polynomials imply

$$|z-z'| \ge 2^{-2^{\mathsf{poly}(n)}} .$$

- This is enough to define our \tilde{p} : with Neff algorithm, we can compute any desired i^{th} bit of a crossing point, up to $i = 2^{\text{poly(n)}}$, in *PSPACE*!
- With this ability, can implement a \tilde{p} -biased coin flip, and simulate $M^{\tilde{p}}(x)$.

Open questions

- What's the power of BQPSPACE machines with more than 1 coin?
 Or, with "biased k-sided dice", for k > 2?
 We think our techniques can shed light.
- Is BQP/qpoly = BQP/poly?
- Power of quantum algs. with other unconventional information sources?