
New Limits to Classical and Quantum

Instance Compression

Andrew Drucker∗

Abstract

Given an instance of a hard decision problem, a limited goal is to compress that instance
into a smaller, equivalent instance of a second problem. As one example, consider the problem
where, given Boolean formulas ψ1, . . . , ψt, we must determine if at least one ψj is satisfiable. An
OR-compression scheme for SAT is a polynomial-time reduction R that maps (ψ1, . . . , ψt) to a
string z, such that z lies in some “target” language L′ if and only if

∨
j [ψ

j ∈ SAT] holds. (Here,
L′ can be arbitrarily complex.) AND-compression schemes are defined similarly. A compression
scheme is strong if |z| is polynomially bounded in n = maxj |ψj |, independent of t.

Strong compression for SAT seems unlikely. Work of Harnik and Naor (FOCS ’06/SICOMP
’10) and Bodlaender, Downey, Fellows, and Hermelin (ICALP ’08/JCSS ’09) showed that the
infeasibility of strong OR-compression for SAT would show limits to instance compression for a
large number of natural problems. Bodlaender et al. also showed that the infeasibility of strong
AND-compression for SAT would have consequences for a different list of problems. Motivated
by this, Fortnow and Santhanam (STOC ’08/JCSS ’11) showed that if SAT is strongly OR-
compressible, then NP ⊆ coNP/poly. Finding similar evidence against AND-compression was
left as an open question.

We provide such evidence: we show that strong AND- or OR-compression for SAT would im-
ply non-uniform, statistical zero-knowledge proofs for SAT—an even stronger and more unlikely
consequence than NP ⊆ coNP/poly. (By a different argument, we also show such compression
would imply the uniform collapse NP ⊆ coAM.) Our methods apply against probabilistic com-
pression schemes of sufficient “quality” with respect to the reliability and compression amount
(allowing for tradeoff). This greatly strengthens the evidence given by Fortnow and Santhanam
against probabilistic OR-compression for SAT. We also give negative results for the analogous
task of quantum instance compression, in which a polynomial-time quantum reduction must
output a quantum state that, in an appropriate sense, “preserves the answer” to the input
instance.

The central idea in our proofs is to exploit the information bottleneck in an AND-compression
scheme for a language L in order to fool a cheating prover in a proof system for L. Our key
technical tool is a new method to “disguise” information being fed into a compressive mapping;
we believe this method may find other applications.

∗andy.drucker@gmail.com. This paper appeared in FOCS 2012 and formed part of the author’s
Ph.D. dissertation (EECS Dept., MIT). Work conducted at MIT was supported an NSF Career grant of Scott Aaron-
son. Author’s current affiliation: School of Mathematics, IAS, Princeton, NJ. Supported by the NSF under agreements
Princeton University Prime Award No. CCF-0832797 and Sub-contract No. 00001583. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

1

Contents

1 Introduction 3
1.1 Instance compression and parametrized problems . 3
1.2 Previous work: results and motivation . 4
1.3 Our results . 6

1.3.1 Results on classical compression . 6
1.3.2 Results on quantum compression . 9

1.4 Our techniques . 10
1.4.1 The overall approach . 10
1.4.2 The Disguising-Distribution Lemma . 12
1.4.3 Extension to the quantum case . 13

1.5 Organization of the paper . 14

2 Preliminaries I 14
2.1 Statistical distance and distinguishability . 14

3 Proof of Theorem 1.1 15

4 Preliminaries II 20
4.1 Information theory background . 20
4.2 Basic complexity classes and promise problems . 21
4.3 Arthur-Merlin protocols . 22
4.4 Statistical zero-knowledge and the SD problem . 23
4.5 f -compression reductions . 25

5 Parametrized problems and parametrized compression 25
5.1 Parametrized problems . 26
5.2 OR-expressive and AND-expressive parametrized problems 26
5.3 Parametrized compression . 28
5.4 Connecting parametrized compression and f -compression 29

6 Technical lemmas 30
6.1 Distributional stability . 30
6.2 Sparsified distributional stability . 32
6.3 Building disguising distributions . 34

7 Limits to efficient (classical) compression 35
7.1 Complexity upper bounds from OR-compression schemes 36
7.2 Application to AND- and OR-compression of NP-complete languages 39
7.3 On f -compression for combining functions of high block sensitivity 40
7.4 Limits to strong compression for parametrized problems 43
7.5 Application to problems with polynomial kernelizations 44

2

8 Extension to quantum compression 46
8.1 Trace distance and distinguishability of quantum states 47
8.2 Quantum f -compression . 48
8.3 Quantum complexity classes . 48
8.4 Quantum distributional stability . 50
8.5 Building quantum disguising distributions . 50
8.6 Complexity upper bounds from quantum compression schemes 51

9 On f-compression for combining functions of low block sensitivity 52
9.1 Eligible functions and their properties . 53
9.2 A codeword-reconstruction result . 57
9.3 None-versus-one protocols . 59
9.4 Membership comparability . 60
9.5 From f -compression to membership-comparison protocols 63
9.6 Application to AND- and OR-compression . 68

10 Questions for further study 70

A Alternative proofs of distributional stability 76
A.1 A proof based on Raz’s lemma . 76
A.2 A proof based on the Average Encoding Theorem . 76

B Our original distributional stability lemma 77
B.1 Entropy and the unreliability of compressive encodings 77
B.2 Bounds on the inverse entropy function . 79
B.3 The lemma . 80

C Proof of quantum distributional stability 81

1 Introduction

1.1 Instance compression and parametrized problems

Given an instance of a hard decision problem, we may hope to compress that instance into a smaller,
equivalent instance, either of the same or of a different decision problem. Here we do not ask to
be able to recover the original instance from the smaller instance; we only require that the new
instance have the same (yes/no) answer as the original. Such instance compression may be the
first step towards obtaining a solution; this has been a central technique in the theory of fixed-
parameter-tractable algorithms [DF99, GN07]. Strong compression schemes for certain problems
would also have important implications for cryptography [HN10]. Finally, compressing an instance
of a difficult problem may also be a worthwhile goal in its own right, since it can make the instance
easier to store and communicate [HN10].

It is unknown whether one can efficiently, significantly compress an arbitrary instance of a
natural NP-complete language like SAT, the set of satisfiable Boolean formulas.1 A more limited

1If we could efficiently reduce instances of some NP-complete problem to shorter instances of the same problem,
then we could iterate the reduction to solve our problem in polynomial time, implying P = NP. However, even if

3

goal is to design an efficient reduction that achieves compression on instances that are particularly
“simple” in some respect. To explore this idea, one needs a formal model defining “simple” in-
stances; the versatile framework of parametrized problems [DF99] is one such model, and has been
extensively used to study instance compression. A parametrized problem is a decision problem in
which every instance has an associated parameter value k, giving some measure of the complexity
of a problem instance.2 As an example, one can parametrize a Boolean formula ψ by the number
of distinct variables appearing in ψ.

An ambitious goal for a parametrized problem P is to compress an arbitrary instance x of the
decision problem for P into an equivalent instance x′ of a second, “target” decision problem, where
the output length |x′| is bounded by a polynomial in k = k(x). If P has such a reduction running
in time poly(|x|+k), we say P is strongly compressible; we say P is strongly self-compressible if the
target problem of the reduction is P itself. (In the literature of parametrized problems, a strong
self-compression reduction is usually referred to as a polynomial kernelization. More generally, a
kernelization is a polynomial-time self-compression reduction whose output size is bounded by some
function of the parameter k alone.)

1.2 Previous work: results and motivation

Let VAR-SAT denote the Satisfiability problem for Boolean formulas, parametrized by the number
of distinct variables in the formula. In their study of instance compression for NP-hard problems,
Harnik and Naor [HN10] asked whether VAR-SAT is strongly compressible.3 They showed that
a positive answer would have several significant consequences for cryptography. Notably, they
proved that a deterministic strong compression reduction for VAR-SAT (with any target problem)
would yield a construction of collision-resistant hash functions based on any one-way function—a
long-sought goal.

In fact, Harnik and Naor showed that for their applications, it would suffice to achieve strong
compression for a simpler parametrized problem, the “ OR(SAT) problem:” this is the Satisfiability
problem for Boolean formulas expressed as disjunctions ψ =

∨t
j=1 ψj , where the parameter is now

defined as the maximum bit-length of any sub-formula ψj . Strong compression for VAR-SAT easily
implies strong compression for OR(SAT). Harnik and Naor defined a hierarchy of decision problems
called the “VC hierarchy,” which can be modeled as a class of parametrized problems (see [FS11]).
They showed that a strong compression reduction for any of the problems “above” OR(SAT) in this
hierarchy would also imply strong compression for OR(SAT); this includes parametrized versions of
natural problems like the Clique and Dominating Set problems. While Harnik and Naor’s primary
motivation was to find a strong compression scheme for OR(SAT) to use in their cryptographic
applications, their work also provides a basis for showing negative results: in view of the reductions
in [HN10], any evidence against strong compression for OR(SAT) is also evidence against strong
compression for a variety of other parametrized problems.

In subsequent, independent work, Bodlaender, Downey, Fellows, and Hermelin [BDFH09] also
studied the compressibility of OR(SAT) and of related problems; these authors’ motivations came
from the theory of fixed-parameter tractable (FPT) algorithms [DF99]. An FPT algorithm for
a parametrized problem P is an algorithm that solves an arbitrary instance x, with parameter

P 6= NP, it is still conceivable that SAT might have an efficient compressive reduction to a different target problem—to
the Halting problem, say.

2See Section 5.1 for details. The parameter k is explicitly given as part of the input to the algorithm.
3Strictly speaking, they asked a slightly different question whose equivalence to this one was pointed out in [FS11].

4

k = k(x), in time g(k) · poly(|x| + k), for some function g(·). The idea is that even if P is hard
in general, an FPT algorithm for P may be practical on instances where the parameter k is small.
Now as long as P is decidable, a kernelization reduction for P provides the basis for an FPT
algorithm for P : on input x, first compress x, then solve the equivalent, compressed instance. The
kernelization approach is one of the most widely-used schemas for developing FPT algorithms.4 Of
course, one hopes to compress by as large an amount as possible, to maximize the efficiency of the
resulting FPT algorithm; this motivates the search for strong self-compression reductions.

Strong self-compression reductions are known for parametrized versions of many natural NP-
complete problems, such as the Vertex Cover problem; see, e.g., the survey [GN07]. However,
for many other such parametrized problems, including numerous problems known to admit FPT
algorithms (such as OR(SAT)), no strong compression reduction is known, to any target prob-
lem. Bodlaender et al. [BDFH09] conjectured that no strong self-compression reduction exists for
OR(SAT). They made a similar conjecture for the closely-related “ AND(SAT) problem,” in which
one is given Boolean formulas ψ1, . . . , ψt and asked to decide whether

∧t
j=1[ψj ∈ SAT] holds—that

is, whether every ψj is individually satisfiable. As with OR(SAT), we parametrize AND(SAT) by
the maximum bit-length of any ψj .

Bodlaender et al. showed that these conjectures (sometimes referred to as the “OR-” and “AND-
conjectures”) would have considerable explanatory power. First, they showed [BDFH09, Theorem 1]
that the nonexistence of strong self-compression reductions for OR(SAT) would rule out strong self-
compression for a large number of other natural parametrized problems; these belong to a class we
call “OR-expressive problems.”5 Under the assumption that AND(SAT) does not have strong self-
compression, Bodlaender et al. ruled out strong self-compression reductions for a second substantial
list of problems [BDFH09, Theorem 2], belonging to a class we will call “AND-expressive.” Despite
the apparent similarity of OR(SAT) and AND(SAT), no equivalence between the compression tasks
for these two problems is known.

In light of their results, Bodlaender et al. asked for complexity-theoretic evidence against strong
self-compression for OR(SAT) and AND(SAT). Fortnow and Santhanam [FS11] provided the first
such evidence: they showed that if OR(SAT) has a strong compression reduction (to any target
problem), then NP ⊆ coNP/poly and the Polynomial Hierarchy collapses to its third level.

The techniques of [BDFH09, FS11] were refined and extended by many researchers to give
further evidence against efficient compression for parametrized problems, e.g., in [DLS09, DvM10,
BTY11, BJK11a, BJK11b, BJK11c, CFM11, HW12, DM12, Kra12]. (See [DM12] for further dis-
cussion and references.) As one notable development that is relevant to our work, Dell and Van
Melkebeek [DvM10] combined the techniques of [BDFH09, FS11] with new ideas to provide tight
compression-size lower bounds for certain problems that do admit polynomial kernelizations. Re-
searchers also used ideas from [BDFH09, FS11] in other areas of complexity, giving new evidence
of lower bounds for the length of PCPs [FS11, DvM10] and for the density of NP-hard sets [BH08].

Finding evidence against strong compression for AND(SAT) was left as an open question
by these works, however. The limits of probabilistic compression schemes for OR(SAT) and for
OR-expressive problems (including VAR-SAT) also remained unclear. The results and techniques
of [FS11] give evidence only against some restrictive sub-classes of probabilistic compression schemes

4In fact, every problem with an FPT algorithm is kernelizable [CCDF97]. This does not mean, however, that the
most efficient FPT algorithms always arise from the kernelization approach.

5See Section 5.2. The class of OR-expressive problems is not identical to the class described in [BDFH09], but it
is closely related and contains their class, as well as other classes of problems identified in [HN10, BJK11a].

5

for OR(SAT): schemes with one-sided error, avoiding false negatives; schemes whose error proba-
bility is exponentially small in the length of the entire input; and schemes using O(log n) random
bits, where n = maxj |ψj |.

1.3 Our results

1.3.1 Results on classical compression

We complement the results of [FS11] by providing evidence against strong compression for AND(SAT):
we prove that such a compression scheme, to any target problem, would also imply NP ⊆ coNP/poly.
In fact, we show that reductions compressing even by a much more modest amount would imply the
same conclusion. For concreteness, we state our most “basic” result on compression of AND(SAT)
in a self-contained way below.

Theorem 1.1. Let L be any NP-complete language. Suppose there is a deterministic polynomial-
time reduction R that takes an arbitrarily long list of input strings (x1, . . . , xt) and outputs a string
z, with

z ∈ L ⇐⇒
∧
j∈[t]

[xj ∈ L] .

Suppose further that R obeys the output-size bound |z| ≤
(
maxj≤t |xj |

)O(1)
, with the polynomial

bound independent of t. Then, NP ⊆ coNP/poly.
More strongly, we show the following. Suppose there is any second, “target” language L′, a pair

of polynomially-bounded functions t(n), t′(n) : N→ N with t(n) = ω(1) and t′(n) + 1 ≤ t(n)/2, and
a deterministic polynomial-time reduction R : {0, 1}t(n)×n → {0, 1}≤t′(n), such that

R(x1, . . . , xt(n)) ∈ L′ ⇐⇒
∧

j∈[t(n)]

[xj ∈ L] .

Then NP ⊆ coNP/poly.

We prove Theorem 1.1 in Section 3. In later sections, we will strengthen and generalize The-
orem 1.1 using related but more powerful proof techniques. However, we feel it is worthwhile to
present a proof of this basic result with a minimum of tools and preliminaries.6

The techniques we use to generalize Theorem 1.1 will extend naturally (and in a strong fashion)
to the probabilistic setting with two-sided error, in which we expect the compression reduction to
obey some success-probability guarantee on every input. We show (in Theorem 7.4, item 1) that
any sufficiently “high-quality” compression scheme for AND(SAT) would imply NP ⊆ coNP/poly.
Here, “quality” is defined by a certain relationship between the reliability and the compression
amount of the reduction, and allows for tradeoff.

We also show (in Theorem 7.4, item 2, and Theorem 7.5) that beyond a second, somewhat
more demanding quality threshold, probabilistic compression reductions either for AND(SAT) or
for OR(SAT) would imply the existence of non-uniform, statistical zero-knowledge proofs for NP

6To be precise, in our elementary proof we avoid any overt use of information-theoretic results and concepts; we
also avoid the use of the minimax theorem. These tools are central to our stronger and more general approach (which,
in particular, is much better suited for analyzing bounded-error reductions), but familiarity with these tools is not
necessary to understand Theorem 1.1. We mention that the decision to use or avoid information theory in the proof
is essentially independent of the choice to use or avoid the minimax theorem.

6

languages—a stronger (and even more unlikely) consequence than NP ⊆ coNP/poly. The more-
demanding quality threshold in this second set of results is still rather modest, and allows us to
prove the following result as a special case:

Theorem 1.2 (Informal). Suppose that either of AND(SAT) or OR(SAT) is strongly compressible,
with success probability ≥ .5 + 1/poly(n) for an AND or OR of length-n formulas. Then there are
non-uniform, statistical zero-knowledge proofs for all languages in NP.

At the other extreme, where we consider compression schemes with more modest compression
amounts, but with greater reliability, our techniques yield the following result:

Theorem 1.3 (Informal). Let t(n) : N+ → N+ be any polynomially bounded function. Suppose
there is a compression scheme compressing an AND of t(n) length-n SAT instances into an instance
z of a second decision problem L′, where |z| ≤ C ·t(n) log t(n) for some C > 0. If the scheme’s error
probability on such inputs is bounded by a sufficiently small inverse-polynomial in n (depending on
t(n) and C), then there are non-uniform, statistical zero-knowledge proofs for all languages in NP.
The corresponding result also holds for OR-compression.7

Beyond a third and significantly more-demanding threshold of quality, we show in Section 9
that probabilistic compression reductions either for AND(SAT) or for OR(SAT) would imply the
uniform complexity-class collapse NP ⊆ coAM.8 The proof of this result uses some of the same
information-theoretic techniques used to prove Theorems 1.2 and 1.3, but is substantially different
and draws further inspiration from a work of Sivakumar on the so-called “membership compara-
bility” of NP-complete languages [Siv99].

Our results give the first strong evidence of hardness for compression of AND(SAT). They also
greatly strengthen the evidence given by Fortnow and Santhanam against probabilistic compres-
sion for OR(SAT), and provide the first strong evidence against probabilistic compression for the
potentially-harder problem VAR-SAT. For deterministic (or error-free) compression of OR(SAT),
the limits established by our techniques also follow from the techniques of [FS11], which apply given
an OR-compression scheme with compression bound of form |z| ≤ O(t(n) log t(n)).9 On the other
hand, we provide somewhat stronger complexity-theoretic evidence for these limits to compression.

Using our results on the infeasibility of compression for AND(SAT) and OR(SAT), and building
on [HN10, BDFH09, FS11], we give new complexity-theoretic evidence against strong compress-
ibility for a list of interesting parametrized problems with FPT algorithms. (See Theorem 7.7.)
This is the first strong evidence against strong compressibility for any of the ten “AND-expressive”
problems identified in [BDFH09] (and listed in Section 5.2). For the numerous “OR-expressive”
problems identified in [HN10, BDFH09] and other works, this strengthens the negative evidence
given by [FS11].

Our methods also extend the known results on limits to compression for parametrized problems
that do possess polynomial kernelizations: we can partially extend the results of Dell and Van
Melkebeek [DvM10] to the case of probabilistic algorithms with two-sided error. For example, for

7In fact, error-free OR-compression of this sort for SAT would give non-uniform perfect zero-knowledge proofs for
NP, and error-free AND-compression for SAT would give non-uniform perfect zero-knowledge proofs for coNP; see
Theorem 7.3.

8Such a collapse is not known to imply or be implied by the existence of non-uniform statistical zero-knowledge
proofs for NP.

9This is not explicitly shown in [FS11], but follows from the technique of [FS11, Theorem 3.1]; see also [DvM10,
Lemma 3] for a more general result that makes the achievable bounds clear.

7

d > 1 and any ε > 0, Dell and Van Melkebeek proved that if the Satisfiability problem for N -variable
d-CNFs has a polynomial-time compression reduction with output-size bound O(Nd−ε), then NP ⊆
coNP/poly. Their result applies to co-nondeterministic reductions, and to probabilistic reductions
without false negatives; we prove (in Theorem 7.11) that the result also holds for probabilistic
reductions with two-sided error, as long as the success probability of the reduction is at least .5+N−β

for some β = β(d, ε) > 0. Using reductions described in [DvM10], we also obtain quantitatively-
sharp limits to probabilistic compression for several other natural NP-complete problems, including
the Vertex Cover and Clique problems on graphs and hypergraphs. (However, the limits we establish
do not give lower bounds on the cost of oracle communication protocols; these protocols are a
generalization of compression reductions, studied in [DvM10], to which that work’s results do
apply. Trying to extend our results to this model seems like an interesting challenge for further
study.)

Our results about AND(SAT) and OR(SAT) follow from more general results about arbitrary
languages. For any language L, we follow previous authors and consider the “ OR(L) problem,”
in which one is given a collection x1, . . . , xt of strings, and is asked to determine whether at least
one of them is a member of L. We show (in Theorem 7.1, item 1) that if a sufficiently “high-
quality” probabilistic polynomial-time compression reduction exists for the OR(L) problem, then
L ∈ NP/poly. (As before, “high-quality” is defined by a relation between the reliability of the
reduction and the compression amount.) We also show (in Theorem 7.1, item 2) that a polynomial-
time compression scheme for OR(L) meeting a more demanding standard of quality implies that L
possesses non-uniform statistical zero-knowledge proof systems, and lies in NP/poly ∩ coNP/poly.
(For deterministic compression, the conclusion L ∈ coNP/poly was established earlier in [FS11].)
Applying these results to L := SAT gives our hardness-of-compression results for AND(SAT);
applying the second set of results to L := SAT gives our improved negative results for OR(SAT).

In unpublished work, Buhrman [Buh] constructed an oracle A such that, for every NPA-complete
language L, the decision problem AND(L) does not have a PA-computable strong compression re-
duction. This gave earlier, indirect evidence against efficient strong compression for the AND(SAT)
problem—or at least, it indicated that exhibiting such a compression reduction would require novel
techniques. Now, inspection of the proofs reveals that our new results on compression for OR(L)
are all perfectly relativizing. This allows us to identify many more oracles obeying the property
of Buhrman’s oracle: namely, we may take any A for which NPA * coNPA/poly. For example,
this holds with probability 1 for a random oracle [BG81].10 Such an oracle can also be obtained
through a simple diagonalization argument.

For any Boolean function f : {0, 1}∗ → {0, 1}, we may generalize the OR(L) decision problem
to the problem f ◦ L, in which one is given a collection of strings x1, . . . , xt and must output
f(L(x1), . . . , L(xt)). We restrict attention to the most interesting case in which f depends on all
variables. So far it would seem that our negative results for instance compression are fairly specific
to the case where the outer “combining function” f is either AND or OR. (These are also the only
cases known to be directly applicable to the study of natural kernelization tasks.) However, by an
idea suggested in [FS11, Section 7], our negative result on compression for AND(SAT), combined
with those authors’ negative results on compression for OR(SAT), actually allows us to rule out
strong compression schemes from f ◦ SAT to a target language L′ ∈ NP, for a quite broad range of
functions f : we do so for all non-monotone f , and for all monotone f = {fm : {0, 1}m → {0, 1}}

10In [BG81] it is shown that NPA * coNPA for random A; the technique readily extends to give the stronger claim
above.

8

with reasonably high block sensitivity (as defined by Nisan [Nis91]), namely with bs(fm) ≥ mΩ(1).
The quantitative bounds we obtain on the achievable compression amount are somewhat weaker in
this result than we are able to show for AND or OR, however. See Theorem 7.6, and note the new
requirement that L′ be in NP.

For certain (somewhat exceptional) monotone combining functions, we have bs(fm) ≤ mo(1),11

and the approach of [FS11] does not yield strong results. In Section 9, we address this issue,
proving that for functions f with bs(fm) ≤ mo(1) which have a collection of sensitive blocks with
certain “nice” properties, strong compression schemes for f ◦ SAT (to any target language L′)
would imply the collapse NP ⊆ coAM. Our results do not apply to all f , but cover the “natural”
examples of which we are aware. As a by-product of this we derive the aforementioned result,
that strong compression schemes for either OR(SAT) or AND(SAT) would imply NP ⊆ coAM.
(See Theorem 9.16; this connection is not immediate, since OR and AND have maximal block
sensitivity. We believe it might be possible to strengthen the implication to yield NP ⊆ SZK, by
making a close analysis of our techniques and using the strong closure properties of SZK proved
in [SV03, Sec. 4.2]; we have not proved this, however.) Further discussion of our techniques for
these results, and their relation to the techniques of [Siv99], can be found in Section 9.

1.3.2 Results on quantum compression

Up to this point, we have discussed compression reductions in which the input and output are
both “classical” bit-strings. However, from the perspective of quantum computing and quantum
information [NC00], it is natural to ask about the power of compression reductions that output a
quantum state. An “n-qubit state” is a quantum superposition over classical n-bit strings; a vast
body of research has explored the extent to which information can be succinctly encoded within
and retrieved from such quantum states. If quantum computers become a practical reality, quan-
tum instance compression schemes could help to store and transmit hard computational problems;
compressing an instance might also be a first step towards its solution by a quantum algorithm.

We propose the following quantum generalization of classical instance compression: a quantum
compression reduction for a language L is a quantum algorithm that, on input x, outputs a quantum
state ρ on some number q of qubits—hopefully with q � |x|, to achieve significant compression.
Our correctness requirement is that there should exist some fixed quantum measurement Mq on
q-qubit states for each q > 0, such thatMq(ρ) = L(x) holds with high probability over the inherent
randomness in the measurementMq(ρ).12 We do not require thatMq be an efficiently-performable
measurement; this is by analogy to the general version of the classical compression task, in which
the target language of the reduction may be arbitrarily complex.

Our results for quantum compression are closely analogous to our results in the classical case.
First, we show that for any language L, if a sufficiently “high-quality” quantum polynomial-time
compression reduction exists for the OR(L) problem, then L possesses a non-uniform, 2-message
quantum interactive proof system (with a single prover). Second, we show that a sufficiently higher-
quality quantum polynomial-time compression reduction for OR(L) implies that L possesses a non-
uniform quantum statistical zero-knowledge proof system. Remarkably, the two “quality thresholds”
in our quantum results are essentially the same as in the corresponding results for the classical

11In an earlier version of this paper, such monotone functions were erroneously asserted not to exist, but they do;
see Section 9.1.

12The precise definition we will use is based on the framework of parametrized problems and is slightly more
complex; this is the basic idea, however.

9

case.13 It follows that, unless there exist surprisingly powerful quantum proofs of unsatisfiability for
Boolean formulas, the limits we establish for probabilistic compression of AND(SAT) and OR(SAT)
hold just as strongly for quantum compression.14

1.4 Our techniques

In this section we will focus on describing the techniques used to prove Theorems 1.2 and 1.3. As
mentioned earlier, we also present a similar, but more “elementary” approach to prove Theorem 1.1.
We will give some self-contained intuition about that approach in Section 3. That strategy bears
some similarities to work of Fortnow and Santhanam [FS11] on the hardness of compression for
OR(SAT). In particular, it shares an incremental approach to defining non-uniform advice for
a proof system; in each case, the stage-based construction makes progress in correctly classifying
more and more strings of a given input length.

1.4.1 The overall approach

We first describe our techniques for the classical case; these form the basis for the quantum case as
well. Our first two general results, giving complexity upper bounds on any language L for which
OR(L) has a sufficiently high-quality compression reduction (Theorem 7.1, items 1 and 2), are
both based on a single reduction that we describe next. This reduction applies to compression
reductions mapping some number t(n) ≤ poly(n) of inputs of length n to an output string z of
length |z| = O(t(n) log t(n)).

Fix any language L such that OR(L) has a possibly-probabilistic compression reduction

R(x1, . . . , xt) : {0, 1}t×n −→ {0, 1}≤t′ ,

with some target language L′, along with parameters t′, t satisfying t′ ≤ O(t log t) ≤ poly(n).15 We
will use R to derive upper bounds on the complexity of L. (The reader may keep in mind the main
intended setting L = SAT, which we will use to derive our hardness results for the compression of
AND(SAT). No special properties of this language will be used in the argument, however.)

A simple, motivating observation is that if we take a string y ∈ L and “insert” it into a tuple
x = (x1, . . . , xt) of elements of L, replacing some xj to yield a modified tuple x′, then the values

R(x) , R(x′)

are different with high probability—for, by the “OR-respecting” property of R, we will with high
probability have R(x) ∈ L′, R(x′) ∈ L′. More generally, for any distribution D over t-tuples of
inputs from L, let D[y, j] denote the distribution obtained by sampling x ∼ D and replacing xj

with y; then the two output distributions

R(D) , R(D[y, j])

13We do place a minor additional restriction on quantum compression reductions for OR(L): we require that the
reduction, on input (x1, . . . , xt), outputs a quantum state of size determined by (maxj |xj |) and t.

14We remark that 3-message quantum interactive proofs are known to be fully as powerful as quantum interactive
proofs in which polynomially many messages are exchanged [Wat03], and that these proof systems are equal in power
to PSPACE in the uniform setting [JJUW11]. However, 2-message quantum proof systems seem much weaker, and
are not known to contain coNP.

15Here we pay exclusive attention to R’s behavior on tuples of strings of some equal length n.

10

are far apart in statistical distance. (Of course, the strength of the statistical-distance lower bound
we get will depend on the reliability of our compression scheme.)

We want this property to serve as the basis for an interactive proof system by which a computa-
tionally powerful Prover can convince a skeptical polynomial-time (but non-uniform) Verifier that a
string y lies in L. The idea for our initial, randomized protocol (which we will later derandomize) is
that Prover will make his case by demonstrating his ability to distinguish between the two R-output
distributions described above, when Verifier privately chooses one of the two distributions, samples
from it, and sends the sample to Prover.16 But then to make our proof system meaningful, Verifier
also needs to fool a cheating Prover in the case y /∈ L. To do this, we want to choose D, j in such
a way that the distributions R(D), R(D[y, j]) are as close as possible whenever y /∈ L.

We may not be able to achieve this for an index j that is poorly-chosen. For instance, R(x)
may always copy the first component x1 as part of the output string z, so taking j = 1 would fail
badly. To get around this, we choose our replacement index j uniformly at random, aiming in this
way to make R “insensitive” to the insertion of y.17 As R is a compression scheme, it doesn’t have
room in its output string to replicate its entire input, so there is reason for hope.

This invites us to search for a distribution D∗ over
(
Ln
)t

with the following properties:

(i) For every y ∈ Ln, if we select j ∈ [t] uniformly then the expected statistical distance
Ej [||R(D∗)−R(D∗[y, j])||stat] is “not too large;”18

(ii) D∗ is efficiently sampleable, given non-uniform advice of length poly(n).

Condition (i) is quite demanding: we need a single distribution D∗ rendering R insensitive to
the insertion of any string y ∈ Ln—a set which may be of exponential size. Condition (ii) is also a
strong restriction: Ln may be a complicated set, and in general we can only hope to sample from
distributions over

(
Ln
)t

in which t-tuples are formed out of a fixed “stockpile” of poly(n) elements
of Ln, hard-coded into the non-uniform advice.

Remarkably, it turns out that such a distribution D∗ can always be found. In fact, in item
(i), we can force the two distributions to be non-neglibly close (with expected statistical distance
≤ 1− 1

poly(n)) whenever the output-size bound t′ obeyed by R is O(t log t); the distributions will be

much closer when t′ � t. We call our key technical result (Lemma 6.6), guaranteeing the existence
of such a D∗, the “Disguising-Distribution Lemma.”

Assuming this lemma for the moment, we use D∗ as above to reduce any membership claim
for L to a distinguishing task for a Prover-Verifier protocol. Given any input y, we’ve constructed
two distributions R = R(D∗) and R′ = R(D∗[y, j]) (with j uniform), where each distribution is
sampleable in non-uniform polynomial time. Our analysis guarantees some lower bound D = D(n)
on ||R−R′||stat in the case y ∈ L, and some upper bound d = d(N) on this distance when y /∈ L.
(These parameters depend on the reliability and compression guarantees of R.) If D(n) − d(n) ≥

1
poly(n) , we can give non-uniform distinguishing protocols for L, which can converted to public-coin

16Interactive proofs based on distinguishing tasks have seen many uses in theoretical computer science, and indeed
we will rely upon known protocols of this kind in our work; see Section 4.4.

17We emphasize that the “insensitivity” we are looking for is statistical ; we are not asking that y have small effect
on the output of R for most particular outcomes to x ∼ D. This latter goal may not be achievable, e.g., if R outputs
the sum of all its input strings xi taken as vectors over Fn

2 .
18For our purposes, it actually suffices to bound ||R(D∗)−R(D∗[y, j)]||stat, where j is a uniform value sampled

“internally” as part of the distribution. In our streamlined proof of Theorem 1.1, we will use this idea. However, our
techniques will yield the stronger property in condition (i) above, and this is the course we will follow in proving our
general results.

11

protocols and then non-uniformly derandomized to show that L ∈ NP/poly. Also, if D(n)2−d(n) ≥
1

poly(n) then, using a powerful result due to Sahai and Vadhan [SV03], we can derive a non-uniform,

statistical zero-knowledge proof system for L. This also implies L ∈ NP/poly ∩ coNP/poly.

1.4.2 The Disguising-Distribution Lemma

The Disguising-Distribution Lemma, informally described in Section 1.4.1, is a statement about the
behavior of R(x1, . . . , xt) on a specified product subset St of inputs (S = Ln in our application).
This lemma is a “generic” result about the behavior of compressive mappings; it uses no properties
of R other than R’s output-size bound.19 In view of its generality and interest, we are hopeful that
the lemma will find other applications.

Our proof of this lemma uses two central ideas. First, we interpret the search for the “disguising
distribution” D∗ as a two-player game between a “disguising player” (choosing D∗) and an opponent
who chooses y; we can then apply simple yet powerful principles of game theory. Second, to build a
winning strategy for the disguising player, we will exploit an information bottleneck in R stemming
from its compressive property.20

To describe the proof, it is helpful to first understand how one may obtain the distribution D∗
if we drop the efficient-sampleability requirement on D∗, and focus on the “disguising” requirement
(condition (i)). To build D∗ in this relaxed setting, we will appeal to the minimax theorem for
two-player, zero-sum games; applied here, it tells us that to guarantee the existence of a D∗ that
succeeds in disguising all strings y ∈ S, it is enough to show how to build a D∗Y that succeeds in
expectation, when y is sampled from some fixed (but arbitrary) distribution Y over S.

Here, a natural idea springs to mind: let D∗Y just be a product distribution over t copies of Y !
In this case, inserting y ∼ Y into D∗Y at a random location is equivalent to conditioning on the
outcome of a randomly-chosen coordinate of a sample from D∗Y . The intuition here is that, due to
the output-size bound on R, the distribution R(D∗Y) shouldn’t have enough “degrees of freedom”
to be affected much by this conditioning.

We show (in Lemma 6.2) that for any product distribution x ∼ (D1, . . .Dt) over t-tuple inputs
to R, conditioning on the value of xj ∼ Dj for a uniformly-chosen index j ∈ [t] has bounded
expected effect on the output distribution R(x). That is, the expected statistical distance between
the pre- and post-conditioned distributions is bounded non-negligibly away from 1 (provided that
t′ ≤ O(t log t)). We refer to this important property of R as “distributional stability.”

Our original proof of the distributional property used an encoding argument and Fano’s in-
equality. Several researchers suggested an alternative proof using Kullback-Leibler divergence and
an inequality due to Pinsker. This gives slightly better bounds than our original proof when t′ ≤ t.
The author later noticed that, by using an inequality of Vajda’s in place of Pinsker’s, this approach
also allows us to handle values of t′ as large as O(t log t) in a simpler way. Thus we feel that the
divergence-based approach is ultimately the most convenient one to work with in general; this is
the approach we now use in the main body of the paper.

Colleagues also pointed out that the distributional stability property can also be established
using other similar, known results that also follow from divergence-based techniques: a lemma of

19Indeed, in our application we have essentially no control on R’s behavior when we consider its restriction to
inputs from St, so a generic result is needed.

20This is hardly the first paper in which such a bottleneck plays a crucial and somewhat unexpected role. For
example, an interesting and slightly similar application of information-theoretic tools to the study of metric embeddings
was found recently by Regev [Reg12].

12

Raz [Raz98], and the “Average Encoding Theorem” of Klauck et al. [KNTSZ07]. The latter was
used in [KNTSZ07] to identify a stability property for trace and Hellinger distance metrics, for the
inputs to a problem in quantum communication complexity; this was used for a round-elimination
argument. Their proof is for inputs drawn from the uniform distribution, but extends readily to
general distributions and can be used to derive the kind of lemma we need. We describe these
alternative proofs of distributional stability in Appendix A,21 and we describe our own original,
encoding-based approach in Appendix B. We feel that all of these approaches to proving distribu-
tional stability are interesting and worth understanding.

Using the distributional-stability property of compressive mappings under product input distri-
butions, we then establish a certain “sparsified variant” of this property (Lemma 6.3), which allows
us to replace each Dj with a small set sampled from Dj ;22 this is an important tool in addressing
the efficient-sampleability requirement on our desired D∗. Using this variant, we use the minimax
theorem to show (in Lemma 6.4) that there exists a distribution D over product input-distributions
to R—with each product distribution defined over small subsets of S—such that, in expectation,
D disguises the random insertion of any string y ∈ S at a uniformly-chosen position j. Finally, in
Lemma 6.6 we obtain our desired “disguising distribution” D∗ as a sparsified version of D, using
a result due to Lipton and Young [LY94] and, independently, to Althöfer [Alt94], that guarantees
the existence of sparsely-supported, nearly-optimal strategies in 2-player, zero-sum games.

1.4.3 Extension to the quantum case

Our techniques for studying quantum compression are closely analogous to the classical case. The
main technical difference is that the output R(D) of our compression reduction, on any input
distribution D, is now a (mixed) quantum state. In this setting, to carry out an analogue of the
argument sketched in Sections 1.4.1 and 1.4.2 and fool a cheating Prover, we need a “disguising
distribution” for R that meets a modified version of condition (i) from Section 1.4.1:

(i’) For every y ∈ Ln, if we select j ∈ [t] uniformly then, for any quantum measurement M, the
expected statistical distance Ej [||M(R(D∗))−M(R(D∗[y, j]))||stat] is not too large.

A basic measure of distance between quantum states, the trace distance, is relevant here: if two
states ρ, ρ′ are at trace distance ||ρ − ρ′||tr ≤ δ, then for any measurement M, the statistical
distance ||M(ρ) − M(ρ′)||stat is at most δ. (In fact, this property characterizes the trace dis-
tance.) Thus to satisfy condition (i’), it will be enough to construct D∗ so as to upper-bound
Ej [||R(D∗)−R(D∗[y, j])||tr], for uniformly-chosen j. We do this by essentially the same techniques
as in the classical case. The one significant difference is that here, we need to establish a “stability
property” for trace distance, analogous to the stability property for statistical distance described
in Section 1.4.2. This can be obtained using the same basic divergence-based techniques as in the
classical case, with the help of suitable tools from quantum information theory.23

21Russell Impagliazzo suggested the use of Raz’s lemma; Salil Vadhan also helped me to understand the connection.
Ashwin Nayak and S. Vadhan suggested direct proofs of distributional stability based on divergence and Pinsker’s
inequality, which we now use as our main approach. Dieter van Melkebeek also suggested the relevance of Pinsker’s
inequality, and James Lee and Avi Wigderson suggested to find a more direct information-theoretic proof. I thank
all of these researchers.

22For convenience in the proof, we assume Dj = Dj′ for all j, j′.
23Our original approach to proving distributional stability also admits a quantum version, although we do not

present it here.

13

1.5 Organization of the paper

In Section 2, we present the “bare minimum” of preliminaries needed to understand our proof of
Theorem 1.1. We present this proof in Section 3.

The rest of the paper is devoted to proving stronger and more general results. In Section 4,
we give the additional needed preliminary material for our work, including our definitions of com-
pression reductions. In Section 5, we formally introduce parametrized problems and AND- and
OR-expressive problems. In Section 6, we prove the main technical lemmas we use to obtain our
results on limits of efficient instance compression (with alternative proofs of the first such lemma
appearing in Appendices A and B).

Our results for the classical setting are proved in Sections 7 and 9. Section 7 gives the quantita-
tively strongest bounds on instance compression we are able to show for OR(SAT) and AND(SAT),
under the non-uniform hardness assumption NP * coNP/poly (or, the weaker assumption that NP
does not have non-uniform statistical zero-knowledge proofs). Section 9, on the other hand, proves
quantitatively weaker bounds on instance compression for OR(SAT) and AND(SAT) (and for cer-
tain other problems), but does so under the uniform hardness assumption NP * coAM.

Our quantum results are proved in Section 8 (along with some needed quantum background).
Finally, in Section 10 we present questions for future study.

2 Preliminaries I

Definition 2.1. The binary entropy function H(α) : [0, 1]→ [0, 1] is defined by

H(α) := −α log2 α− (1− α) log2(1− α)

on (0, 1), with H(0) = H(1) := 0.(
n
k

)
denotes the binomial coefficient n!k!/(n − k)!. We will use the following standard, simple

bound (see, e.g., [vL99, Chapter 1]) on the number of binary strings of low Hamming weight:

Fact 2.2. For t ∈ N and α ∈ (0, .5), we have∑
0≤`≤αt

(
t

`

)
≤ 2H(α)t .

2.1 Statistical distance and distinguishability

All distributions in this paper will take finitely many values; let supp(D) be the set of values
assumed by D with nonzero probability, and let D(u) := Pr[D = u].

For a probability distribution D and t ≥ 1, we let D⊗t denote a t-tuple of outputs sampled
independently from D. We let UK denote the uniform distribution over a multiset K.

The statistical distance of two distributions D,D′ over a shared universe of outcomes is defined
as

||D − D′||stat :=
1

2

∑
u∈supp(D)∪supp(D′)

|D(u)−D′(u)| .

14

The statistical distance between random variables is defined as the statistical distance between
their governing distributions. We will use the following familiar “distinguishability interpretation”
of the statistical distance. Suppose a value b ∈ {0, 1} is selected uniformly, unknown to us, and a
sample u ∈ U is drawn from D if b = 0, or from D′ if b = 1. We observe u, and our goal is to
correctly guess b. It is a basic fact that, for any D,D′, our maximum achievable success probability
in this “distinguishing” experiment is precisely 1

2(1 + ||D − D′||stat). Furthermore, the optimal
distinguishing algorithm may without loss of generality be a deterministic “maximum-likelihood”
rule ML(b|u): guess “b = 1” if and only if Pr[b = 1|u] ≥ 1/2. Similarly, we define a maximum-
likelihood rule ML(X|Y) for guessing any random variable X based on the observed value of any
other random variable Y : simply guess the likeliest value of X conditioned on the observation
(breaking ties arbitrarily).

The following fact follows from the distinguishability characterization of ||·||stat; it is a convenient
weakening of that principle.

Fact 2.3. If X,Y are random variables over some shared domain S, and ∆ := ||X − Y ||stat, then
there exists a subset T ⊆ S such that

Pr
x∼X

[x ∈ T] ≥ ∆ and Pr
y∼Y

[y /∈ T] ≥ ∆ .

We will also use the following easy facts:

Fact 2.4. If X,Y are random variables over some shared domain S, and R(X) is any (possibly
randomized) function taking inputs from S, then

||R(X)−R(Y)||stat ≤ ||X − Y ||stat .

Fact 2.5 ([SV03], Fact 2.3). Suppose (X1, X2, Y1, Y2) are distributions on a shared probability space
Ω, that X1 is independent of X2, and that Y1 is independent of Y2. Then,

||(X1, X2)− (Y1, Y2)||stat ≤ ||X1 − Y1||stat + ||X2 − Y2||stat .

3 Proof of Theorem 1.1

This section presents a proof that the “AND-conjecture” of Bodlaender, Downey, Fellows, and
Hermelin [BDFH09] holds true unless NP ⊆ coNP/poly. As discussed earlier, in this section we
aim for a proof that avoids information theory and the minimax theorem. In later sections we will
obtain stronger and more general results with these tools.

It will be convenient to consider mappings R : {0, 1}t×n → {0, 1}≤t′ , for fixed n, t, t′. For
A ⊆ {0, 1}n, let RA denote the distribution RA := R(U⊗tA), and for each each a ∈ {0, 1}n, define
the distribution

RA[a] := R(U⊗(j−1)
A , a,U⊗(t−j)

A) ,

where j ∼ U[t].
Define the standout factor

β(a,A) := ||RA[a]−RA||stat . (1)

15

The basic idea of our proof of Theorem 1.1 is as follows: we will show that for each n > 0,
there exists a poly(n)-size collection of poly(n)-size sets Ai ⊆ Ln,24 such that every other element
x ∈ Ln will have standout factor β(x,Ai) < 1− Ω(1) for at least one Ai. On the other hand, each
x /∈ Ln will have standout factor 1 against each Ai.

25 Thus, if a polynomial-time Verifier “quizzes”
a Prover by randomly sampling, either from RAi or from RAi [x] on each i, then Prover will be able
to reliably guess which distribution was sampled from if and only if x /∈ L. By known results, this
leads to the conclusion L ∈ coNP/poly.

Toward this end, the next lemma is our main technical tool:

Lemma 3.1. Let R : {0, 1}t×n → {0, 1}≤t′ be given. Let A ⊆ {0, 1}n be a set of size M ≥ 100t,
and suppose that we select a∗ ∼ UA. Then if t is sufficiently large and t′ < 2(t− 1), we have

E [β(a∗, A \ a∗)] ≤ 1− 10−4 . (2)

Lemma 3.1 establishes that certain distributions are (at least slightly) “stable” under modi-
fication. Related facts, with information-theoretic proofs, appear in [Raz98, KNTSZ07] (see Ap-
pendix A), and these can be readily used to obtain our lemma. A distinctive aspect of Lemma 3.1,
however, is that it establishes the closeness of the output distribution of R induced by an input to
R containing a string a∗, to one from an input distribution to R that does not support a∗. This
“apples-to-oranges” comparison is key to our application of Lemma 3.1: we will use it to build small
(poly(n)-size) subsets of Ln that serve as helpful non-uniform advice to prevent exponential -size
chunks of Ln from being accepted by Verifier. In the “minimax-free” proof being presented here,
we will do so in an iterative fashion until all of Ln is “covered” by our advice. This is reminiscent
of the incremental approach of Fortnow and Santhanam [FS11] to defining their advice, in their
proof that the OR-conjecture holds unless NP ⊆ coNP/poly.

In the more general proofs we give in later sections, Lemmas 6.2 and 6.3 will play a role analogous
(but not identical) to that of Lemma 3.1 in the current proof.

Proof of Lemma 3.1. Suppose to the contrary that E [β(a∗, A \ a∗)] > 1 − 10−4. Call a ∈ A “dis-
tinctive” if β(a,A \ a) ≥ .99; the measure β is bounded by 1, so more than a .99 fraction of a ∈ A
are distinctive.

For each a ∈ A, let T = Ta be the set given by Fact 2.3, with X := RA\a[a], Y := RA\a; then
for all distinctive a ∈ A, we have

Pr
z∼RA\a[a]

[z ∈ Ta] ≥ .99 , Pr
z∼RA\a

[z /∈ Ta] ≥ .99 . (3)

Let us index A as A = {a1, . . . , aM}. Define a random R-input x = (x1, . . . , xt) ∼ U⊗tA , and for
i ∈ [M] let Incli(x) be the indicator variable for the event that at least one of the elements xj is
equal to ai. We also define the indicator variable

Corri(x) := [Incli(x)⇔ (R(x) ∈ Tai)] = ¬[Incli(x)⊕ (R(x) ∈ Tai)] .

The idea is that R(x) ∈ Tai “suggests” that ai was included among the inputs to R, while R(x) /∈ Tai
suggests the opposite; Corri(x) checks whether the suggestion given is correct.

24(here, Ln = L ∩ {0, 1}n)
25We note that this amounts to a weakened version of the Disguising-Distribution Lemma of Section 6.

16

It is easy to see that, if we condition on [Incli(x) = 0], then R(x) is distributed as RA\ai . In this

case, the conditional probability that [Corri(x) = 1] holds is at least .99, provided ai is distinctive.
On the other hand, suppose we condition on [Incli(x) = 1]. Then the conditional probability

that ai appears twice among the coordinates of x is, by basic counting, at most t/M ≤ .01. (After
conditioning on any leftmost occurrence of ai, there are at most t− 1 indices which could contain
the next occurrence of ai; and each plays this role with probability at most 1/M .) Thus under
this conditioning, R(x) is .01-close to the distribution RA\ai [a

i], so that [Corri(x) = 1] holds with

probability at least .99− .01 = .98 if ai is distinctive.
It is also the case that

∑
i∈[M] Incli(x) ≥ .95t with probability at least .99 (for sufficiently large

t), since t/M ≤ .01. Combining all of our work, we find that for large enough t, with probability
at least .5 the following conditions hold:

1.
∑

i∈[M] Incli(x) ≥ .95t;

2.
∑

i∈[M][Incli(x) ∧ Corri(x)] ≥ .9t;

3.
∑

i∈[M] Corri(x) ≥ .9M .

Say that x is good if all of these conditions hold.
Now fix any R-output z ∈ {0, 1}≤t′ ; we are going to derive an upper bound U on the number

of good inputs x for which R(x) = z. Since every x maps to a string of length ≤ t′ under R, it will
follow that

2t
′+1 ≥ .5|A×t|

U
=

.5M t

U
, (4)

which will yield a contradiction to our settings.
First, suppose z ∈ Tai for more than t+.1M indices i ∈ [M]. Then for any x such that R(x) = z,

there are more than .1M indices for which Incli(x) = 0 yet z ∈ Tai . For such i, Corri(x) = 0. Thus
x is not good. So to have any good inputs x map to it under R, z must satisfy

|{i : z ∈ Tai}| ≤ t+ .1M . (5)

Next, suppose R(x) = z and that x = (x1, . . . , xt) contains more than .15t components xj

whose value is any element xj = ai ∈ A for which z /∈ Tai . If x is good, then by property 1 of
good inputs, among these components we can find a subcollection of more than .1t components xj

whose values are pairwise distinct. For each ai = xj in this subcollection, we have Incli(x) = 1 yet
Corri(x) = 0. Thus

∑
i∈[M][Incli(x)∧Corri(x)] < .9t, so x is not good—a contradiction. Thus any

good x for which R(x) = z can contain at most .15t components xj whose value xj = ai satisfies
z /∈ Tai .

Combining this observation with Eq. (5), there is a set A′ ⊆ A (depending on z) of size at most
t + .1M ≤ .11M , such that for any good x mapping to z under R, at least .85t components xj

satisfy xj ∈ A′. We can now bound the number of good inputs x mapping to z under R; any such
x is specifiable by:

• a set of at most .15t “exceptional” indices j ∈ [t];

• the values of xj on these exceptional indices;

• the values of xj on all other indices, which must lie in A′.

17

The number of such x is at most∑
0≤t′≤.15t

(
t

t′

)
M t′(.11M)t−t

′ ≤ (.11).85tM t ·
∑

0≤t′≤.15t

(
t

t′

)
≤ (.11).85tM t · 2H(.15)t

< 4−tM t ,

using Fact 2.2 and a calculation. Thus we may take as our bound U := 4−tM t, so that by Eq. (4),

2t
′+1 ≥ .5 · 4t = 22t−1,

which contradicts our assumption that t′ < 2(t− 1). This proves Lemma 3.1.

Proof of Theorem 1.1. We will show that the existence of the reduction R for L implies that there
exists a two-message, private-coin, interactive proof system between a polynomial-time-bounded
Verifier and a computationally unbounded Prover to prove that a given string x ∈ {0, 1}n lies in L.
The proof system will be executable using poly(n) bits of non-uniform advice on length-n inputs;
Prover will be able to make Verifier accept with probability 1 if x /∈ L, and with probability at most
1−Ω(1) if x ∈ L. It then follows from known results on interactive proof systems and non-uniform
derandomization [GS86, Adl78] that L ∈ NP/poly (see Theorem 4.11 and the proof of Theorem 4.15
for details), which gives our desired conclusion.

Using the existence of the reduction R and Lemma 3.1, we will prove the following claim:

Claim 3.2. There exist multisets A1, . . . , Aq(n)≤poly(n) ⊆ Ln, each of size bounded by some s(n) ≤
poly(n), such that, for all x ∈ {0, 1}n \

(⋃
i∈[q(n)]Ai

)
:

1. If x ∈ Ln, then β(x;Ai) = 1 for all i ∈ [q(n)];

2. If x ∈ Ln, there is an i ∈ [q(n)] for which β(x;Ai) ≤ 1− 10−5.

Assuming the truth of Claim 3.2 for the moment, we use it to prove Theorem 1.1. For inputs of
length n to our interactive proof system, we let the non-uniform advice be a description of the sets
A1, . . . , Aq(n) given by Claim 3.2, along with the value t(n). The proof system works as follows. On
input x ∈ {0, 1}n, Verifier first checks if x is in one of the sets Ai. If so, Verifier knows that x ∈ L.
Otherwise, Verifier and Prover execute the following procedure in parallel for i = 1, 2, . . . , q(n):

• Verifier privately flips an unbiased coin bi ∼ U{0,1};

• Verifier privately samples strings yi,1, . . . , yi,t(n) ∈ {0, 1}n independently from UAi ;

• If bi = 0 then Verifier sets

z = z(i) := R(yi,1, . . . , yi,t(n)) ;

otherwise (bi = 1), Verifier samples j = j(i) ∼ U[t(n)] and sets

z := R(yi,1, . . . , yi, j−1, x, yi, j+1, . . . , yi,t(n)) .

• Verifier sends z to Prover.

18

• Prover makes a guess b̃i for the value of bi.

Verifier accepts iff b̃i = bi for all i.
This protocol is clearly polynomial-time executable by Arthur given t(n) and the description of

A1, . . . , Aq(n), and these sets are of polynomial size and polynomial in number. Now let us analyze

the behavior of the protocol (assuming x /∈
⋃
iAi). First, suppose that x ∈ Ln. In this case, we

have
||RAi [x]−RAi ||stat = 1

for each i, by the first property of our sets Ai. Thus, Prover can guess bi with perfect confidence
for each i, and can cause Verifier to accept with probability 1.

Next, suppose that x ∈ Ln. Then by the second property of our sets, there exists an i∗ ∈ [q(n)]
such that ∣∣∣∣RAi∗ [x]−RAi∗

∣∣∣∣
stat
≤ 1− 10−5 .

By the distinguishability characterization of statistical distance, and the independence of the trials
i = 1, 2, . . . , q(n), this implies that the probability that Prover guesses bi∗ correctly is at most
1 − .5 · 10−5. Thus Verifier rejects with probability Ω(1). So our interactive proof has the desired
properties. As discussed earlier, this implies L ∈ NP/poly.

Proof of Claim 3.2. Fixing attention to a single value of n, let (t, t′) = (t(n), t′(n)). Assume that t
is large enough to apply Lemma 3.1. (Note that then t′ satisfies the assumptions of that lemma as
well.) Let M := 100t. We define a sequence of sets S1 ⊇ S2 ⊇ . . . ⊇ Sq(n)+1 = ∅, each contained in
Ln, and a sequence of sets A1, A2, . . . , Aq(n), with all elements of Ai drawn from Si.

Let S1 := Ln. Inductively, having defined Si, we define Ai, Si+1 as follows. If |Si| < M , we let
Ai := Si and Si+1 := ∅, and set q(n) := i, terminating the construction at this stage. Otherwise
(|Si| ≥M), we let Ai be a uniformly random size-(M − 1) subset of Si. We let

Si+1 :=
{
a ∈ Si \Ai : β(a,Ai) > 1− 10−5

}
.

The procedure clearly terminates, since |Si+1| ≤ |Si| − (M − 1) whenever Si+1 6= ∅. Let us
verify that these Ai satisfy conditions 1-2 of the Claim; we will then argue that q(n) ≤ poly(n)
(with high probability over the randomness in the construction).

First, suppose x ∈ Ln \
(⋃

i∈[q(n)]Ai

)
. Then with attention to Eq. (1), note that R always

outputs an element of L′ when x is one of the inputs to R. On the other hand, when all inputs
to R are drawn from some Ai ⊆ Si ⊆ Ln, R outputs an element of L′. Thus these two cases are
perfectly distinguishable, and β(x,Ai) = 1 for each i, as needed.

Next suppose x ∈ Ln\
(⋃

i∈[q(n)]Ai

)
. Let i ∈ [1, q(n)] be the unique index such that x ∈ Si\Si+1.

Then by the definitions, we have β(x,Ai) = ||RAi [x]−RAi ||stat ≤ 1− 10−5.
Finally, we argue that q(n) ≤ poly(n) with high probability. Note that when we generate Ai

as a uniform set of size M − 1, we may equivalently generate Ai by first generating a uniform set
Âi ⊆ Si of size M , then selecting a uniform element a∗ of Âi to discard to form Ai.

By Lemma 3.1, Ea∗ [β(a∗, Ai)] ≤ 1−10−4. Then with probability at least .9 over our randomness
at this stage, a∗ satisfies β(a∗, Ai) ≤ 1−10−5. But a∗ is distributed as a uniform element of Si \Ai.
Thus,

E[|Si+1|] ≤ .1(|Si| − |Ai|) .

Thus q(n) = O(n) with high probability. This completes the proof of Claim 3.2.

19

4 Preliminaries II

Now we collect facts and definitions that will inform our work in the rest of the paper as we prove
more general results.

4.1 Information theory background

Recall from Section 2 that H(α) denotes the binary entropy function on [0, 1]. For a finitely-
supported random variable Z, we let

H(Z) :=
∑

z ∈ supp(Z)

−Pr[Z = z] log2 Pr[Z = z]

denote the Shannon entropy of Z. Then, for two possibly-dependent random variables Y,Z,

H(Z|Y) := Ey∼Y [H(Z[Y=y])] = H((Y, Z))−H(Y)

denotes the entropy of Z conditional on Y . (Z[Y=y] denotes Z conditioned on the event [Y = y].)

Fact 4.1. For all X,Y , H((X,Y)) ≤ H(X) + H(Y) and H(X|Y) ≤ H(X), with equality holding
in each case iff X,Y are independent. Similarly, H(X|(Y,Z)) ≤ H(X|Y).

Definition 4.2 (Mutual information). The mutual information between random variables X,Y is
defined as I(X;Y) := H(X) +H(Y)−H((X,Y)).

The next fact follows easily from the definitions.

Fact 4.3. Mutual information obeys the following properties, for all random variables X,Y, Z:

1. I(X;Y) = I(Y ;X);

2. I(X; (Y,Z)) = I(X;Y) + I((X,Y);Z)− I(Y ;Z);

3. I(X; (Y, Z)) ≥ I(X;Y);

4. I(X;Z) = 0 if X,Z are independent.

Lemma 4.4. If X1, . . . , Xt are independent, then

I(Y ; (X1, . . . , Xt)) ≥
∑
j∈[t]

I(Y ;Xj) .

Our proof of this standard claim follows steps in [Nay99a, p. 33].

Proof. We have

I(Y ; (X1, . . . , Xt)) = I(Y ;Xt) + I((Y,Xt); (X1, . . . , Xt−1))− I(Xt; (X1, . . . , Xt−1))︸ ︷︷ ︸
=0, by Fact 4.3, item 4

≥ I(Y ;Xt) + I(Y ; (X1, . . . , Xt−1)) ,

where we used item 2 of Fact 4.3 in the first step, and items 1 and 3 in the second step. Iterating
in this way gives the Lemma.

20

The next definition is a useful, non-symmetric measure of difference between random variables.

Definition 4.5 (KL divergence). The (binary) Kullback-Leibler divergence, or KL divergence
between random variables X,Y , is denoted DKL(X||Y) and defined as

DKL(X||Y) :=
∑

x∈supp(X)

Pr[X = x] · log2

(
Pr[X = x]

Pr[Y = x]

)
.

The convention is that for p 6= 0, we have p log2(p/0) = +∞. So DKL may be infinite. We have
the following basic equivalence (see [CT06, Chapter 2]):

Fact 4.6. Let X,Y be any random variables; let X ′ be distributed as X and independent of Y . The
mutual information and Kullback-Leibler divergence satisfy

I(X;Y) = DKL((X,Y)||(X ′, Y)) .

Fact 4.6.1 (Chain rule). For two pairs of random variables (X,Y) and (X,Y), we have

DKL((X,Y)||(X ′, Y)) = DKL(X||X ′) + Ex∼X [DKL(Y[X=x]||Y ′[X′=x])] .

A proof of the following important result can be found in [CT06] (see Lemma 11.6.1, p. 370).

Theorem 4.7 (Pinsker’s inequality, stated for binary KL divergence). For any random variables
Z,Z ′,

DKL(Z||Z ′) ≥ 2

ln 2
· ||Z − Z ′||2stat .

In particular, DKL(Z||Z ′) is always nonnegative. When ||Z −Z ′||stat ≈ 1, the following bound,
known as Vajda’s inequality (see [FHT03, RW09]), gives better information on the divergence:

Theorem 4.8 (Vajda’s inequality, stated for binary KL divergence). For any random variables
Z,Z ′, let ∆ := ||Z − Z ′||stat. Then,

DKL(Z||Z ′) ≥ 1

ln 2

(
ln

(
1 + ∆

1−∆

)
− 2∆

1 + ∆

)
≥ 1

ln 2

(
ln

(
1

1−∆

)
− 1

)
.

4.2 Basic complexity classes and promise problems

We assume familiarity with the basic complexity classes NP and coNP and the higher levels Σp
k,Π

p
k

of the Polynomial Hierarchy PH. (For the needed background in complexity theory, see [AB09].)
In this paper we define NP, coNP, etc. as classes of languages (not promise problems).

We also assume familiarity with the general model of polynomial-size, non-uniform advice,
and with the non-uniform classes NP/poly and coNP/poly. It is considered unlikely that NP ⊆
coNP/poly. In particular, this would imply a collapse of the Polynomial Hierarchy:

Theorem 4.9 ([Yap83]). If NP ⊆ coNP/poly, then PH = Σp
3 = Πp

3.

We use pr-NP, pr-coNP, etc. to denote the analogous complexity classes for promise problems.
Recall that the complement of a promise problem (ΠY ,ΠN) is the promise problem (ΠN ,ΠY)
which swaps the “yes” and “no” cases. Also, for a class C of promise problems, we define the
class coC = {(ΠY ,ΠN) : (ΠN ,ΠY) ∈ C}. A many-to-one reduction B from the promise problem

21

Π = (ΠY ,ΠN) to Π′ = (Π′Y ,Π
′
N) is a mapping satisfying B(ΠY) ⊆ Π′Y , B(ΠN) ⊆ Π′N . This

definition applies as well to the special case where one or both of the promise problems are languages.
When we refer to NP-complete languages in this paper, we mean languages complete for NP under
deterministic, polynomial-time many-to-one reducibility.

All of the results we prove in this paper about limits of compression for languages L and
language complexity classes readily extend to the setting of compression for promise problems
(under the analogous definitions). However, for notational simplicity we will state our main results
for languages, and will only use promise problems and promise classes where doing so helps to
streamline our proofs and our result statements.

4.3 Arthur-Merlin protocols

We will make use of the model of (public-coin, two-round) Arthur-Merlin protocols. To be precise,
these are protocols P, defined by a deterministic polynomial-time predicate A(x, r, w), which op-
erate as follows. On an input x, visible to both a polynomial-time bounded verifier (Arthur) and
to a computationally-unbounded prover (Merlin):

1. Arthur generates a uniformly random string r and sends it to Merlin;

2. Merlin sends a response string w to Arthur;

3. Arthur accepts if A(x, r, w) = 1, otherwise rejects.

We require that |r|, |w| each be pre-specified lengths ≤ poly(n), where n = |x|, and that these
lengths be computable in poly(n) time given 1n.

We will need to work with promise problems having Arthur-Merlin protocols. Say that such a
protocol P defines a promise problem Π = (ΠY ,ΠN) with completeness c(n) and soundness s(n) if

1. For all x ∈ ΠY , some Merlin strategy causes Arthur to accept with probability ≥ c(n);

2. For all x ∈ ΠN , all Merlin strategies cause Arthur to accept with probability ≤ s(n).

Let pr-AMc(n),s(n) denote the class of promise problems definable by an Arthur-Merlin pro-
tocol with completeness c(n) and soundness s(n); let pr-AM := pr-AM1,1/3. Then, pr- coAM =
{(ΠY ,ΠN) : (ΠN ,ΠY) ∈ pr-AM}.

Theorem 4.10 ([FGM+89]). For any parameters s(n), c(n) ∈ (0, 1] that are polynomial-time com-
putable26 and satisfy 1

poly(n) < s(n) < c(n) − 1
poly(n) , we have pr-AMc(n),s(n) = pr-AM. If we drop

the requirement s(n) > 1
poly(n) , but keep the gap requirement, we still have pr-AMc(n),s(n) ⊆ pr-AM.

The next, well-known result follows from the non-uniform derandomization technique of Adle-
man [Adl78]:

Theorem 4.11. pr-AM ⊆ pr-NP/poly. Similarly, pr- coAM ⊆ pr- coNP/poly.

26(say, as rational values represented by their numerator and denominator)

22

4.4 Statistical zero-knowledge and the SD problem

Next we will define the statistical zero-knowledge class SZK. Actually, we will only work with
its promise-problem analogue pr- SZK.27 Informally, these are the promise problems (ΠY ,ΠN) for
which a (private-coin) interactive proof of membership in ΠY can be given, in which the verifier
learns (almost) nothing—except to become convinced that the input y indeed lies in ΠY ! The
“learns nothing” requirement is cashed out by requiring that the verifier be able to simulate in-
teractions with the intended prover strategy on any input y, such that if y ∈ ΠY , the resulting
distribution is negligibly close in statistical distance to the true distribution generated by their
interaction.

Making this definition formal is somewhat delicate. (For details, and for more information on
these and related classes, see [SV03].) Fortunately, there is a simple (but non-trivial) alternative
characterization of pr- SZK. First, given a Boolean circuit C = C(r) with k output gates, and an
ordering on these gates, let DC denote the output distribution of C on a uniformly random input
r. (This is a random variable over {0, 1}k.) We use the following problem:

Definition 4.12. For parameters 0 ≤ d ≤ D ≤ 1, define the promise problem SD≥D≤d = (ΠY ,ΠN)
as follows:

ΠY := {〈C,C ′〉 : ||DC −DC′ ||stat ≥ D} ,

ΠN := {〈C,C ′〉 : ||DC −DC′ ||stat ≤ d} .

Define SD≤d>D analogously, switching the “yes” and “no” cases. In this definition, both d = d(n)
and D = D(n) may be parameters depending on the input length n = |〈C,C ′〉|.

It is shown in [SV03] that the standard, complicated definition of pr- SZK is equivalent to the
following simpler one, which we take as our definition:

Definition 4.13. Let pr- SZK be defined as the class of promise problems for which there is a

many-to-one,28 deterministic polynomial-time reduction from Π to SD
≥2/3
≤1/3.

The constants 2/3, 1/3 in the above definition are not arbitrary; it is unknown whether we get
the same class if we replace them by .51, .49. However, we have the following result:

Theorem 4.14 (Follows from [SV03]; described as Theorem 1 in [GV11]). Suppose 0 ≤ d =
d(n) < D = D(n) ≤ 1 are polynomial-time computable, and satisfy D2 > d + 1

poly(n) . Then,

SD≥D≤d ∈ pr- SZK.

When we merely have D − d ≥ 1
poly(n) , the following weaker, standard result holds:

Theorem 4.15. Suppose 0 ≤ d = d(n) < D = D(n) ≤ 1 are polynomial-time computable and
satisfy D > d+ 1

poly(n) . Then, SD≥D≤d ∈ pr-AM.

Proof sketch. We describe a private-coin two-message protocol, in which the verifier has a source
of random bits not viewable by the prover; any such protocol can be efficiently converted into a
public-coin one [GS86].

27Often the promise class is denoted SZK.
28Recall the definition in Section 4.2.

23

Let m = m(n) ≤ poly(n) be a large value. On input 〈C,C ′〉, Verifier chooses b1, . . . , bm
uniformly at random and, for i ∈ [m], samples

zi ∼ DC if bi = 0, zi ∼ DC′ if bi = 1,

independently for each i. Prover is asked to try to guess the values b1, . . . , bm.
If m is chosen appropriately large then, using the distinguishability interpretation of statistical

distance (see Section 2.1),

1. If ||DC − DC′ ||stat > D then Prover can, with high probability, guess at least a 1
2

(
1 + D−d

2

)
fraction of the bits bi correctly;

2. If ||DC −DC′ ||stat < d then Prover cannot, except with low probability, guess this fraction of
the bis correctly.

Thus, Verifier can use this threshold as an acceptance criterion, so that the protocol has the desired
completeness-soundness gap. After converting to a public-coin protocol, we find that SD≥D≤d ∈
pr-AM2/3,1/3 = pr-AM (using Theorem 4.10).

We will also use the following important results about pr- SZK:

Theorem 4.16 ([Oka00]). pr- SZK is closed under complement. In particular, if SD≥D≤d ∈ pr- SZK

then also SD≤d≥D ∈ pr- SZK.

Theorem 4.17. pr- SZK ⊆ pr-AM ∩ pr- coAM ⊆ pr-NP/poly ∩ pr- coNP/poly.

The containment in pr- coAM is due to Fortnow [For87]; containment in pr-AM was first shown
by Aiello and H̊astad [AH91].29 The second containment in Theorem 4.17 uses Theorem 4.11.

Finally, one of our results (Theorem 7.3) will make use of the class pr-PZK of problems having
(honest-verifier) perfect zero-knowledge proofs. This is a subclass of pr-SZK. We will not define
pr-PZK (see, e.g., [SV03]); unfortunately it has no known simple characterization analogous to
Definition 4.13 for pr- SZK. We will, however, use the following result:

Theorem 4.18 ([SV03], Proposition 5.7). SD≥1
≤.5 ∈ pr-PZK.

Next we combine tools described in Sections 4.3 and 4.4, reformulating them slightly.

Theorem 4.19. Let 0 ≤ d = d(n) < D = D(n) ≤ 1 be (not necessarily computable) parameters.

1. If D > d+ 1
poly(n) , then SD≥D≤d ∈ pr-NP/poly.

2. If we have the stronger gap D2 > d+ 1
poly(n) , then SD≥D≤d is many-to-one reducible to SD

≥2/3
≤1/3 ∈

pr- SZK, in non-uniform polynomial time. Also, SD≥D≤d ∈ pr- coNP/poly.

29These works treat language classes, but the proofs extend without change to the promise-problem setting. Also,
these works analyze a so-called “honest-verifier” model of statistical zero-knowledge proofs; these were shown to have
the same expressive power as “cheating-verifier” statistical zero-knowledge proofs in [GSV98].

24

Proof sketch. For item 1, we essentially combine Theorem 4.15 with Theorem 4.11. The only
extra ingredient needed is to encode sufficiently accurate approximations of d(n), D(n) into the
non-uniform advice for length n, and to use these in defining the private-coin protocol as in the
proof of Theorem 4.15. We then convert this non-uniform protocol into an NP/poly one by the
same techniques from [GS86] (which shows how to convert private-coin to public-coin protocols),
Theorem 4.10 (to get perfect completeness), and Theorem 4.11 (to derandomize).

Similarly, for item 2, we essentially combine Theorems 4.14 and 4.17, except that at each step
we need to incorporate approximations of d(n), D(n) as (additional) non-uniform advice.

4.5 f-compression reductions

Here we define a class of compression reductions for the problems f ◦L introduced in Section 1.3.1,
in which one is given (x1, . . . , xm) and must compute f(L(x1), . . . , L(xm)). Our main focus will be
the case where f is the OR or AND function of its input bits. The problem f ◦ L will be formally
defined as a parametrized problem in Section 5.1, but it will be useful to have a specialized definition
for this problem as well; here we won’t explicitly rely on the parametrized-problem framework.

Our next definition is modeled on definitions in [BDFH09, FS11], with some differences. No-
tably, we will consider reductions where a quantitative compression guarantee is only made when
all the input strings xj are of some equal length n, and the number of input strings xj is equal to
some value t1(n) determined by n. The error bound will also be a function of n. This specialization
is mostly to reduce clutter in our work, and will not lead to loss of generality: we will be ruling
out the existence of compression reductions (under complexity-theoretic assumptions, and for all
t1(n) that are sufficiently large compared to other parameters), so ruling out even compression
algorithms that work only in narrow input-regimes will lead to stronger results.

Definition 4.20 (Probabilistic f -compression reductions). Let L,L′ be two languages, and let
f : {0, 1}∗ → {0, 1} be a Boolean function. Let t1(n), t2(n) : N+ → N+ and ξ(n) : N+ → [0, 1] be
given.

A probabilistic f -compression reduction for L, with parameters (t1(n), t2(n), ξ(n)) and tar-
get language L′, is a randomized mapping R(x1, . . . , xm) outputting a string z, such that for all
(x1, . . . , xt1(n)) ∈ {0, 1}t1(n)×n,

1. PrR[L′(z) = f
(
L(x1), . . . , L(xt1(n))

)
] ≥ 1− ξ(n);

2. |z| ≤ t2(n).

If some reduction R as above is computable in probabilistic polynomial time, we say that L is
PPT-f -compressible with parameters (t1(n), t2(n), ξ(n)). (This does not require that (t1(n), t2(n), ξ(n))
themselves be computable.)

5 Parametrized problems and parametrized compression

A central aim of our work is to better understand the limitations of efficient compressive reductions
for a variety of parametrized problems. For this we need to formally define parametrized problems
and an appropriate model of probabilistic compression for these problems. However, some readers
may be satisfied to understand our work on the limits of efficient AND- and OR-compression (as
defined in Section 4.5) for SAT and other NP-complete languages. To prove these results, including

25

Theorem 1.3 in the Introduction, we will not need the definitions of this section, and readers may
choose to skip ahead to Section 6. (We will find it convenient to prove Theorem 1.2 using the
definitions below; however, this result can also be derived directly from our Theorem 7.1, item 2
with little trouble.)

5.1 Parametrized problems

We will use the following definition:

Definition 5.1 ([DF99]). A parametrized problem is a subset of binary strings of the form 〈x, 1k〉,
for x ∈ {0, 1}∗ and k > 0 (under some natural binary encoding of such tuples).

Thus, our convention is that a parametrized problem is just a particular type of decision problem,
i.e., a language.30 However, we will use P to denote a generic parametrized problem, as opposed to
an “ordinary” language, denoted L. Sometimes, as in the Introduction, we speak of “parametrized
versions” of an ordinary decision problem L. There is no single, canonical way to go from a decision
problem to a parametrized problem; often, however, a parametrized problem can be formed from
a decision problem L in a natural way. For example, we formally define VAR-SAT, OR(SAT), and
AND(SAT) from the Introduction as follows:

Definition 5.2. Fix some natural encoding of tuples of bit-strings, and some encoding of Boolean
formulas as bit-strings. Define

1. VAR-SAT := {〈ψ, 1k〉 | ψ is satisfiable and contains ≤ k distinct variables};

2. OR(SAT) := {〈ψ1, . . . , ψt, 1
k〉 | at least one ψj is satisfiable, and each ψj is of bit-length ≤ k};

3. AND(SAT) := {〈ψ1, . . . , ψt, 1
k〉 | every ψj is satisfiable, and each ψj is of bit-length ≤ k}.

We also generalize items 2 and 3 above:

Definition 5.3. Let L ⊆ {0, 1}∗, and f : {0, 1}∗ → {0, 1}. Define

1. OR(L) := {〈(x1, . . . , xt), 1k〉 |
∨t
j=1 L(xi) = 1 and |xj | ≤ k for each j};

2. AND(L) := {〈(x1, . . . , xt), 1k〉 |
∧t
j=1 L(xi) = 1 and |xj | ≤ k for each j};

3. f ◦ L := {〈(x1, . . . , xt), 1k〉 | f(L(x1), . . . , L(xt)) = 1 and |xj | ≤ k for each j}.

5.2 OR-expressive and AND-expressive parametrized problems

Our compression lower bounds will apply to two classes of parametrized problems. As we will
explain, these classes are closely related to classes identified earlier in [HN10, BDFH09, BJK11a,
BTY11]; the classes we introduce will help to apply our techniques uniformly to these various earlier
classes.

30In this definition we are following [FS11]. In [BDFH09] and many other works, parametrized problems are defined
as a subset of {0, 1}∗ × N+ (the parameter is still presented as part of the input); they refer to the corresponding
subset of strings of form 〈x, 1k〉 as the “unparametrized version” or “classical version” of the problem.

26

Definition 5.4 (OR- and AND-expressive problems). A parametrized problem P is OR-expressive,
with parameter S(n) ≤ poly(n), if there exists an NP-complete language L and a deterministic
polynomial-time reduction B acting as follows. Whenever B receives an input of form 〈(x1, . . . , xt), 1n〉,
for any t, n ∈ N+, B outputs a tuple

(〈y1, 1k1〉, . . . , 〈ys, 1ks〉) .

We have the following properties:

1. 〈(x1, . . . , xt), 1n〉 ∈ OR(L) ⇐⇒ ∃ i ∈ [s] : 〈yi, 1ki〉 ∈ P ;

2. s ≤ S(n) (in particular, the bound is independent of t);

3. For each i ∈ [s], |yi| ≤ (t+ n)O(1) and ki ≤ nO(1).

Define AND-expressive problems identically, except we replace condition 1 above by

1’. 〈(x1, . . . , xt), 1n〉 ∈ AND(L) ⇐⇒ ∀ i ∈ [s] : 〈yi, 1ki〉 ∈ P .

The results of [BDFH09] imply that a variety of natural parametrized problems are OR- or
AND-expressive:

Theorem 5.5 (Follows from [BDFH09]). 1. OR(SAT) is OR-expressive with S(n) = 1. Also,
each of the following parametrized problems are OR-expressive with S(n) ≤ poly(n):

• k-Path, k-Cycle, k-Exact Cycle and k-Short Cheap Tour,

• k-Graph Minor Order Test and k-Bounded Treewidth Subgraph Test,

• k-Planar Graph Subgraph Test and k-Planar Graph Induced Subgraph Test,

• (k, σ)-Short Nondeterministic Turing Machine Computation,

• w-Independent Set, w-Clique and w-Dominating Set,

defined in [BDFH09].

2. AND(SAT) is AND-expressive with S(n) = 1. Also, each of the following parametrized prob-
lems are AND-expressive with S(n) ≤ poly(n):

• k-Cutwidth, k-Modified Cutwidth, and k-Search Number,

• k-Pathwidth, k-Treewidth, and k-Branchwidth,

• k-Gate Matrix Layout and k-Front Size,

• w-3-Coloring and w-3-Domatic Number,

also defined in [BDFH09].

In [BDFH09], the authors define a notion of compositionality for parametrized problems. If a
parametrized problem P is compositional and NP-complete, then it is OR-expressive, with respect
to the NP-complete language L = P . Also, if P is NP-complete and P is compositional, then P
is AND-expressive. These facts follow almost immediately from the definitions. Theorem 5.5 then
follows from the compositionality results proved in [BDFH09]. In a number of the problems above
we can actually take S(n) = 1.

27

Bodlaender, Jansen, and Kratsch [BJK11a] introduced a notion of cross-compositionality of
parametrized problems, generalizing compositionality. They showed that the evidence against
efficient compression against compositional problems given by [BDFH09, FS11] can be extended
to cross-compositional problems. Cross-compositional problems are also OR-expressive, as follows
from the definitions [BJK11a, Section 3].31 As shown in [BJK11a], this class includes interesting
parametrized versions of the Clique, Chromatic Number, and Feedback Vertex Set problems.

AND-expressiveness results are fewer in number, although this may be partly due to the fact
that, after the results of [FS11] appeared, OR-expressiveness results were preferentially sought.
Another example of an AND-expressive problem (not known to be OR-expressive) is presented
in [BJK11c].

We also have the following result, derived from the earlier work of [HN10]:

Theorem 5.6 (Follows from [HN10, FS11]). Each of the problems Clique, Dominating Set,32

Integer Programming, described in [HN10] and modeled as parametrized problems in [FS11] (with
slightly distinctive, but natural, parametrizations), are OR-expressive, with S(n) = 1.

A class of reductions between parametrized problems, called W -reductions, is used in these
works (see [FS11, Definition 2.10]); OR(SAT) is shown to W -reduce to each of the problems listed
in Theorem 5.6. This immediately implies that these problems are OR-expressive with S(n) = 1.
Also, if an OR-expressive parametrized problem P W -reduces to a second problem Q, then Q is also
OR-expressive. This technique was used in [BTY11] to derive additional hardness-of-compression
results for problems not easily captured by the compositionality framework; our new results apply
to these problems as well.

We remark that the polynomial bounds involved in the reductions of Theorems 5.5 and 5.6 are
fairly modest.

5.3 Parametrized compression

We define compression reductions for parametrized problems as follows, following [FS11] (but with
some added flexibility in our definitions):

Definition 5.7 (Probabilistic parametrized compression reductions). Let P be a parametrized
problem and L′ be a language, and say we are given two functions

c(m, k,w) : (N+)3 → N+, ξ(m, k,w) : (N+)3 → [0, 1] .

Say that a randomized mapping R : {0, 1}∗ → {0, 1}∗ is a (c, ξ)-parametrized compression reduction
for P , with target language L′, if for all inputs of form 〈y, 1k, 1w〉, R(〈y, 1k, 1w〉) outputs a string z
such that:

1. PrR[L′(z) = P (〈y, 1k〉)] ≥ 1− ξ(|y|, k, w);

2. |z| ≤ c(|y|, k, w).

31Strictly speaking, according to their definition, cross-compositional problems are OR-expressive under the minor
restriction on the reduction in Definition 5.4 that the input 〈(x1, . . . , xt), 1n〉 satisfy t ≤ 2na

, for some a > 0. This
is of no importance to us, since we will always work with the case t ≤ poly(n); we could have required this in
Definition 5.4, and could prove the same variety of hardness results.

32(these are different parametrized problems than w-Clique and w-Dominating Set in Theorem 5.5 above)

28

We call c the compression bound and ξ the error bound of the reduction; we call w the confidence
parameter.

For a parametrized problem P , if some reduction R as above is computable in probabilistic
polynomial time, we say that P is PPT-compressible with parameters (c, ξ).

We will not be exploring the full range of possible parameter values in the above definition, but
we believe it provides a reasonable framework for future work. (Only a few interesting examples
of randomized parametrized compression reductions seem to be known; see [HN10, KW12].) The
idea of a confidence parameter w, that one can use to increase the reliability of the compression at
the expense of a potentially larger output size, is natural for probabilistic compression and will be
useful in our work. (The same basic notion was used earlier in [FS11].)

Next, we define a notion of “strong” compressibility as in the Introduction, preserving flexibility
in the error bound:

Definition 5.8. Say that P is strongly PPT-compressible with error bound ξ(m, k,w), if P is
PPT-compressible (to some target language L′) with error bound ξ and some compression bound c
satisfying c(m, k, 1) ≤ kO(1), with the polynomial bound independent of m.

Using the majority-vote technique of [FS11, Proposition 5.1], we have the following easy result:

Lemma 5.9. Let a > 0. Suppose that P is strongly PPT-compressible with error bound satisfying
ξ(m, k, 1) ≤ .5 − k−O(1). Then, P is also PPT-compressible with compression bound c′(m, k,w) ≤
kO(1) · w and error bound ξ′(m, k,w) ≤ 2−w.

5.4 Connecting parametrized compression and f-compression

The next lemma shows that to give evidence against efficient compression for “expressive” parametrized
problems, it suffices to give evidence against efficient AND- and OR-compression for NP-complete
languages. This lemma is modeled on [BDFH09, Lemma 2], but with some slight complications due
to the probabilistic setting. For simplicity we only treat strong compression in the result below; our
techniques also extend to give evidence against more modest compression amounts for expressive
problems. (For more modest compression amounts, the obtainable results are weaker when the
parameter S(n) in the definition of expressiveness is fast-growing.)

Lemma 5.10. Let L be an NP-complete language.

1. Suppose that the parametrized problem P is OR-expressive with respect to L, with parameter
S(n) ≤ poly(n). If P is strongly PPT-compressible with error bound ξ(m, k, 1) ≤ .5− k−O(1),
then for any polynomially-bounded function T (n) : N+ → N+, L is PPT-OR-compressible
with parameters

t1(n) = T (n), t2(n) ≤ S(n) · nO(1), ξ′(n) ≤ 2−n .

2. Suppose P is AND-expressive with respect to L. If P is strongly PPT-compressible with
error bound ξ(m, k, 1) ≤ .5 − k−O(1), then L is PPT-AND-compressible with parameters
(t1(n), t2(n), ξ′(n)) as in item 1.

29

Proof of Lemma 5.10. We will prove item 1 above; item 2 is proved similarly. Let R be the PPT
compression reduction R for P given by Lemma 5.9. Let L′0 be the target language of R. Let B
be the reduction for P and L as in Definition 5.4.

We define an OR-compression reduction R′ for L, with target language L′ := OR(L′0), as follows.
In defining R′, we let t1(n) := T (n). On inputs x1, . . . , xT (n) ∈ {0, 1}T (n)×n, the reduction first
applies B to 〈(x1, . . . , xT (n)), 1n〉, yielding a tuple (〈y1, 1k1〉, . . . , 〈ys, 1ks〉). Next, for each i ∈ [s],
R′ applies R to the string 〈yi, 1ki , 12n〉 (here we are selecting the confidence parameter w := 2n for
R), yielding an output zi. Then R′ outputs 〈(z1, . . . , zs), 1M 〉, where M := maxi |zi|.

R′ is clearly polynomial-time computable. Now let us analyze its compression and reliability
properties. First, each yi is of bit-length |yi| ≤ (T (n) + n)O(1), and ki ≤ nO(1), by item 3 of
Definition 5.4. Then by the compression guarantee for R, each zi is of bit-length ≤ nO(1) ·w = nO(1).
Thus for the output-size bound of R′ we may take t2(n) ≤ S(n) · nO(1), as needed.

Now we bound the error of R′. Using the correctness property of B (Definition 5.4, item 1),
the equivalence

〈(z1, . . . , zs), 1M 〉 ∈ OR(L′0) ⇐⇒
T (n)∨
j=1

[xj ∈ L]

holds as long as each application of R, namely R(〈yi, 1ki〉) for i ∈ [s], is successful. By a union
bound, this occurs with probability ≥ 1− S(n) · 2−2n, which is larger than 1− 2−n for sufficiently
large n. (For smaller n, R′ may solve its input problem directly by brute force.) Thus for the error
bound ξ′(n) for R′, we may take ξ′(n) ≤ 2−n.

6 Technical lemmas

In this section we present our main technical lemmas. Our final goal in this section will be the
“Disguising-Distribution Lemma,” our key technical tool for our main results.

6.1 Distributional stability

Here we define the notion of “distributional stability” described in Section 1.4.2.

Definition 6.1. Let U be some finite universe, and let T, n ≥ 1 be integers. Given a possibly-
randomized mapping F (x1, . . . , xT) : {0, 1}T×n → U , and a collection D1, . . . ,DT of mutually
independent distributions over {0, 1}n, for j ∈ [T] let

γj := E
y∼Dj

[
||F (D1, . . . ,Dj−1, y,Dj+1, . . . ,Dt)− F (D1, . . . ,Dt)||stat

]
.

For δ ∈ [0, 1], say that F is δ-distributionally stable (or δ-DS) with respect to D1, . . . ,DT if

1

T

T∑
j=1

γj ≤ δ .

Lemma 6.2. Let R(x1, . . . , xt) : {0, 1}t×n → {0, 1}≤t′ be any possibly-randomized mapping, for
any n, t, t′ ∈ N+. R is δ-distributionally stable with respect to any independent input distributions
D1, . . . ,Dt, where we may take either of the following two bounds:

30

1. δ :=
√

ln 2
2 ·

t′+1
t ;

2. δ := 1− 2−
t′
t
−3.

Our proof of Lemma 6.2, item 1 essentially follows suggestions by Ashwin Nayak and Salil
Vadhan; item 2 is a small modification using Vajda’s inequality. When t′/t = 1−Ω(1), the bound
given in item 1 above is within constant factors of the bound from our original distributional
stability lemma, Lemma B.4. On the other hand, when t′/t = 1−α ≈ 1, the bound in Lemma 6.2,
item 1 is better (i.e., smaller) by a Θ

(
log 1

α

)
factor. We don’t know how to prove a version of item

2 above with the methods of Lemma B.4; this alternative bound is important for our work. In an
earlier draft we used a more complicated workaround to prove the results obtainable from item 2.

Proof of Lemma 6.2. Define independent random variables Xj ∼ Dj over {0, 1}n, for j ∈ [t]. Let
R := R(X1, . . . , Xt).

The entropy of R is at most log2

(∣∣∣{0, 1}≤t′∣∣∣) < t′+1. Thus, the mutual information I((X1, . . . , Xt); R)

is less than t′ + 1. By the independence of the Xjs, Lemma 4.4 gives∑
j∈[t]

I(Xj ; R) < t′ + 1 . (6)

By Fact 4.6,
I(Xj ; R) = DKL

(
(Xj ,R) || (Y j ,R)

)
, (7)

where Y j ∼ Dj is independent of R. By Theorem 4.7,

DKL

(
(Xj ,R) || (Y j ,R)

)
≥ 2

ln 2
· ||(Xj ,R)− (Y j ,R)||2stat

=
2

ln 2
· Exj∼Dj

[∣∣∣∣R (D1, . . . ,Dj−1, x
j ,Dj+1, . . . ,Dt

)
−R (D1, . . . ,Dt)

∣∣∣∣
stat

]2
,

where the equality follows from the distinguishability interpretation of statistical distance. Using
this, we find1

t

∑
j∈[t]

Exj∼Dj

[∣∣∣∣R (D1, . . . ,Dj−1, x
j ,Dj+1, . . . ,Dt

)
−R (D1, . . . ,Dt)

∣∣∣∣
stat

]2

≤ 1

t

∑
j∈[t]

Exj∼Dj

[∣∣∣∣R (D1, . . . ,Dj−1, x
j ,Dj+1, . . . ,Dt

)
−R (D1, . . . ,Dt)

∣∣∣∣
stat

]2
(by Jensen’s inequality)

<
ln 2

2
· t
′ + 1

t
.

Thus, R is
√

ln 2
2 ·

t′+1
t -distributionally stable with respect to D1, . . . ,Dt. This proves item 1 of the

Lemma.

31

For item 2, we apply the alternative bound, Vajda’s inequality (Theorem 4.8), to each j ∈ [t],
to find

DKL

(
(Xj ,R) || (Y j ,R)

)
≥ 1

ln 2

(
ln

(
1

1− ||(Xj ,R)− (Y j ,R)||stat

)
− 1

)
=

1

ln 2

(
ln

(
1

εj

)
− 1

)
,

where we define

εj := 1− Exj∼Dj

[∣∣∣∣R (D1, . . . ,Dj−1, x
j ,Dj+1, . . . ,Dt

)
−R (D1, . . . ,Dt)

∣∣∣∣
stat

]
and note that εj > 0. Averaging over j ∈ [t] and applying Eqs. (6) and (7),

t′ + 1

t
≥ 1

t

∑
j∈[t]

1

ln 2

(
ln

(
1

εj

)
− 1

)
,

i.e.,
1

t

∑
j∈[t]

ln

(
1

εj

)
≤ (ln 2)(t′ + 1)

t
+ 1 .

The function f(x) = ln(1/x) has second derivative x−2 > 0 for x > 0, and so Jensen’s inequality
gives

ln

(
1

1
t

∑
j∈[t] εj

)
≤ (ln 2)(t′ + 1)

t
+ 1 .

This implies
1

t

∑
j∈[t]

εj ≥
(
e

(ln 2)(t′+1)
t

+1

)−1

≥ 2−
t′
t
−3 ,

which proves item 2.

6.2 Sparsified distributional stability

Here we prove a technical lemma showing that if a mapping F is distributionally stable with respect
to i.i.d. inputs, then F also obeys a slightly different stability property, in which we replace an
input distribution D with a “sparsified” version of D.

Lemma 6.3. Let U be a finite set, and let F (x1, . . . , xT) : {0, 1}T×n → U be given. Suppose F
is δ-distributionally stable with respect to input distribution D⊗T , for every distribution D over
{0, 1}n.

Fix some distribution D over {0, 1}n, and let x1, . . . , xd be independently sampled from D. Let
k∗ ∼ U[d].

Let D̂ denote the distribution defined by sampling uniformly from the multiset
{xk}k 6=k∗. (This distribution is itself a random variable, determined by x1, . . . , xd and by k∗.)
Define

βj := E
k∗,x1,...,xd

[∣∣∣∣∣∣F (D̂⊗(j−1), xk
∗
, D̂⊗(T−j)

)
− F

(
D̂⊗T

)∣∣∣∣∣∣
stat

]
,

32

where all the D̂s are mutually independent (for fixed values of x1, . . . , xd and k∗). Then,

1

T

t∑
j=1

βj ≤ δ + 2T/d .

Proof. Let D̃ denote the distribution, determined by x1, . . . , xd, that samples uniformly from the
multiset {xk}k∈[d]. By an easy calculation, for any values of x1, . . . , xd and k∗ we can bound∣∣∣∣∣∣D̃ − D̂∣∣∣∣∣∣

stat
≤ 1/d .

It follows that ∣∣∣∣∣∣F (D̃⊗T)− F (D̂⊗T)∣∣∣∣∣∣
stat
≤
∣∣∣∣∣∣D̃⊗T − D̂⊗T ∣∣∣∣∣∣

stat
≤ T/d ,

where in the last step we used Fact 2.5 and the fact that for any assignment to x1, . . . , xd and to
k∗, the T copies of D̃ used are mutually independent, as are the copies of D̂.

By identical reasoning, for any assignment to x1, . . . , xd and to k∗, and for any index j ∈ [T]
we have ∣∣∣∣∣∣F (D̃⊗(j−1), xk

∗
, D̃⊗(T−j)

)
− F

(
D̂⊗(j−1), xk

∗
, D̂⊗(T−j)

)∣∣∣∣∣∣
stat
≤ (T − 1)/d .

Using the triangle inequality for || · ||stat, for any values x1, . . . , xd, k∗ and any index j ∈ [T] we
always have∣∣∣∣∣∣F (D̂⊗(j−1), xk

∗
, D̂⊗(T−j)

)
− F

(
D̂⊗T

)∣∣∣∣∣∣
stat

≤
∣∣∣∣∣∣F (D̂⊗(j−1), xk

∗
, D̂⊗(T−j)

)
− F

(
D̃⊗(j−1), xk

∗
, D̃⊗(T−j)

)∣∣∣∣∣∣
stat

+
∣∣∣∣∣∣F (D̃⊗(j−1), xk

∗
, D̃⊗(T−j)

)
− F

(
D̃⊗T

)∣∣∣∣∣∣
stat

+
∣∣∣∣∣∣F (D̃⊗T)− F (D̂⊗T)∣∣∣∣∣∣

stat

≤
∣∣∣∣∣∣F (D̃⊗(j−1), xk

∗
, D̃⊗(T−j)

)
− F

(
D̃⊗T

)∣∣∣∣∣∣
stat

+ 2T/d . (8)

Now suppose we fix any values x1, . . . , xd, leaving k∗ undetermined. The value k∗ is uniform on
[d], so that xk

∗
is distributed exactly according to D̃. Under our conditioning, let

γj = γj

(
{xk}k∈[d]

)
:= E

k∗

[∣∣∣∣∣∣F (D̃⊗(j−1), xk
∗
, D̃⊗(T−j)

)
− F

(
D̃⊗T

)∣∣∣∣∣∣
stat

]
.

By our original assumption, F is δ-DS with respect to input distribution D̃⊗T . Thus, for any
x1, . . . , xd we have

1

t

t∑
j=1

γj ≤ δ . (9)

Now γj is itself a random variable, determined by x1, . . . , xd, and from Eq. (8) we have

βj ≤ E[γj] + 2T/d .

33

Using linearity of expectation, we find that

1

t

t∑
j=1

βj ≤ δ + 2T/d .

6.3 Building disguising distributions

In the next lemmas we show how the distributional stability of a mapping F can be used to obtain
a “disguising distribution” for F . In Lemma 6.6 we will apply this to give disguising distributions
for any sufficiently compressive mapping R.

Recall that UK denotes the uniform distribution over a multiset K.

Lemma 6.4. Suppose F (x1, . . . , xT) : {0, 1}T×n → U obeys the assumption of Lemma 6.3: namely,
F is δ-distributionally stable with respect to input distribution D⊗T , for every distribution D over
{0, 1}n.

Let S ⊆ {0, 1}n, and fix some value d > 0. There exists a distribution K over size-d multisets
K ⊆ S, such that for every y ∈ S, the following holds:

E
K∼K,j∗∼U[T]

[∣∣∣∣∣∣F (U⊗(j∗−1)
K , y,U⊗(T−j∗)

K

)
− F

(
U⊗TK

)∣∣∣∣∣∣
stat

]
≤ δ + 2T/(d+ 1) .

(Here the copies of UK are to be mutually independent for fixed K, although the set K ∼ K used is
the same for each copy.)

Proof. Consider the following two-player, simultaneous-move, zero-sum game:

• Player 1: chooses a size-d multiset K ⊆ S.

• Player 2: chooses a string y ∈ S.

• Payoff: Player 2 receives a payoff equal to

E
j∗∼U[T]

[∣∣∣∣∣∣F (U⊗(j∗−1)
K , y,U⊗(T−j∗)

K

)
− F

(
U⊗TK

)∣∣∣∣∣∣
stat

]
.

(Note that this payoff is a determinate value, given (K, y).)

Consider any randomized strategy by Player 2, specified by a distribution y ∼ Y over S. In
response, let KY be the randomized Player-1 strategy that chooses a size-d multiset K of elements
sampled independently from Y .

To bound the expected payoff under the strategy-pair (KY , Y), note that we can equivalently
generate (K, y) ∼ (KY , Y) as follows. First, sample x1, . . . , xd+1 independently from Y . Sample
k∗ ∼ U[d+1], set y := xk

∗
, and let

K := {x1, . . . , xk
∗−1, xk

∗+1, . . . , xd+1} .

It is easily verified that (K, y) ∼ (KY , Y) as desired. Then Lemma 6.3, applied to our initial
distributional-stability assumption on F , informs us that

E
j∗∼U[t],K,y

[∣∣∣∣∣∣F (U⊗(j∗−1)
K , y,U⊗(T−j∗)

K

)
− F

(
U⊗TK

)∣∣∣∣∣∣
stat

]
≤ δ + 2T/(d+ 1) .

34

Thus Player 2’s expected payoff against KY is at most δ + 2T/(d+ 1).
As Y was arbitrary, the minimax theorem tells us that there exists a distribution K over Player-

1 moves that forces Player 2’s expected payoff under every strategy to be at most δ + 2T/(d+ 1).
The result follows.

Lemma 6.5. Let U be a finite set, and let F (x1, . . . , xT) : {0, 1}T×n → U be given. Suppose F
is δ-distributionally stable with respect to input distribution D⊗T , for every distribution D over
{0, 1}n.

Let S ⊆ {0, 1}n, and fix d > 0. Given any ε > 0, let s := d(.5 ln 2)n/ε2e. Then there exists
a collection K1, . . . ,Ks of size-d multisets contained in S, such that for every y ∈ S the following
holds:

E
a∼U[s],j∗∼U[t]

[∣∣∣∣∣∣F (U⊗(j∗−1)
Ka

, y,U⊗(T−j∗)
Ka

)
− F

(
U⊗TKa

)∣∣∣∣∣∣
stat

]
≤ δ + 2T/(d+ 1) + ε .

Proof. This is an immediate application (to the game in Lemma 6.4) of a general result due to
Lipton and Young [LY94, Theorem 2], showing that all two-player, zero-sum games have sparsely-
supported, nearly-optimal player strategies. (Essentially the same result was proved independently
by Althöfer [Alt94], and a more general result for many-player, non-zero-sum games was proved
later in [LMM03].) The support size required in the Lipton-Young-Althöfer result depends loga-
rithmically on the number of pure strategies available to the player we are opposing; in our case,
Player 2 has a choice of |S| ≤ 2n strings y, so we get s = O(n/ε2). In their proof technique applied
to our setting, the K1, . . . ,Ks are obtained by sampling independently from the distribution K
given by Lemma 6.4, giving a suitable choice of K1, . . . ,Ks with nonzero probability.

Lemma 6.6 (Disguising-Distribution Lemma). Let R(x1, . . . , xt) : {0, 1}t×n → {0, 1}≤t′ be
any possibly-randomized mapping, for t, t′ ∈ N+. Let S ⊆ {0, 1}n, and fix d > 0. Given any ε > 0,
let s := d(.5 ln 2)n/ε2e. Let

δ̂ := min

{√
ln 2

2
· t
′ + 1

t
, 1− 2−

t′
t
−3

}
.

Then there exists a collection K1, . . . ,Ks of size-d multisets contained in S, such that for every
y ∈ S, we have

E
a∼U[s],j∗∼U[t]

[∣∣∣∣∣∣R(U⊗(j∗−1)
Ka

, y, U⊗(t−j∗)
Ka

)
− R

(
U⊗tKa

)∣∣∣∣∣∣
stat

]
≤ δ̂ + 2t/(d+ 1) + ε .

Proof. This follows immediately from the combination of Lemmas 6.2 and 6.5, applied to F := R
(and with T := t).

7 Limits to efficient (classical) compression

In this section, we show that a sufficiently high-quality PPT-OR-compression reduction for any
language L implies that L ∈ NP/poly. We also show that above a higher threshold of quality, such
a compression reduction implies that L has non-uniform, statistical zero-knowledge proofs, which in

35

particular implies L ∈ coNP/poly as well. We will then apply these results to give evidence against
efficient probabilistic compression for AND(SAT) and OR(SAT), as described in the Introduction,
and for other parametrized problems with either of the two “expressiveness” properties described in
Section 5.2. We will also present our result on f -compression reductions for more general combining
functions f , and our result extending the work of Dell and Van Melkebeek [DvM10] on problems
with polynomial kernelizations.

7.1 Complexity upper bounds from OR-compression schemes

Theorem 7.1. Let L be any language. Suppose t1(n), t2(n) : N+ → N+ are (not necessarily
computable) functions. Suppose that there exists a PPT-OR-compression reduction R(x1, . . . , xt) :
{0, 1}t1(n)×n → {0, 1}≤t2(n) for L with parameters t1(n), t2(n), error bound ξ(n) < .5, and some
target language L′. Let

δ̂ := min

{√
ln 2

2
· t2(n) + 1

t1(n)
, 1− 2

− t2(n)
t1(n)

−3

}
.

1. If for some constant c > 0 we have

1− 2ξ(n)− δ̂ ≥ 1

nc
, (10)

then L ∈ NP/poly.

2. If for some c > 0 we have the (stronger) bound

(1− 2ξ(n))2 − δ̂ ≥ 1

nc
, (11)

then there is a many-to-one reduction from L to a promise problem in pr- SZK. The reduction
is computable in non-uniform polynomial time; in particular, this implies L ∈ NP/poly ∩
coNP/poly.

We remark that, using the technique of [FS11, Proposition 5.1], one can reduce the error bound
ξ(n) of an OR-compression scheme, at the cost of increasing the output-length bound t2(n). (The
idea is to perform multiple, independent applications of R to the fixed input tuple (x1, . . . , xt1(n))
and to concatenate the results in the output, using a majority-vote rule to define a new target
language.) With this amplification, we can in some cases apply Theorem 7.1 where its assump-
tions do not hold for the original scheme—or, we may obtain the stronger conclusion in item 2 of
Theorem 7.1 in cases where only item 1 would apply directly.

Proof of Theorem 7.1. We will use the same basic reduction to prove items 1 and 2. First, with
non-uniformity it is easy to handle length-n inputs whenever Ln = {0, 1}n, so let us assume from
this point on that Ln is nonempty.

Using R, we define a deterministic, non-uniform polynomial-time reduction R that, on input
y ∈ {0, 1}n, builds a description of two circuits C,C ′. The aim is that ||DC − DC′ ||stat should be
large if y ∈ L, and small if y /∈ L. R works as follows:

36

• Non-uniform advice for length n: a description of the value t1(n), and the multisets
K1, . . . ,Ks ⊆ Ln given by Lemma 6.5 with

(t, t′) := (t1(n), t2(n)), S := Ln, d := d8t1(n) · nce , ε :=
1

4nc
.

(Here c > 0 is as in Eq. (10) or Eq. (11), according to which item of the Theorem we are
proving.) Note that d and the value s given by Lemma 6.5 are both ≤ poly(n) under these
settings, so our advice is of polynomial length.

• On input y ∈ {0, 1}n: let R output descriptions 〈C,C ′〉 of the following two randomized
circuits:

– Circuit C: samples a ∼ U[s], then samples

x = (x1, . . . , xt1(n)) ∼ U⊗t1(n)
Ka

,

and outputs z := R(x).

– Circuit C ′: samples values

a ∼ U[s], j∗ ∼ U[t1(n)] ;

then, samples

x ∼
(
U⊗(j∗−1)
Ka

, y, U⊗(t1(n)−j∗)
Ka

)
,

and outputs z := R(x).

Claim 7.2. The following holds:

1. If y ∈ L, then
||DC −DC′ ||stat ≥ D(n) := 1− 2ξ(n) ;

2. If y /∈ L, then

||DC −DC′ ||stat ≤ d(n) := δ̂ +
1

2nc
. (12)

We defer the proof of Claim 7.2, and use it to prove the two items of Theorem 7.1.
For item 1 of Theorem 7.1, if Eq. (10) holds (for sufficiently large n), then D(n)− d(n) ≥ 1

nc .
Now D(n), d(n) were parametrized in terms of n = |y|, but the gap D(n)− d(n) is also at least

inverse-polynomial in the length N ≤ poly(n) of the output description 〈C,C ′〉. Thus our reduction
R reduces any instance y of the decision problem for L, to an equivalent instance R(y) = 〈C,C ′〉
of the promise problem SD

≥D′(N)
≤d′(N) , with different parameters D′(N), d′(N) still satisfying the gap

condition D′ − d′ ≥ 1
poly(N) .

By item 1 of Theorem 4.19, SD≥D
′

≤d′ ∈ pr-NP/poly. Let (A, {aN}N>0) be an nondeterminis-

tic, non-uniform polynomial-time algorithm and advice family solving SD≥D
′

≤d′ . Then by applying
(A, {aN}) to R(y), we obtain a nondeterministic, non-uniform polynomial-time algorithm for solv-
ing L. This shows L ∈ NP/poly, proving item 1 of the Theorem.

Next, for item 2 of Theorem 7.1, if Eq. (11) holds for sufficiently large n, then D(n)2−d(n) ≥ 1
nc .

Arguing as in the previous case, we exhibit a nonuniform polynomial-time reduction from L to

37

SD≥D
′

≤d′ , where this time D′(N)2 − d′(N) ≥ 1
poly(N) . This problem lies in pr- SZK, by item 2 of

Theorem 4.19. This also yields L ∈ NP/poly∩ coNP/poly, and completes the proof of Theorem 7.1.

Proof of Claim 7.2. (1.) First, suppose y ∈ L. We will use the distinguishing interpretation of
statistical distance (see Section 2.1) to argue that ||DC − DC′ ||stat is large. Suppose an unbiased
coin b ∼ U{0,1} is flipped, unseen by us, and we receive a sample z ∼ DC if b = 0, or z ∼ DC′ if

b = 1. Consider the distinguisher that outputs the guess b̃ := 0 if z ∈ L′, or b̃ := 1 if z ∈ L′.
We lower-bound the success probability Pr[b̃ = b] as follows. Say we condition on [b = 0], so that

z ∼ DC . The distributions UKa are supported on Ln, so in the execution of C we get x ∈
(
Ln
)t1(n)

.

Then it follows from the OR-compression property of R for L that Pr[z ∈ L′] ≥ 1 − ξ(n). On the
other hand, suppose we condition on [b = 1], so that z ∼ DC′ . In an execution of C ′ the input tuple
x contains y ∈ Ln; thus, by the OR-compression property of R, we have Pr[z ∈ L′] ≥ 1 − ξ(n).
So regardless of the value of b, our distinguisher succeeds with probability ≥ 1 − ξ(n). Thus,
1− ξ(n) ≤ 1

2(1 + ||DC −DC′ ||stat). This proves item 1.

(2.) Now suppose y /∈ L; we must upper-bound ||DC − DC′ ||stat. Consider the distinguishing
experiment between C and C ′ as in item 1. If we regard the random variables a and j∗ (the
latter used only by C ′) to be part of the joint probability space of both algorithms (noting that
a is identically distributed in the two circuits), then revealing the values a, j∗ along with z to the
distinguisher cannot decrease the distinguisher’s maximum achievable success probability. Now
conditioned on revealed values a, j∗, the maximum achievable success probability in the modified
distinguishing experiment is

1

2

(
1 +

∣∣∣∣∣∣R(U⊗t1(n)
Ka

)
−R

(
U⊗(j∗−1)
Ka

, y, U⊗(t1(n)−j∗)
Ka

)∣∣∣∣∣∣
stat

)
,

from which we conclude that

||DC −DC′ ||stat ≤ E
a∼U[s],j∗∼U[t1(n)]

[∣∣∣∣∣∣R(U⊗t1(n)
Ka

)
−R

(
U⊗(j∗−1)
Ka

, y, U⊗(t1(n)−j∗)
Ka

)∣∣∣∣∣∣
stat

]
. (13)

By our choice of K1, . . . ,Ks and Lemma 6.6, the right-hand side of Eq. (13) is at most

δ̂ + 2t1(n)/(d+ 1) + ε < δ̂ + 2 · 1

4nc
, (14)

by our settings to d, ε. This proves Eq. (12) and completes the proof of Claim 7.2.

The next result gives a useful consequence of Theorem 7.1 for the case where the compression
bound t2(n) is on the order of t1(n) · log2(t1(n)), and also points out a strengthening of the result’s
conclusion in the case of error-free compression.

Theorem 7.3. Let L be any language. Suppose t1(n), t2(n) : N+ → N+ satisfy t2(n) ≤ C ·
t1(n) log t1(n) and t1(n) ≤ nC

′
, for some C,C ′ > 0. Suppose that R is a PPT-OR-compression

reduction R(x1, . . . , xt1(n)) : {0, 1}t1(n)×n → {0, 1}≤t2(n) for L with parameters t1(n), t2(n), error
bound ξ(n) < .5, and some target language L′.

1. If ξ(n) < n−C·C
′
/32, then there is a non-uniform polynomial-time many-to-one reduction

from L to a promise problem in pr- SZK.

38

2. Suppose further that R is error-free (i.e., ξ(n) = 0). Then, there is a non-uniform polynomial-
time many-to-one reduction from L to a promise problem in pr-PZK.

Proof. (1.) We bound the quantity δ̂ from Theorem 7.1:

δ̂ ≤ 1− 2
− t2(n)

t1(n)
−3

≤ 1− 2−C log2(t1(n))/8

≤ 1− t1(n)−C/8

≤ 1− n−C·C′/8 .

If ξ(n) < n−C·C
′
/32, then the left-hand quantity in Eq. (11) is ≥ 1

poly(n) , and the desired conclusion
then follows from Theorem 7.1, item 2.

(2.) Looking into the proof of Theorem 7.1, item 2, we see that it gives a non-uniform

polynomial-time many-to-one reduction from L to SD
≥D′(N)
≤d′(N) , where in the current case, using

Claim 7.2, we have

D′(N) = 1, d′(N) ≤ 1− 1

poly(N)
.

This problem can in turn be uniformly many-to-one reduced to SD≥1
≤.5 by mapping a circuit-

distribution pair 〈C,C ′〉 to 〈C⊗T , (C ′)⊗T 〉, where C⊗T is the circuit that outputs T samples drawn
independently from C, and where T ≤ poly(n) is chosen suitably large. Finally, SD≥1

≤.5 ∈ pr-PZK
by Theorem 4.18.

7.2 Application to AND- and OR-compression of NP-complete languages

Throughout this section, for parameters t1(n), t2(n), we will use the shorthand

δ̂ := min

{√
ln 2

2
· t2(n) + 1

t1(n)
, 1− 2

− t2(n)
t1(n)

−3

}
Here is our first main result giving evidence against efficient AND-compression for NP-complete
languages:

Theorem 7.4. Suppose that for some NP-complete language L, any target language L′, and an
error bound ξ(n) < .5, L has a PPT-AND-compression reduction R with target language L′, with
parameters t1(n), t2(n) : N+ → N+ and error bound ξ(n) < .5.

1. If

1− 2ξ(n)− δ̂ ≥ 1

poly(n)
, (15)

then NP ⊆ coNP/poly and PH = Σp
3 = Πp

3.

2. If we have the bound

(1− 2ξ(n))2 − δ̂ ≥ 1

poly(n)
, (16)

then L (and every other language in NP) is many-to-one reducible in non-uniform polynomial
time to a problem in pr-SZK, and NP ⊆ coNP/poly.

39

3. The conclusion of item 2 holds if t2(n) ≤ C · t1(n) log(t1(n))) and if ξ(n) is a sufficiently
small inverse-polynomial function of n (determined by t1 and the constant C).

Item 3 above establishes the assertion of Theorem 1.3 from the Introduction for the case of
AND-compression.

Proof of Theorem 7.4. (1.) The reduction R is also a PPT-OR-compression for L, with target
language L′, and with the same parameters.

If Eq. (15) holds in case 1, we apply item 1 of Theorem 7.1 to L, concluding that L ∈ NP/poly,
i.e., L ∈ coNP/poly. The consequence for PH is from Theorem 4.9.

(2.) Similarly, if Eq. (16) holds in case 2, we apply item 2 of of Theorem 7.1 to L, giving a
non-uniform many-to-one reduction from L to a problem Π = (ΠY ,ΠN) ∈ pr- SZK. This is also a
reduction from L to (ΠN ,ΠY), which by Theorem 4.14 also lies in pr- SZK. The extension to other
languages in NP follows from the NP-completeness of L.

(3.) In this case we apply Theorem 7.3, item 1 to L.

The next theorem gives evidence for the infeasability of efficient OR-compression for NP-
complete languages.

Theorem 7.5. 1. Suppose that for some NP-complete language L, any target language L′, and
an error bound ξ(n) < .5, L has a PPT-OR-compression reduction R with target language L′,
with parameters t1(n), t2(n) : N+ → N+ and error bound ξ(n) < .5. If

(1− 2ξ(n))2 − δ̂ ≥ 1

poly(n)
, (17)

then L (and every other language in NP) is reducible in non-uniform polynomial time to a
problem in pr-SZK, and NP ⊆ coNP/poly.

2. The conclusion of item 1 holds if t2(n) ≤ C · t1(n) log(t1(n))) and if ξ(n) is a sufficiently
small inverse-polynomial function of n (determined by t1 and C).

Item 2 completes the proof of Theorem 1.3 from the Introduction.

Proof of Theorem 7.5. (1.) This time, if Eq. (17) holds, we just apply item 2 of Theorem 7.1 to L
itself.

(2.) In this case we apply item 1 of Theorem 7.3 to L.

7.3 On f-compression for combining functions of high block sensitivity

As discussed in Section 1.3.1, our results on AND-compression, combined with ideas of [FS11,
Section 7], directly imply some limitations to efficient strong f -compression of SAT or other NP-
complete languages, for many other combining functions f . In this section we give the approach
suggested by [FS11], that applies to non-monotone functions and functions with high block sen-
sitivity (defined below). In Section 9 we describe a new approach that provides evidence against
strong f -compression of SAT, for many functions f with low block sensitivity.

40

Definition 7.5.1 (Sensitive blocks and block sensitivity [Nis91]). Let fm be a Boolean function on
m variables. For y ∈ {0, 1}m and a subset B ⊆ [m] of input variables (called a “block”), we let y(B)

denote the string obtained by starting with y and flipping all bits in B. Say that B is sensitive for
f on input y if f(y(B)) 6= f(y). We say that B is a minimal sensitive block (with respect to f, y) if
it contains no proper subset which is sensitive.

Define the block sensitivity of fm with respect to input y ∈ {0, 1}m, as the maximal size k of
any collection B1, . . . , Bk of pairwise-disjoint blocks which are each sensitive for f on y. Define the
block sensitivity of fm as bs(fm) := maxy bs(fm; y).

We also use the classical notion of Boolean certificate complexity.

Definition 7.5.2 (Certificate complexity [VW85]). Let fm be a Boolean function on m variables.
For y ∈ {0, 1}m with f(y) = b ∈ {0, 1}, and a subset W ⊆ [m] of input variables, we say that W is
a certificate for y if every y′ agreeing with y on the variables in W also satisfies f(y′) = b.

Define the certificate complexity of fm with respect to y, denoted C(fm; y), as the minimal size
of any certificate W for y. Define the certificate complexity of fm as C(fm) := maxy C(fm; y).

Fact 7.5.4 ([Nis91]). For any f , bs(f) ≤ C(f) ≤ bs(f)2. For monotone f , we have bs(f) = C(f).

See [BdW02] for more information on these complexity measures. The following class of Boolean
functions will be of interest to us:

Definition 7.5.3. Let δ ∈ (0, 1]. Say that f : {0, 1}∗ → {0, 1} is δ-amenable if for each input
length m ≥ 1, at least one of the following conditions hold on the restriction fm of f to inputs of
length m:

1. fm is non-monotone;

2. bs(fm) ≥ mδ.

We prove:

Theorem 7.6. Suppose f : {0, 1}∗ → {0, 1} is δ-amenable for some δ > 0, and suppose that R is
a PPT f -compression reduction for an NP-complete language L with a target language L′ ∈ NP,
where for some integer c > 0, R has the parameters

t1(n) = nd2c/δe , t2(n) ≤ nc , ξ(n) ≤ .01 .

Then NP ⊆ coNP/poly.

As will be clear from the proof, the assumption L′ ∈ NP is only really needed to handle the case
where f is non-monotone but has low sensitivity. If item 2 in the definition of δ-amenability holds
for all m, then L′ can be arbitrary. Most natural functions are Ω(1)-amenable, including all (non-
constant) graph properties and other transitively invariant functions, as well as functions defined
by read-once De Morgan formulas. There are, however, monotone Boolean functions depending on
all inputs for which bs(fm) = O(logm), as described in Section 9.1.

Proof sketch. The f -compression reduction R maps inputs (x1, . . . , xt) ∈ {0, 1}t1(n)×n to an output
z of length at most nc; for any (x1, . . . , xt), the equality

L′(z) = f(L(x1), . . . , L(xt))

41

holds with probability at least .99 over the randomness in R.
Fix an input length n. We may assume that Ln, Ln are both nonempty, otherwise it is trivial to

give a small circuit to define Ln. Let N := t1(n). If f is non-monotone on inputs of size N , say with
respect to the first coordinate, then we can non-uniformly fix some N−1 strings x2, . . . , xN ∈ {0, 1}n
such that for x ∈ {0, 1}n, with probability at least .99 over z = R(x, x2, . . . , xN) we have

L′(z) = ¬L(x) .

This gives a (probabilistic, many-to-one) reduction from the decision problem for Ln to the decision
problem for L′ ∈ NP. By the non-uniform derandomization technique of Theorem 4.11, it follows
that Ln has a nondeterministic circuit of size ≤ poly(n).

Otherwise, f is monotone for length-N inputs. Then by the amenability property of f , there is
a y ∈ {0, 1}N and a collection B1, . . . , BK ⊆ [N] of disjoint sensitive blocks for f on input y, with
K ≥ N δ. Without loss of generality each B` may be chosen as a minimal sensitive block.

Assume first that fN (y) = 0, so that (by the monotonicity of f and the minimality of the sets B`)
we have yi = 0 for each i ∈

⋃
`∈[K]B`. Suppose we are given input strings (u1, . . . , uK) ∈ {0, 1}K×n.

We will use these to define an N -tuple (x1, . . . , xN) ∈ {0, 1}N×n to feed to R. Let x+, x− be any
two fixed elements of Ln, Ln respectively. For i ∈ B`, let xi := u`. For i ∈ [N] \

⋃
j∈[K]Bj , let us

fix the strings xi := x+ if yi = 1, otherwise xi := x−.
Observe that if there is an ` ∈ [K] for which u` ∈ L, then the vector (L(x1), . . . , L(xN)) domi-

nates the vector yBj , so that f(L(x1), . . . , L(xN)) = 1; otherwise, we have (L(x1), . . . , L(xN)) = y,
and f(L(x1), . . . , L(xN)) = 0. The “f -preserving” guarantee of R then implies that

L′(z) =
∨
`∈[K]

L(u`)

with probability at least .99 over z = R(x1, x2, . . . , xN). Thus for this fixed input length n, we
obtain an OR-compression reduction from L to target L′ with t′1(n) ≥ N δ ≥ n2c, t′2(n) ≤ nc,
and ξ′(n) ≤ .01. Similarly, if f(y) = 1, then we can obtain an AND-compression reduction for
strings of input-length n, with parameters as above. In either case, we can apply the techniques of
Section 7.2 to get a non-uniform proof system for membership in Ln. Combining our work for each
input length, we find that L ∈ NP/poly. As L is NP-complete, the Theorem is proved.

Say that a function f : {0, 1}∗ → {0, 1} is δ-anti-amenable if on each input length m, it is
monotone, non-constant, and satisfies bs(fm) ≤ mδ. Using a simple idea we will show that for such
functions, and for any language L, there is a non-trivial polynomial-time f -compression reduction
for L, if we allow ourselves to use nondeterminism in the compression reduction. We establish this
fact in the hope that it may prove useful in future work. We use the following definition (a closely
related notion is studied in [DvM10]):

Definition 7.6.1 (Nondeterministic f -compression reductions). Let L,L′ be two languages, and let
f : {0, 1}∗ → {0, 1} be a Boolean function. Let t1(n), t2(n), `(n) : N+ → N+ each be ≤ poly(n) and
computable in time poly(n). A nondeterministic f -compression reduction for L, with parameters
(t1(n), t2(n), `(n)) and target language L′, is defined by a polynomial-time (deterministic) mapping
R(x1, . . . , xm, y) outputting a string z, such that for all (x1, . . . , xt1(n)) ∈ {0, 1}t1(n)×n,

1. f
(
L(x1), . . . , L(xt1(n))

)
= 1 ⇐⇒ ∃y ∈ {0, 1}`(n) : z = R(x1, . . . , xt1(n), y) ∈ L′;

42

2. For all settings to y ∈ {0, 1}`(n) we have |z| ≤ t2(n).

Theorem 7.6.2. Suppose f : {0, 1}∗ → {0, 1} is δ-anti-amenable for some δ < 1. Then for any
integer C > 0, there exists a nondeterministic f -compression reduction R for L, where the mapping
R has parameters

t1(n) = nC , t2(n) ≤ O(nδC+1) , `(n) = t1(n) .

Proof. For (x1, . . . , xt1(n), y) ∈ {0, 1}t1(n)×n+`(n), let R(x1, . . . , xt1(n), y) simply output the string

z := 〈(xi1 , i1), . . . , (xip , ip), 1
n〉 ,

where 1 ≤ i1 < i2 < . . . < ip ≤ t1(n) are the first bnδCc indices i ∈ t1(n) for which yi = 1. (If there
are fewer than bnδCc such indices, R simply outputs the entire list as above.) This R is clearly
polynomial-time computable, and the output length is of size O(nδC+1).

Next we define our target language. For m > 0 and S ⊆ [m], define yS ∈ {0, 1}m by ySi := 1
iff i ∈ S. Say that S is 1-forcing for fm if fm(yS) = 1. (fm is monotone for each m, so this also
implies that fm(yS

′
) = 1 for any S′ ⊇ S.) Define

L′ :=
{
〈(xi1 , i1), . . . , (xip , ip), 1

n〉 : xi1 , . . . , xip are each in Ln and {i1, . . . , ip} is 1-forcing for fnC

}
.

Now we prove correctness. First suppose f
(
L(x1), . . . , L(xt1(n))

)
= 0. Then for any set S ⊆ [m]

of indices which are 1-forcing, we must have L(xi) = 0 for some i ∈ S, so the output of R cannot

lie in L′ for any y ∈ {0, 1}nC
. On the other hand, suppose f

(
L(x1), . . . , L(xt1(n))

)
= 1. Let

S0 ⊆ [t1(n)] be the set of indices i for which xi ∈ L. As fm is monotone, the block sensitivity
bs(fm) is equal to the certificate complexity C(fm). Thus the latter measure is at most mδ. So for
our setting to x1, . . . , xt(n), there exists a subset S ⊆ S0, with |S| ≤ (nC)δ, which is 1-forcing for
fnC . If S = {i1, . . . , ip}, we have 〈(xi1 , i1), . . . , (xip , ip), 1

n〉 ∈ L′, and this string can be output by
R if we take y := yS . This proves correctness according to our definition.

7.4 Limits to strong compression for parametrized problems

Next, we use Theorem 7.1 to give evidence against strong compressibility for “expressive” parametrized
problems. The result we give below is a simple-to-state, representative example; the quantitative
settings studied here are not the only interesting ones our techniques can handle.

Theorem 7.7. Say that P is OR-expressive or AND-expressive, e.g., one of the problems listed
in Theorems 5.5 and 5.6. Suppose additionally that P is strongly PPT-compressible33 with error
bound ξ(m, k,w) satisfying ξ(m, k, 1) ≤ .5−k−O(1) (independent of m), i.e., with success probability
≥ .5 + k−O(1). Then, every language in NP is many-to-one reducible in non-uniform polynomial
time to a problem in pr- SZK (and NP ⊆ coNP/poly).

Theorem 1.2 from the Introduction follows, by considering the special cases P = OR(SAT) and
P = AND(SAT).

33(as in Definition 5.8)

43

Proof of Theorem 7.7. Suppose first that P is OR-expressive, with respect to the NP-complete
language L and with some parameter S(n) ≤ poly(n). We apply item 1 of Lemma 5.10 to L
and the assumed strong compression reduction for P . Using some function T (n) ≤ poly(n) to be
determined, and with w(n) := 1, we obtain a PPT-OR-compression for L with parameters

t1(n) = T (n), t2(n) ≤ S(n) · nO(1), ξ′(n) ≤ 2−n .

(Here, the bound on t2 is independent of the choice of T (n).) We evaluate

(1− 2ξ′(n))2 −

√
ln 2

2
· t2(n) + 1

t1(n)
≥ (1− 4 · 2−n)−

√
ln 2

2
· S(n) · nO(1) + 1

T (n)
,

for some a > 0 (using S(n) ≤ poly(n)). The expression above can be made greater than .5 for
large n by choosing a sufficiently fast-growing T (n) ≤ poly(n). Under such a setting, Eq (17)
holds for (t1(n), t2(n), ξ′(n)). We can then apply the first assertion of Theorem 7.5, item 1 to our
PPT-OR-compression for L, which yields the desired conclusion.

The case where P is AND-expressive is handled analogously; in this case we apply Lemma 5.10,
item 2 and the first assertion of Theorem 7.4, item 2.

We can also apply Theorem 7.3 to show that, if any NP-complete language L is PPT-OR-
compressible by an error-free reduction with t2(n) = O(t1(n) log(t1(n))), then NP has non-uniform
perfect zero-knowledge proofs. From a deterministic AND-compression reduction for L of this type,
we get non-uniform perfect zero-knowledge proofs for coNP. (Note that unlike pr- SZK, pr-PZK is
not known to be closed under complement.)

7.5 Application to problems with polynomial kernelizations

In this section we prove new limits to efficient compression for the Satisfiability problem on d-
CNFs, and for some problems on graphs and hypergraphs, partially extending results of Dell and
Van Melkebeek [DvM10] to handle two-sided error. First, we need some background.

Definition 7.8 (Hypergraphs, vertex covers, and cliques). For any integer d ≥ 2, a d-uniform
hypergraph, or d-hypergraph, is a set H of size-d subsets of a vertex set V = [N]. A vertex cover
in a d-uniform hypergraph H is a subset of vertices that intersects all hyperedges in H. A subset
V ′ ⊆ V is a clique in H if every size-d subset of V ′ is a member of H.

Clearly H has a vertex cover of size s exactly if the “complement” hypergraph H := {e : |e| =
d ∧ e /∈ H} contains a clique of size N − s.

Definition 7.9. Define the parametrized problems

d-Vertex Cover := {〈(H, s), 1N 〉 : H is a d-hypergraph on [N] and contains a vertex cover of size s} ,

d-Clique := {〈(H, s), 1N 〉 : H is a d-hypergraph on [N] and contains a clique of size s} .34

Also define the parametrized d-CNF Satisfiability problem

d-SATpar := {〈ψ, 1N 〉 : ψ is a satisfiable d-CNF on N variables} .
34This is a different parametrized problem than the two clique-based problems mentioned in Section 5.2.

44

We will prove new limits on efficient compression for these problems with the help of the
following powerful, ingenious reduction of Dell and Van Melkebeek.

Theorem 7.10 ([DvM10], Lemma 2). Fix d ≥ 2, and let T (n) : N+ → N+ be polynomially bounded.
There is a deterministic polynomial-time OR-compression reduction35 R∗ for L = 3-SAT,36 with
target language L′ = d-Clique. For the first parameter we have t1(n) = T (n). The d-Clique instance
〈(H, s), 1N 〉 output by R∗ satisfies

N = O
(
n ·max

(
n, T (n)1/d+o(1)

))
.

By straightforwardly combining Theorem 7.10 with our Theorem 7.4, we will prove the following
theorem:

Theorem 7.11. Let d ≥ 2, ε > 0 be given. There is a β = β(d, ε) > 0 for which the following
holds. Suppose that d-Clique has a polynomial-time compression reduction with output-size bound
O(Nd−ε) and success probability .5 + N−β; that is (in the terms of Definition 5.7), suppose that
d-Clique is PPT-compressible with parameters c, ξ satisfying

c(M,N, 1) ≤ O(Nd−ε), ξ(M,N, 1) ≤ .5−N−β ,

with any target language L′.
Then, every language in NP is many-to-one reducible in non-uniform polynomial time to a

problem in pr- SZK (and NP ⊆ coNP/poly).
The same result holds if we replace d-Clique with d-Vertex Cover or d-SATpar.

Theorem 7.11 gives a version of [DvM10, Theorems 1 and 2] that applies to probabilistic reduc-
tions with two-sided error. However, our result does not apply to the more general setting of oracle
communication protocols, to which those earlier results do apply (for co-nondeterministic protocols,
and protocols avoiding false negatives).

Dell and Van Melkebeek use their techniques to show compression lower bounds for several
other interesting graph problems (including the Feedback Vertex Set, Bounded-Degree Deletion,
and Non-Planar Deletion problems) via reductions from 2-Vertex Cover [DvM10, Section 5.2].
Using our results and the reductions in [DvM10], one can also obtain similarly strong compression
lower bounds for these problems for the two-sided error setting.

Proof of Theorem 7.11. We already described a simple reduction (in both directions) between the
d-Vertex Cover and d-Clique problems that preserves the parameter N . Also, an instance of d-
Vertex Cover on N vertices is efficiently reducible to a d-SAT instance over O(N) variables [DvM10,
Lemma 5]. Thus, it suffices to prove the result for d-Clique.

Let R be the compression reduction assumed to exist for d-Clique, with the value β > 0 to be
determined later. Let C > d be a large integer value, also to be determined.

We will define an OR-compression reduction R′ for L = 3-SAT and target language L′ from
our assumption; this will allow us to apply Theorem 7.5. R′ works as follows. We let t1(n) := nC .
On input formulas ψ1, . . . , ψnC , each of bit-length n, the reduction first computes 〈(H, s), 1N 〉 :=
R∗(ψ1, . . . , ψnC), where R∗ is as in Theorem 7.10. Next, R′ outputs the value z := R(〈(H, s), 1N 〉).

35(as in Definition 4.20)
36Here 3-SAT is just the usual language {〈ψ〉 : ψ is a satisfiable 3-CNF}.

45

R′ is clearly polynomial-time computable. To analyze R′, fix length-n formulas ψ1, . . . , ψnC ,
and let

b :=
nC∨
j=1

[ψj ∈ 3-SAT] .

By the OR-compression property of the deterministic mapping R∗, we have

[b = 1] ⇐⇒ 〈(H, s), 1N 〉 ∈ d-Clique .

Then by the assumed reliability guarantee of R,

Pr[L′(z) = b] ≥ .5 +N−β

≥ .5 +
(
O
(
n ·max

(
n, nC/d+o(1)

)))−β
≥ .5 + n−β(1+C/d)+o(1) .

Thus the error bound ξ(n) of our reduction R′ is at most .5 − n−β(1+C/d)+o(1). Also, by the
compression guarantee of R, the output z satisfies

|z| ≤ O(Nd−ε)

≤ O

((
n1+C/d+o(1)

)d−ε)
≤ O

(
nC−1+o(1)

)
,

with the last step valid provided we take C > d(d+ 1)/ε. Thus as an output-size bound for R′, we
may take t2(n) = O

(
nC−1+o(1)

)
. We evaluate

(1− 2ξ(n))2 −

√
ln 2

2
· t2(n) + 1

t1(n)
≥ 4n−2(β(1+C/d)−o(1)) −O(n−.5+o(1))

≥ n−Ω(1) ,

provided we take β < .25(1+C/d)−1. Thus under these settings, Eq. (17) holds. Then Theorem 7.5,
item 1 gives the desired conclusion, since L = 3-SAT is NP-complete.

8 Extension to quantum compression

In this section we will show that our results on OR- and AND-compression have analogues for
the model in which the compression scheme is allowed to be a quantum algorithm, outputting a
quantum state.

We assume familiarity with the basics of quantum computing and quantum information (for
the needed background, consult [NC00]). However, readers without this background should be able
to follow the overall structure of the argument if they are willing to regard “qubits,” “quantum
operations” “quantum algorithms,” and “quantum measurements” as certain types of black-box
objects, and accept some known facts about them. In particular, a “mixed state on m qubits” is a
“quantum superposition” over classical m-bit strings. Let

MSm

46

denote the collection of m-qubit mixed states. (MSm can be identified with the set of 2m-by-2m,
trace-1, positive-semidefinite complex matrices.)

A “quantum operation” is a certain type of mapping OP : MSm → MSm′ , for some m,m′ > 0.
(The operations allowed by quantum physics are the completely positive, trace-preserving (CPTP)
maps; these are a subset of the linear transformations mapping MSm ⊂ Cm×m into MSm′ ⊂
Cm′×m′ .) We let

OPm,m′

denote the valid quantum operations from m-qubit into m′-qubit states.
“Quantum measurements” are measurements performed on quantum states to yield information

about these states; in the quantum setting, measurements are inherently probabilistic, and alter
the states being measured. See [NC00, Chapter 2] for a formal definition. Quantum states turn
out to inherit some of the information-theoretic limitations of their classical counterparts; this fact
will be the basis for our results on quantum compression.

8.1 Trace distance and distinguishability of quantum states

The trace distance is a metric on mixed quantum states from a shared state space [NC00]; we
denote the trace distance between ρ, ρ′ ∈ MSm by ||ρ − ρ′||tr ∈ [0, 1]. Formally, treating ρ, ρ′ as
matrices,

||ρ− ρ′||tr :=
1

2
Tr
[√

(ρ− ρ′)2
]
.

This distance is intimately related to the distinguishability of quantum states. Suppose ρ, ρ′ are
two known states, and we are sent one or the other, each with equal probability (depending on
the outcome of an unbiased coin flip b ∈ {0, 1}). We want to guess b, by applying some series of
quantum operations and measurements. For any ρ, ρ′, it is known [NC00, Theorem 9.1] that our
success probability at this task is maximized by using a single binary measurement,37 depending
on ρ, ρ′, and that our maximum achievable success probability equals

1

2

(
1 + ||ρ− ρ′||tr

)
.

A probability distribution over mixed states is again a mixed state. Thus for a distribution
D over a finite universe U and a mapping R : U → MSm, R(D) defines a quantum state. We
use the following standard claim concerning such states, which follows from the distinguishability
characterization of || · ||tr:

Claim 8.1. For any distributions D,D′ over a shared finite universe U , and any mapping R : U →
MSm, we have

||R(D)−R(D′)||tr ≤ ||D − D′||stat .

Similarly, for any valid quantum operation OP ∈ OPm,m′ and states ρ, ρ′ ∈ MSm, we have

||OP (ρ)−OP (ρ′)||tr ≤ ||ρ− ρ′||tr .
37(i.e., a measurement with two possible outcomes)

47

8.2 Quantum f-compression

The following notion of quantum compression is modeled on Definition 4.20. The definition is made
slightly more complicated by the fact that we no longer have the notion of a “target language”
for our reduction; instead, we will require that the answer to our original instance of the decision
problem f ◦L be recoverable by some quantum measurement performed on the output state. (This
measurement need not be efficiently performable, however.)

Definition 8.2 (Quantum f -compression reductions). Let L be a language, and let f : {0, 1}∗ →
{0, 1} be a Boolean function. Let t1(n), t2(n) : N+ → N+ and ξ(n) : N+ → [0, 1] be given.

A quantum f -compression reduction for L, with parameters t1(n), t2(n), ξ(n), is a mapping
R(x1, . . . , xm) outputting a mixed state ρ. There must also exist a family of (not necessarily
efficiently-performable) binary quantum measurements {Mn}n>0 on t2(n)-qubit states. We require
the following properties: for all (x1, . . . , xt1(n)) ∈ {0, 1}t1(n)×n,

1. The state ρ = R(x1, . . . , xt1(n)) is on t2(n) qubits;

2. We have
Pr
[
Mn(ρ) = f

(
L(x1), . . . , L(xt1(n))

)]
≥ 1− ξ(n) .

If some reduction R as above is computable in quantum polynomial time, we say that L is
QPT-f -compressible with parameters (t1(n), t2(n), ξ(n)).

8.3 Quantum complexity classes

We will be using the class QIP[k] of languages definable by k-message, quantum interative proof
systems [Wat03]. Our treatment of these proof systems will be informal, since all the technical
properties we need are summarized in theorems from prior work (for details see [Wat03, Wat02]).
These are proof systems in which a computationally-unbounded Prover exchanges quantum mes-
sages with a quantum polynomial-time Verifier; a total of k = k(n) messages are exchanged. Verifier
sends the first message if k is even, or Prover if k is odd, and the parties alternate thereafter. We
take QIP :=

⋃
c>0 QIP[nc].

It was shown in [Wat03, KW00] that for any 3 ≤ k(n) ≤ poly(n), PSPACE ⊆ QIP[k(n)] = QIP[3];
the latter class was recently shown to equal PSPACE [JJUW11]. Importantly for us, however,
the class QIP[2] is not known to contain even coNP. The power of 3-message quantum proof
systems is in contrast to the classical (private-coin) interactive-proof classes IP[k(n)], where for
any constant k ≥ 2, IP[k] = IP[2] = AM, and the latter class is believed to be much weaker than
IP[poly(n)] = PSPACE.

In what follows, we will actually find it more convenient to work with the promise-problem
classes pr-QIP[k].38 The results we’ve summarized carry over to the promise setting as well.

A model of quantum statistical zero-knowledge proofs was proposed by Watrous [Wat02], and
used to define the class QSZK of promise problems having polynomial-time proof systems of this
type.39 We will use pr-QSZK to denote this class. Watrous showed in [Wat02] that Sahai and
Vadhan’s “statistical distance characterization” of pr- SZK, embodied in Definition 4.13, has a

38This is to avoid having to define non-uniform versions of these classes, just as we avoided defining non-uniform
versions of AM and SZK.

39Watrous’s original model was of honest-verifier quantum statistical zero-knowledge proof systems; he later showed
that these proof systems are equivalent in power to “cheating-verifier” ones [Wat09].

48

quantum analogue. First, we need a promise problem involving trace distance. For a quantum
circuit C with an m-qubit output register, let ρC denote the output state of C on some fixed input
state (say, the all-zeros state). We consider circuits built from a fixed, finite “universal” gate-set
(see [NC00, Chapter 4]).

Definition 8.3. For parameters 0 ≤ d ≤ D ≤ 1, define the promise problem TD≥D≤d = (ΠY ,ΠN)
as follows:

ΠY := {〈C,C ′〉 : ||ρC − ρC′ ||tr ≥ D} ,

ΠN := {〈C,C ′〉 : ||ρC − ρC′ ||tr ≤ d} .

In this definition, both d = d(n) and D = D(n) may be parameters depending on the input length
n = |〈C,C ′〉|. (Here, the input description is a classical bit-string.)

Then, appealing to the result of [Wat02], we can use the following definition.

Definition 8.4. Let pr-QSZK be defined as the class of promise problems for which there is a

many-to-one (classical, deterministic) polynomial-time reduction from Π to TD
≥2/3
≤1/3.

Theorem 8.5 ([Wat02]). pr-QSZK is closed under complement.

Theorem 8.6 ([Wat02]). pr-QSZK ⊆ pr-QIP[2] ∩ pr- coQIP[2].

For upper bounds on the complexity of TD
≥D(n)
≤d(n) , we have the following two results, analogous

to Theorems 4.15 and 4.14.

Theorem 8.7 (Follows from [Wat02]). Suppose 0 ≤ d = d(n) < D = D(n) ≤ 1 are polynomial-time
computable, and satisfy D > d+ 1

poly(n) . Then, TD≥D≤d ∈ pr-QIP[2].

If we drop the requirement that d,D be computable, but keep the gap requirement, then TD≥D≤d
is many-to-one reducible in non-uniform (classical, deterministic) polynomial time to a problem in
pr-QIP[2].

Theorem 8.7 follows from a “distinguishing protocol” analogous to that in Theorem 4.15.40

Unlike the classical case, there is no known “non-uniform derandomization” result known for QIP[2]
(or for other quantum classes). However, we do have a satisfying analogue of Theorem 4.14:

Theorem 8.8 (Follows from [Wat02]). Suppose 0 ≤ d = d(n) < D = D(n) ≤ 1 are polynomial-time
computable, and satisfy D2 > d+ 1

poly(n) . Then, TD≥D≤d ∈ pr-QSZK.

If we drop the requirement that d,D be computable, but keep the gap requirement, then TD≥D≤d
is many-to-one reducible in non-uniform (classical, deterministic) polynomial time to a problem in
pr-QSZK.

40In [Wat02] only the case where D, d are constants is studied, but the result extends easily to when they are
functions of n. Also, the second case, where we merely have the gap requirement, is not explicitly analyzed, but
follows by a trivial modification of the proof of [Wat02, Theorem 4].

49

8.4 Quantum distributional stability

We will use a quantum analogue of the distributional stability property:

Definition 8.9. Let t, t′, n ∈ N+. Given a mapping F : {0, 1}t×n → MSt′, and a collection
D1, . . . ,DT of mutually independent distributions over {0, 1}n, for j ∈ [t] let

γj := E
y∼Dj

[
||F (D1, . . . ,Dj−1, y,Dj+1, . . . ,Dt)− F (D1, . . . ,Dt)||tr

]
.

For δ ∈ [0, 1], say that F is δ-quantumly-distributionally stable (or δ-QDS) with respect to D1, . . . ,Dt
if

1

t

t∑
j=1

γj ≤ δ .

The next lemma is analogous to Lemma 6.2.

Lemma 8.10. Let t, t′, n ∈ N+. Let R : {0, 1}t×n → MSt′ be given.
Then, R is δ-QDS with respect to any input distributions D1, . . . ,Dt, where we may take either

of the bounds

1. δ :=
√

ln 2
2 ·

t′

t ;

2. δ := 1− 2−
t′
t
−2.

The slight improvement in the bounds comes from the fact that R outputs exactly t′ qubits.
The proof of Lemma 8.10 is very similar to that of Lemma 6.2, and is described in Appendix C.

8.5 Building quantum disguising distributions

Next we prove quantum analogues of our Disguising-Distribution Lemmas. First, we have the
following analogue of Lemma 6.3:

Lemma 8.11. Let t, t′ ∈ N+, and let F (x1, . . . , xT) : {0, 1}T×n → MSt′ be given. Suppose F is
δ-QDS with respect to input distribution D⊗T , for every distribution D over {0, 1}n.

Fix some distribution D over {0, 1}n, and let x1, . . . , xd be independently sampled from D. Let
k∗ ∼ U[d]. Let D̂ denote the distribution defined by sampling uniformly from the multiset {xk}k 6=k∗.
Define

βj := E
k∗,x1,...,xd

[∣∣∣∣∣∣R(D̂⊗(j−1), xk
∗
, D̂⊗(T−j)

)
− R

(
D̂⊗T

)∣∣∣∣∣∣
tr

]
,

where all the D̂s are to be mutually independent (for fixed values of x1, . . . , xk and k∗). Then,

1

T

t∑
j=1

βj ≤ δ + 2T/d .

Proof. The proof is identical to that of Lemma 6.3, except that we replace statistical distance with
trace distance41 and appeal to Claim 8.1 to argue that applying R does not increase trace distance
between states.

41(where appropriate—the input distributions we manipulate still are to be compared in statistical distance)

50

After establishing a quantum analogue of Lemma 6.4, we have:

Lemma 8.12. Suppose F obeys the assumptions of Lemma 8.11. Let S ⊆ {0, 1}n, and fix d > 0.
Given any ε > 0, let s := d(.5 ln 2)n/ε2e. Then there exists a collection K1, . . . ,Ks of size-d
multisets contained in S, such that for every y ∈ S the following holds:

E
a∼U[s],j∗∼U[t]

[∣∣∣∣∣∣F (U⊗(j∗−1)
Ka

, y,U⊗(T−j∗)
Ka

)
− F

(
U⊗TKa

)∣∣∣∣∣∣
tr

]
≤ δ + 2T/(d+ 1) + ε .

The proof is identical to that of Lemma 6.5, but again replacing statistical distance with trace
distance. Then, by a proof analogous to that of Lemma 6.6, we obtain:

Lemma 8.13 (Quantum Disguising-Distribution Lemma). Let R(x1, . . . , xt) : {0, 1}t×n →
MSt′ be any possibly-randomized mapping, where n, t, t′ ∈ N+. Let S ⊆ {0, 1}n, and fix d > 0.
Given any ε > 0, let s := d(.5 ln 2)n/ε2e. Let

δ̂ := min

{√
ln 2

2
· t
′

t
, 1− 2−

t′
t
−2

}
.

Then there exists a collection K1, . . . ,Ks of size-d multisets contained in S, such that for every
y ∈ S, we have

E
a∼U[s],j∗∼U[t]

[∣∣∣∣∣∣R(U⊗(j∗−1)
Ka

, y, U⊗(t−j∗)
Ka

)
− R

(
U⊗tKa

)∣∣∣∣∣∣
tr

]
≤ δ̂ + 2t/(d+ 1) + ε .

8.6 Complexity upper bounds from quantum compression schemes

Now we are ready to prove a quantum analogue of Theorem 7.1.

Theorem 8.14. Let L be any language. Suppose there is a QPT-OR-compression reduction
R(x1, . . . , xt) : {0, 1}t1(n)×n → MSt2(n) for L with (not necessarily computable) parameters t1(n), t2(n) :
N+ → N+, and with error bound ξ(n) < .5. Let

δ̂ := min

{√
ln 2

2
· t
′

t
, 1− 2−

t′
t
−2

}
.

1. If for some c > 0 we have

(1− 2ξ(n))− δ̂ ≥ 1

nc
, (18)

then there is a non-uniform (classical, deterministic) polynomial-time many-to-one reduction
from L to a problem in pr-QIP[2].

2. If we have the stronger bound

(1− 2ξ(n))2 − δ̂ ≥ 1

nc
, (19)

then L has a non-uniform (classical, deterministic) polynomial-time many-to-one reduction
to a problem in pr-QSZK.

51

Proof. The proof is closely analogous to that of Theorem 7.1, except that our non-uniform re-
duction, on input y, outputs a description 〈C,C ′〉 of a pair of quantum circuits. If y ∈ L, then
||ρC−ρC′ ||tr ≥ D(n) := 1−2ξ(n); while if y /∈ L, we have ||ρC−ρC′ ||tr ≤ d(n) := δ̂+ 1

2nc . Applying
Theorems 8.7 and 8.8 gives us the complexity upper bounds in items 1 and 2.

Using Theorem 8.14, we can prove quantum versions of Theorems 7.4 and 7.5, giving evi-
dence against efficient quantum OR- and AND-compression for NP-complete languages, under the
assumption that such languages are not non-uniformly reducible to problems in pr-QIP[2], or al-
ternatively, in pr-QSZK. A quantum analogue of Theorem 7.3, item 1 can be proved. We can also
give an analogue of Theorem 7.7 regarding quantum compression for “expressive” parametrized
problems. All of these quantum results treat compression reductions where the output state is of
size determined by the various input parameters.

9 On f-compression for combining functions of low block sensi-
tivity

In this section we define a class of Boolean functions called “eligible” functions; these are functions
with low block sensitivity and obeying a few extra properties. In Theorem 9.2 we rule out strong
f -compression for SAT for eligible combining functions f , under the uniform hardness assumption
NP * coAM. Note that this is a milder assumption than NP * coNP/poly. As we have already given
evidence (in Section 7.3) against strong f -compression for f with high block sensitivity, our results
in the present section are complementary. Some functions f are not covered by either approach,
but the techniques we have cover the “natural” examples of which we are aware.

In Section 9.6 we also use our result on eligible functions to rule out strong compression for
each of OR(SAT) and AND(SAT) assuming NP * coAM. We are able to show this even though
OR, AND have maximal block sensitivity and are not themselves eligible. The connection stems
from the fact that a monotone, eligible function f has monotone CNF and DNF representations
of small clause width. We show that if these representations are efficiently computable and have
not too many clauses (two conditions which hold for a suitable choice of f), then any hypothetical
OR-compression or AND-compression reduction for SAT could be used to build an f -compression
reduction for SAT.

In our analysis of instance compression for eligible combining functions, we will use the information-
theoretic techniques behind the “distributional stability” lemma (Lemma 6.2). However, we manage
to avoid using the Disguising-Distribution Lemma, whose applications seem to require non-uniform
advice. A key additional source of inspiration is a work of Sivakumar [Siv99], who improved upon
results of several earlier works [BKS95, Ogi95, AA94] and answered an open question of [BFT97].
Let c > 0 be any integer constant. Sivakumar showed the following: Suppose we assume that there
is a polynomial algorithm which, given h(n) := dc log2 ne SAT instances 〈ψ1〉, . . . , 〈ψh(n)〉 each of
length n, reliably eliminates at least one possible value for the vector(

χSAT(〈ψ1〉), . . . , χSAT(〈ψh(n)〉)
)

(20)

describing the satisfiability status of each ψi. (Such an algorithm is an example of a so-called
membership comparison algorithm for SAT.) Then, there is also a polynomial-time algorithm to
satisfy any uniquely-satisfiable Boolean formula (and so, by the Valiant-Vazirani reduction [VV86],

52

RP = NP). A key ingredient in Sivakumar’s work is an algorithm of Ar, Lipton, Rubinfeld, and
Sudan [ALRS98] for reconstructing polynomial functions from noisy data—an algorithm which
played a major role in the development of the theory of list-decodable codes (see [Sud96, GS99]).

For comparison’s sake, let us describe our approach to the study of f -compression reductions
for SAT for eligible f ; the points of similarity to [Siv99] will be apparent. We first prove42 that
for any eligible f , a strong f -compression reduction for SAT can be used to eliminate not just one
value, but most possible values, for the characteristic vector in Eq. (20), given 〈ψ1〉, . . . , 〈ψh(n)〉
as above. More precisely, we eliminate all but 2α·h(n) candidates for some small α > 0.43 There
are two caveats: (i) we assume the promise that either none of the ψis are satisfiable, or exactly
half of them are; (ii) our procedure to eliminate possible values requires a round of interaction
with an untrusted Prover. To build such a protocol, we use the idea (which featured prominently
in previous sections) of asking Prover to distinguish between various pairs of distributions. We
use information-theoretic tools to show that most of the pairs of distributions we construct are
statistically close, and we make a careful study of eligible functions to show that certain pairs of
distributions are far apart. We also crucially use the fact that SZK is closed under complement
(Theorem 4.16), to convert “close pairs” into “far pairs” and vice versa.

Next, we show that given any such protocol P to eliminate most possible values for Eq. (20),
we can use P to define a one-round interactive protocol to convince a skeptical Verifier that a
single formula ψ is unsatisfiable—under the promise that ψ has at most one satisfying assignment.
We prove this by an application of the reconstruction algorithm of [ALRS98]. Finally, by an easy
application of the “witness isolation” technique of Valiant and Vazirani [VV86], we conclude that
NP ⊆ coAM.

A small technical note is in order before we proceed. An input to SAT is a bitstring, interpreted
as a description of some Boolean formula. Throughout this section, we will assume that we are
working with a sufficiently flexible descriptive system. Namely, we assume that given a length-n
description 〈ψ〉 ∈ {0, 1}n of a Boolean formula ψ, and given any sufficiently large m (say, m ≥ 2n),
one can a produce a “padded” description 〈ψ〉′ of ψ with bitlength exactly m. Moreover, we
assume this padding can be performed in poly(m+ n) computational steps. This mild assumption
is made for the sake of compatibility with our definition of f -compression reductions, which (to
keep notation simple) always expect multiple input strings (x1, . . . , xt1(n)) of a common length n.

In this section, for t > 0 and B ⊆ [t], we let 1B ∈ {0, 1}t denote the characteristic vector of B.

9.1 Eligible functions and their properties

We now define a class of Boolean functions called eligible functions. The definition of this class is not
especially intuitive, but it identifies a general class of combining functions f for which the techniques
of this section can rule out strong f -compression for SAT. First, recall the definition of sensitive
blocks and block sensitivity from Section 7.3. Loosely speaking, eligible functions are functions f
with low block sensitivity, and for which one can exhibit a large collection of (possibly overlapping)
sensitive blocks for the input 0t which span many indices and are not too “concentrated.” We also
require that this family of sensitive blocks for f on 0t is computationally simple to define—although
in principle, f itself need not be fully computable.

42(the actual order of presentation is different)
43Sivakumar in his work also achieves such a strengthened candidate-elimination guarantee, via a “bootstrapping”

procedure that we are able to bypass in our application.

53

Definition 9.1 (Eligible functions). Let f : {0, 1}t → {0, 1} be a Boolean function and w, k, a, u > 0
be integers. We say that f is (w, k, a, u)-eligible if the following conditions hold:

1. bs(f) ≤ k;

2. There is a collection B = Bt = (B1, . . . , Ba) of (nonempty, possibly overlapping, not neces-
sarily distinct) subsets of [t], where each B` is a minimal sensitive block for input 0t (thus
|B`| ≤ k, by an observation of Nisan [Nis91]);

3. For each ` ∈ [a], there is an i ∈ B` which appears in at most u of the sets B1, . . . , Ba;

4. For B chosen above, there exists a Boolean circuit CB : {0, 1}dlog2 te+dlog2 ae with at most w
wires that, given as input a pair (i, j) ∈ [t] × [a] (in binary representation), determines if
i ∈ Bj.

We say that a family f = {ft : {0, 1}t → {0, 1}}t>0 is simply eligible if each ft is (w, k, a, u)-
eligible, for parameters (w, k, a, u) = (w(t), k(t), a(t), u(t)) satisfying

w, k, u ≤ to(1) and t1−o(1) ≤ a ≤ t ,

and if there is a polynomial-time algorithm A which on input 1t outputs a description of the circuit
CB = CB,t in item 4.

Our main result on eligible functions is the following:

Theorem 9.2. Suppose that f = {ft : {0, 1}t → {0, 1}}t>0 is an eligible function family as in
Definition 9.1. For any integer K ≥ 1, if there is a PPT f -compression reduction for L := SAT,
with parameters

t1(n) = n500K , t2(n) ≤ nK , ξ(n) ≤ .1 ,

and any target language L′, then NP ⊆ coAM.

We have not attempted to optimize the parameters in this result; the techniques of this section
seem inherently quantitatively weaker than the techniques used in Section 7 to analyze OR- and
AND-compression. To reduce clutter in our work, we have made requirements in Definition 9.1
that are a bit stricter than needed. In particular, all parameters required to be to(1) could instead
be tε for some sufficiently small ε > 0; Theorem 9.2 would still hold.

Eligible functions need not be monotone. Even for eligible combining functions f which are non-
monotone on every input length (to which Theorem 7.6 already applies), we get new information
from Theorem 9.2, since the target language L′ in the hypothesis is now allowed to be arbitrary
and the conclusion is stronger as well.

We pause to give two examples of eligible functions, the second of which will be used in our
application to AND- and OR-compression. Both examples have played a role in the study of
complexity measures for Boolean functions [Weg91].

Definition 9.3 (Address functions). For d > 1 and input length t := 2d+d, the classical “address”

function ADDR2d(x, y) : {0, 1}2d+d → {0, 1} defined as follows. Letting x = (x0, . . . , x2d−1) and
y = (y0, . . . , yd−1), let v(y) :=

∑
`∈[d] y`2

`, and define

IND2d(x, y) := xv(y) .

54

A monotone variant of this function can also be given [Weg91, Chap. 13] (our definition is

slightly different for ease of use). The “monotone address” function mADDR2d(x, y) : {0, 1}2d+2d →
{0, 1} takes as input a 2d-bit string x = (x0, . . . , x2d−1) and a 2d-bit string y = (y0, . . . , y2d−1). For
each y ∈ {0, 1}2d, first define v̂(y) :=

∑
`∈[0,d−1] y2`+1 ·2` ∈ [0, 2d−1]. Letting || · || denote Hamming

weight, define

mADDR2d(x, y) :=

0 if ||y|| < d;

xv̂(y) if ||y|| = d ;

1 if ||y|| > d.

We extend ADDR2d to all input lengths t ≥ 6 by choosing the largest d such that 2d +d ≤ t and
defining ADDRt exactly as ADDR2d (acting on the first 2d + d input variables and ignoring any
remainder). We do similarly for mADDR2d. We let ADDR, mADDR : {0, 1}∗ → {0, 1} denote the
Boolean functions ranging over all t (letting these functions be identically 0 for t < 6, say).

The function ADDR2d can be computed with d + 1 queries to the input, and therefore its
sensitivity and block sensitivity are also at most d+ 1. (In fact, this is exact.) It is easily verified
that ADDR is eligible, by a family B of sensitive blocks containing a set Br for each r ∈ [2d − 1]:
we write r in its binary expansion r =

∑d−1
`=0 r`2

`, and let Br consist of the y-variables {y` : r` = 1}
along with the variable xr. (We describe Br with reference to the variables it contains rather than
their indices, since we have used overlapping index-sets to refer to the x and y variables. Strictly
speaking, we need to work with a single numeric indexing of the input variables x, y—beginning
with index i = 1, not 0—to meet condition 4, but this is easily carried out; we omit the details.)

The monotone function mADDR2d(x, y) depends on all its 2d + 2d variables and has query
complexity and block sensitivity equal to 2d+ 1. It is eligible by nearly the same construction used
for ADDR2d . As we will use this fact in Section 9.6, we now show this explicitly. It is enough to
consider input lengths of form t = 2d + 2d. We let a(t) := 2d − 1; we have (1− o(1))t ≤ a ≤ t. For
each r ∈ [a], we define Br as the variable-set containing the x-variable xr along with the y-variables
{y2`+1 : r` = 1} ∪ {y2` : r` = 0}.

We now argue that this set family Bt = (Br)r∈[a] witnesses that mADDR is eligible. The block-
sensitivity bound (condition 1) on mADDR has already been observed. For the remaining condi-
tions, first note that each Br contains exactly d of the y-variables. If we let (x, y) := 1Br ∈ {0, 1}t be
the characteristic vector for Br, we have v̂(y) = r, and as xr = 1 it follows that mADDR(x, y) = 1.

On the other hand mADDR(02d , 02d) = 0, so Br is a sensitive block for the all-zero input. It is
also a minimal sensitive block by inspection. Thus condition 2 in Definition 9.1 holds. Condition
3 holds with u(t) = 1 since each Br contains a distinct x-variable xr. For condition 4, note that
xr′ ∈ Br exactly if r′ = r, and that (for ` ∈ [0, d − 1]) we have y2` ∈ Br exactly if r` = 0, and
y2`+1 ∈ Br exactly if r` = 1. All of these simple tests can be performed by a circuit of size linear
in the bitlength of the binary representations of r, r′, `, which is O(d) = O(log t). (Again, we omit
the details of using a single numeric indexing of the x, y variables to meet condition 4.)

Next we describe a class of Boolean functions f , inspired by these previous examples, that in
general are neither eligible nor Ω(1)-amenable (as defined in Section 7.3). For general functions f
of this class, we do not know how to give strong evidence against f -compression for SAT.

Fix a function k(n) ≥ 10 log2 n that satisfies k(n) ≤ no(1). For each n, let k = k(n) and let
Sn = {S1, . . . , Sn} be some family of distinct subsets of [2k], each of Hamming weight k. Recalling

55

that 1S`
denotes the characteristic vector for S`, we define fn : {0, 1}n+k → {0, 1} by

fn(x, y) :=

0 if ||y|| < k;

x` if y = 1S`
for some ` ∈ n ;

1 if ||y|| > k.

This function depends on all variables, provided the set family Sn spans all of [2k]. Its query com-
plexity and block sensitivity are at most 2k+1 ≤ no(1). It will in general fail to have the explicitness
property of eligible functions (condition 4 in Definition 9.1), if Sn is sufficiently complicated.44

Moving on from these examples, in the rest of Section 9.1 we prove a lemma giving useful infor-
mation about the behavior of functions with low block sensitivity. We show that such functions are
“stable” with respect to a certain kind of random perturbation to their input. (This is completely
distinct from the “distributional stability” of compressive mappings, shown in Lemma 6.2.) We
first state the lemma, then briefly describe the setting in which we will use it.

Lemma 9.4. Let f : {0, 1}t → {0, 1} be non-constant, with bs(f) ≤ to(1). Let a ≤ t and suppose
M ⊆ [a] is of size |M | ≥ t.99, and let (B′`)`∈M be a family of nonempty (not necessarily distinct)
subsets indexed by M , satisfying |B′`| ≤ bs(f). Assume that every i ∈ [t] is contained in at most
t.001 of the sets B′`. Fix any input z ∈ {0, 1}t, and consider the following random process:

1. Let (X`)`∈M be independent, identically distributed 0/1-valued Bernoulli trials, with E[X`] ≤
t.95/|M |;

2. Let z′ := z∨
(∨

`∈M X` · 1B′`
)

, with ∨ denoting the coordinate-wise OR operation over {0, 1}t.

Then for sufficiently large t, we have Pr[f(z′) 6= f(z)] ≤ .01.

In our application, f will be eligible, and we will define a set J ⊆ [t] consisting of all i ∈ [t]
appearing in more than t.001 of the sets B` from B. We will then define B′` := B` \ J . For large
t, each B′` will be nonempty (by condition 3 of Definition 9.1). It will be convenient to pass to a
subset M of the indices ` ∈ [a].

Proof of Lemma 9.4. Consider the equivalent experiment in which we first reveal the sum X :=∑
`∈M X` and then reveal the indices {` ∈M : X` = 1} sequentially, in a random order.
First, Markov’s inequality tells us that with probability at least .999 we have the relation

X ≤ 1000E[X] ≤ 1000t.95 < t.96 (for large t). Let us condition on any event [X = S] where S ≤ t.96.
If S = 0 then f(z) = f(z′), so consider the case S > 0. We let {`1, . . . , `S} := {` ∈ M : X` = 1};
the indices (`1, . . . , `S) are revealed sequentially to us. Conditioned on `1, . . . , `j , the index `j+1 is
uniform over all ` ∈M \ {`1, . . . , `j}.

For each j ∈ [0, S], let

z[j] := z ∨

 ∨
`∈{`1,...,`j}

X` · 1B′`

 .

Thus z[0] = z and z[S] = z′.

44Of course, if the set families {Sn}n>0 are so complicated that the associated f = {fn}n>0 is undecidable, then
we can unconditionally rule out nontrivial instance compression from f ◦ SAT to any decidable target language L′.

56

Claim 9.5. Under our conditioning [X = S] (where S ≤ t.96), fix any j ∈ [0, S−1]; for sufficiently
large t, the event [f(z[j + 1]) 6= f(z[j])] occurs with probability at most t−.98.

Proof. Condition further on any outcomes to `1, . . . , `j , which determine the string z[j]. Say that
` ∈ M \ {`1, . . . , `j} is pivotal if f(z[j] ∨ 1B′`) 6= f(z[j]). Let Q be the number of pivotal indices
` under our conditioning; then the conditional probability that f(z[j + 1]) 6= f(z[j]) is exactly
Q/(|M | − j), which is less than 2Q/|M | for large t since |M | > t.99.

Next, note that there must exist some minimal-size subset W ⊂ [t] such that the values taken
by z[j] on coordinates in W force f to take the value b = f(z[j]). Using the definition of certificate
complexity and Fact 7.3, we have |W | ≤ C(f) ≤ bs(f)2 ≤ to(1). Observe that, if ` ∈ M satisfies
W ∩ B′` = ∅, then ` cannot possibly be pivotal. Using our pairwise-intersection bound on the
family (B′`)`∈M , it follows that Q ≤ |W | · t.001 ≤ t.001+o(1). Thus, the conditional probability that
f(z[j + 1]) 6= f(z[j]) is less than 2t.001+o(1)/|M | ≤ t−.98 (for large t). As `1, . . . , `j were arbitrary,
this proves the Claim.45

By applying this Claim to each j ∈ [0, S − 1] and taking a union bound, it follows that (under
our conditioning [X = S]), we have

Pr[f(z) 6= f(z′)] ≤
∑

j∈[0,S−1]

Pr[z[j + 1] 6= z[j]] ≤ |S| · t−.98 ≤ t−.02 .

As S was an arbitrary integer in the range [1, t.96], we can combine our analyses to conclude that,
unconditioned, we have (for large t)

Pr[f(z) 6= f(z′)] ≤ .001 + t−.02 < .01 .

We will see eligible functions again in Section 9.5, where we prove Theorem 9.2; first we need
to develop some other useful tools.

9.2 A codeword-reconstruction result

In this section we describe the powerful result of Ar et al [ALRS98] that will play a key role in
our study of f -compression for eligible f . Our application of the result is strongly influenced by its
earlier application in [Siv99].

We will work over certain easy-to-describe finite fields of characteristic 2:

Definition 9.6 (Nice integers and finite-field representations). Say that an integer m is nice if it
is of form m = 2 · 3w. Following [Siv99] and earlier works, if m is nice then the polynomial Xm +
Xm/2 + 1 is irreducible over F2m [X]; the finite field F2m is isomorphic to F2[X]/(Xm +Xm/2 + 1),
and elements of F2m can be represented as F2-polynomials mod Xm +Xm/2 + 1.

For technical convenience (and in a slight departure from [Siv99]), we will work with a repre-
sentation of elements of the finite field F2m for nice m in which each u ∈ F2m is represented by a
string str(u) ∈ {0, 1}2m of Hamming weight exactly m; such a representation is easily obtainable
from the polynomial representation just described.

45In the proof of Lemma 9.4 we essentially exploited a bound on the fractional block sensitivity of f , as defined by
Tal [Tal13] building on work of Aaronson [Aar08]; this measure, denoted fbs(f), is known to obey bs(f) ≤ fbs(f) ≤
C(f), with all three quantities polynomially related [Tal13, Aar08].

57

The following result was essentially proved by Sivakumar [Siv99], who derived the technical
substance of the result from [ALRS98]. We give the proof for the sake of completeness. As
in [Siv99], we do not attempt to give a sharpest-possible statement.

Theorem 9.7. For each integer k > 1 and nice value m ≥ 10 log2 k, there is a mapping

E : {0, 1}k −→ (F2m)2m ,

with the following properties.

1. For any family of subsets {Su}u∈F2m
, with each Su ⊂ F2m satisfying |Su| ≤ 2m/3, there are at

most 2O(m) vectors y ∈ {0, 1}k for which

Eu(y) ∈ Su , ∀u ∈ F2m . (21)

(Here we index the coordinates of E(y) by elements of F2m, and let Eu(y) ∈ F2m denote the
uth coordinate.) Moreoever, there is a polynomial-time algorithm B to compute all y satisfying
Eq. (21), given the value m and a collection {Su}u∈F2m

as above (with v ∈ F2m represented
in the input by str(v)).

2. str(Eu(y)) is computable in time ≤ (k+m)3 for sufficiently large k, given m, y, and str(u).46

Our proof below follows the presentation in [Siv99].47

Proof. On input y = (y1, . . . , yk) ∈ {0, 1}k, define the polynomial Py(X) ∈ F2m [X] by

Py(X) :=
k∑
i=1

yi ·Xi−1 ,

with arithmetic over F2m (and regarding the bits {0, 1} as the zero and unit elements of F2m).
Define E(y) coordinatewise by

Eu(y) := Py(u) .

The efficient computability property of E, item 2, is clear, since arithmetic can be performed
efficiently over F2m (see [Pos11] for a discussion of state-of-the-art algorithms, which perform mul-
tiplication of two elements of F2m in time O(mpolylog(m))). Now we describe the algorithm B.
Suppose we are given m and a collection {Su}u∈F2m

as in item 1. Let D := b23m/4c. First, we con-
struct a nonzero bivariate polynomial Q(X,Y) ∈ F2m [X,Y], with each monomial of degree between
1 and D in each of X,Y , and which satisfies

Q(u, v) = 0 ∀u ∈ F2m , v ∈ Su . (22)

There are D2 ≥ 23m/2−1 coefficients to choose, and our requirements impose at most
∑

u |Su| ≤
24m/3 linear, homogeneous constraints upon these coefficients. As m ≥ 10 we conclude that some
nonzero polynomial Q as above exists, and can be found efficiently using Gaussian elimination over
F2m .

46This is a conservative bound and can be improved.
47We note that for our application, the result of Theorem 9.7 is overkill; in performing the “recovery procedure”

B above, we could allow ourselves one round of interaction with a powerful Merlin. However, this observation seems
not to simplify the presentation, so we will pass over it.

58

Next, we factor Q in deterministic polynomial time using known algorithms. Deterministic
polynomial-time algorithms are known for the case of polynomially-bounded field size, as used here
and in [Siv99]; see the references in [Siv99, ALRS98].

After factoringQ into its irreducible factors, B inspects each to see if it is of the form (Y −Py(X))
for some y (or a scalar multiple of such a polynomial). Finally, B outputs all such candidates y, of
which there can be no more than the number of irreducible factors of Q. There are at most 2O(m)

such factors, by the degree bound on Q.
B is polynomial-time as claimed. To prove correctness, we claim that for every y satisfy-

ing Eq. (21), the polynomial (Y − Py(X)) divides Q(X,Y). To see this, note that Q∗(X) :=
Q(X,Py(X)) is a univariate polynomial of degree at most D + k ·D, which is less than 2m (since
m ≥ 10 log2 k by our assumption). But in light of Eq. (22), Q∗ vanishes for each u ∈ F2m . Thus
Q∗(X) must be identically 0. By regarding Q(X,Y) as a univariate polynomial in (F2m [X])[Y] and
applying the factor theorem, we conclude that (Y − Py(X)) is a factor of Q(X,Y), as claimed, so
that B outputs y. This completes the proof.

9.3 None-versus-one protocols

Next we define one-round interactive protocols to prove that a Boolean formula has no satisfying
assignment, under the promise that it has at most one. By applying the technique of [VV86], we
prove that such polynomial-time protocol can be given unless NP ⊆ coAM. This, recall, formed the
final step of our argument as sketched in the beginning of Section 9. We note that some results
related to our work in this section appear in [CKR95].

Definition 9.8 (None-versus-one protocols). Let R = R(n),W = W (n) ≤ poly(n) be integer
parameters computable in time poly(n) given n. Let V (〈ψ〉, r, w) be a deterministic algorithm
taking a Boolean formula ψ of some description length n, along with (r, w) ∈ {0, 1}R+W . Say that
V is a none-versus-one protocol (for Boolean formula satisfiability) if:

1. If 〈ψ〉 ∈ SAT, then with probability 2/3 over a uniformly chosen r ∈ {0, 1}R, there exists a
w ∈ {0, 1}W such that V (〈ψ〉, r, w) = 1;

2. If 〈ψ〉 ∈ SAT and ψ has a unique satisfying assignment, then the probability over uniform r
that there is a w with V (〈ψ〉, r, w) = 1 is at most 1/3.

Lemma 9.9. If there is a polynomial-time none-versus-one protocol V , then there is a second
such protocol V ′ in which the completeness and soundness parameters (2/3, 1/3) are replaced with
(1− 2−n, 2−n) respectively.

Proof sketch. This follows by a standard amplification argument: we define V ′ which simulates a
sufficiently large number N = O(n) of copies of V in parallel, and outputs the majority vote.

Lemma 9.10. Suppose there is a polynomial-time none-versus-one protocol. Then NP ⊆ coAM.

Proof. Under our assumption, we apply the well-known technique of Valiant and Vazirani [VV86]
to give an Arthur-Merlin proof system for L = SAT; this will imply coNP ⊆ AM, which yields the
Lemma’s conclusion.

Valiant and Vazirani give a randomized reduction A(〈ψ〉, r) which, given a formula description
〈ψ〉 ∈ {0, 1}n and a random string r of length |r| = t(n) and outputs a formula ψ(r), with the
following properties:

59

1. If ψ is unsatisfiable, then ψ(r) is also unsatisfiable;

2. If ψ is unsatisfiable, then with probability Ω(1/n) over r, the formula ψ(r) has a unique
satisfying assignment.

Our Arthur-Merlin protocol V ∗ is as follows. Let N = O(n) be a large multiple of n to be chosen
later. Arthur chooses independent random strings r1, . . . , rN ∈ {0, 1}t(n) and produces formula
descriptions 〈ψ(ri)〉 := A(〈ψ〉, ri) for each i ∈ [N]. For each such i, Arthur simulates the success-
amplified none-versus-one protocol V ′ from Lemma 9.9 on input 〈ψ(ri)〉 (with Arthur setting the
random string and Merlin choosing the string w in response). Arthur accepts if each invocation of
V ′ outputs 1, otherwise rejects.

The protocol V ∗ is clearly polynomial-time and requires only a single round of interaction. To
prove correctness, first suppose that ψ is unsatisfiable. Then each ψ(r) is also unsatisfiable. By
the completeness property of V ′, with probability ≥ 1 − 2−n over Arthur’s randomness r′ in the
invocation of V ′(〈ψ(ri)〉, ·, ·), there exists a wi such that V ′(〈ψ(ri)〉, r′, wi) = 1. By a union bound,
this occurs for each i ∈ [N] with probability ≥ 1 − N2−n = 1 − o(1). Thus if 〈ψ〉 ∈ SAT there
exists a Merlin strategy for V ∗ causing Arthur to accept with probability 1− o(1).

Next, suppose ψ is satisfiable. Then by the second property of the Valiant-Vazirani reduction,
if we choose N = O(n) sufficiently large then, with probability ≥ .99, there exists at least one
i ∈ [N] for which ψ(ri) has a unique satisfying assignment. Then with probability 1 − 2−n over
r′, there is no w for which V ′(〈ψ(ri)〉, r′, w) = 1. Thus any Merlin strategy causes V ∗ to accept
with probability at most 1− .99(1− 2−n) < .02 for large n. Thus SAT ∈ AM. This completes the
proof.

9.4 Membership comparability

We will use the notion of membership comparability studied in [ABG03, BKS95, AA94, Ogi95,
BFT97, Siv99] and other works. The general question studied in these works is: for which languages
L, given a collection x1, . . . , xh of instances, can we efficiently eliminate one or more possibilities for
the value of the characteristic vector (L(x1), . . . , L(xh))? The following definition gives a variant
of this property in which the computation is aided by a single round of interaction with a prover,
and in which the Hamming weight of (L(x1), . . . , L(xh)) obeys a promise.

Definition 9.11 (Promise list-enumeration protocols). Let L be a language, and let h = h(n), s =
s(n) be parameters (each ≤ poly(n) and computable in time poly(n)), with h even-valued for each n.
An (h, s)-promise list-enumeration protocol is defined by an algorithm P taking inputs x1, . . . , xh ∈
{0, 1}h×n along with strings (r, w) ∈ {0, 1}R(n)+W (n), for some additional parameters R(n),W (n) ≤
poly(n) also computable in time poly(n).

P either outputs “⊥” or outputs a list (v1, . . . , vs) ∈ {0, 1}s×h (possibly with duplicates). We
require that for each x1, . . . , xh which satisfy∣∣∣∣∣∣(L(x1), . . . , L(xh))

∣∣∣∣∣∣ ∈ {0, h/2}
(|| · || denoting Hamming weight), with probability ≥ 1−2−n over a uniform r, both of the following
conditions hold:

1. There exists a w such that P (x1, . . . , xh, r, w) does not output “⊥”;

60

2. For each w as in item 1, the list produced by P contains a vi equal to (L(x1), . . . , L(xh)).

We study promise list-enumeration protocols for L = SAT. Note that, on input-formulas
〈ψ1〉, . . . , 〈ψh〉 obeying the promise, and such that half are satisfiable, it is easy for Prover to
help Verifier identify the true characteristic vector, by producing satisfying assignments for the
h/2 satisfiable formulas. However, there is no obvious way for Prover to help Verifier eliminate
candidates in the case where all formulas are unsatisfiable. The next lemma shows that sufficiently
strong promise list-enumeration protocols for SAT would imply NP ⊆ coAM.

Lemma 9.12. Let C ≥ 20 be given, and let h(n) be an efficiently computable even parameter in
the range [C log2 n, 1.1C log2 n] for each n. Suppose that L := SAT has an (h(n), s(n))-promise
list-enumeration protocol P running in polynomial time, with s(n) ≤ 2h(n)/18.5. Then there is a
polynomial-time none-versus-one protocol for Boolean formula satisfiability (and NP ⊆ coAM, by
Lemma 9.10).

Proof. We describe how to use the promise list-enumeration protocol P to construct a none-versus-
one protocol V . We first describe some setup performed by V prior to interaction with Prover.
Given an input Boolean formula 〈ψ〉 of some description length n0 > 1 and with some number
k0 ≤ n0 of variables, we first set k := n0 and regard ψ = ψ(y) as acting on input variables
y = (y1, . . . , yk), some of which may not appear in ψ. Let m be a nice value in the range

m ∈ [.5C log2 k, 1.5C log2 k] .

Let E : {0, 1}k → F2m
2m be the code given in Theorem 9.7. For y ∈ {0, 1}k, u ∈ F2m and j ∈ [2m],

let Eu,j(y) denote the jth bit of str(Eu(y)) ∈ {0, 1}2m (recalling the representation str(·) used in
Theorem 9.7).

For each such pair (u, j), define a Boolean formula ψ(u,j)(y) on k variables which accepts y ∈
{0, 1}k exactly if [ψ(y) = 1] ∧ [Eu,j(y) = 1] holds. Using the efficiency property in Theorem 9.7,
item 2, and padding if necessary, for n0 sufficiently large compared to C, the formula ψ(u,j) can be
implemented by a formula of description length exactly

n := n3.01
0

(with smaller values of n0 being handled by brute force). 〈ψ(u,j)〉 is also constructible in time
poly(n0). Let

(h, s) := (h(n), s(n)) .

By our settings and assumptions on h(·) we have

2m ≤ h ≤ 6.02m (23)

and
s ≤ 2h/18.5 ≤ 2m/3 . (24)

Finally, let 〈φunsat〉 be an arbitrary unsatisfiable formula of description length n.
With these preparations, our none-versus-one protocol V , on input ψ as above, acts as follows.

First, V constructs the desciption 〈ψ(u,j)〉 ∈ {0, 1}n for each (u, j) ∈ F2m × [2m]. For each u ∈ F2m

in parallel, it executes the promise list-enumeration protocol P (assumed to exist in the present
Lemma) to the h-tuple of inputs(

〈ψ(u,1)〉, 〈ψ(u,2)〉, . . . , 〈ψ(u,2m)〉, 〈φunsat〉, . . . , 〈φunsat〉, 〈ψ〉, . . . , 〈ψ〉
)
, (25)

61

where we “pad” the 2m-tuple (〈ψ(u,j)〉)j∈[2m] with (h− 2m)/2 copies each of 〈φunsat〉 and 〈ψ〉.
If any of these executions of P returns “⊥”, then V outputs 0. Otherwise, each execution

(indexed by u ∈ F2m) returns a collection of s strings Zu,1, . . . , Zu,s ∈ {0, 1}h. We truncate each
of these to their initial 2m coordinates, yielding a revised collection zu,1, . . . , zu,s ∈ {0, 1}2m. Let
Su ⊆ F2m be the set {zu,a}a∈[s], regarded as elements of F2m under the representation str(·) (and
discarding any duplicate elements). Using our guarantee on P and Eq. (24), we have

|Su| ≤ s ≤ 2m/3 .

V then applies the algorithm B from Theorem 9.7 to the inputs (Su)u∈F2m
, obtaining a (possibly

empty) list of strings y1, . . . , yT ∈ {0, 1}k. V evaluates ψ(yt) for each t ∈ [T] and outputs 0 if
ψ(yt) = 1 for some t. (If all ψ(yt) = 0, or if the list is empty, then V outputs 1.)

The computations performed by V can clearly be carried out in time poly(n0 + 2m) ≤ poly(n0)
(for each fixed constant C). To prove correctness, first suppose that ψ is unsatisfiable. Each of
the 2m executions of P is applied to a list of h(n) formulas each of description length n, and
every formula is unsatisfiable in the present case, so the characteristic vector of each such list is of
Hamming weight 0. Then by Definition 9.11, there exists a Merlin strategy that causes “⊥” to be
output with probability at most 2−n for each fixed execution of P . Then by following this strategy
independently on each execution of P , Merlin can cause V to reach and run the simulation of B
with probability at least 1− |F2m | · 2−n = 1− o(1). In such a case V must output 1, since ψ has no
satisfying assignments to appear among y1, . . . , yT .

Next, suppose that ψ is satisfiable, with a unique satisfying assignment y∗ ∈ {0, 1}k; this is the
remaining case we must consider to satisfy Definition 9.8. For each u ∈ F2m , we claim that the
2m-bit string48

b = (bu,1, . . . , bu,2m) :=
(
χSAT(ψ(u,1)), . . . , χSAT(ψ(u,2m))

)
is precisely str(Eu(y∗)). To see this, fix any j ∈ [2m] for which Eu,j(y

∗) = 1. Then by definition of
ψ(u,j), we see that it is satisfied by the assignment y := y∗, so bu,j = 1. Conversely, if bu,j = 1 then
we must have Eu,j(y

∗) = 1, since y∗ is the unique satisfying assignment to ψ (and the only candidate
satisfying assignment to ψ(u,j)). This proves that (bu,1, . . . , bu,h) = str(Eu(y∗)). In particular, it
follows from our choice of representation str(·) that b is of Hamming weight exactly m, and from
this we easily see that exactly h/2 of the formulas in the h-tuple in Eq. (25) are in SAT.

With reference to Definition 9.11, we deduce that, with probability ≥ 1 − 2m · 2−n = 1 − o(1)
over the random choices made by V , one of two events must occur (for any choices made by
Merlin in the 2m executions of P): either some execution of P returns “⊥” (causing V to output
0); or, for each u ∈ F2m , the list (zu,1, . . . , zu,s) ∈ {0, 1}s×h produced by V contains the vector
(χSAT(ψ(u,1)), . . . , χSAT(ψ(u,h))) = str(Eu(y∗)) occurring as some zu,a. In the latter case, we have
Eu(y∗) ∈ Su for each u ∈ F2m . It follows from Theorem 9.7 that, in the poly(n)-sized list y1, . . . , yT

produced by V , some yt must equal y∗. V then determines that ψ(yt) = 1 and outputs 0. Thus
any Merlin strategy causes V to output 0 with probability 1 − o(1). We conclude that V is a
polynomial-time zero-versus-one protocol, as desired.

48Here and in the rest of Section 9, we use χSAT(ψ) ∈ {0, 1} to denote χSAT(〈ψ〉), with the understanding that the
satisfiability status of ψ is independent of the particular description 〈ψ〉 given. Similarly we write [ψ ∈ SAT] instead
of [〈ψ〉 ∈ SAT].

62

9.5 From f-compression to membership-comparison protocols

We are now prepared to prove Theorem 9.2. We will show how, given a PPT f -compression
reduction for SAT as in the Theorem statement, one can construct an (h(n), s(n))-promise list-
enumeration protocol for SAT, for some parameters h(n) and s(n) obeying the assumptions of
Lemma 9.12. It will follow from that Lemma that NP ⊆ coAM.

Our list-enumeration protocol P receives input formula descriptions (〈ψ1〉, . . . , 〈ψh(n)〉), each of
bitlength n. Our description of the promise list-enumeration protocol P is in two parts. In the
first, “setup” part we describe some polynomial-time computations defining various parameters and
objects that P will use, and we specify the parameter h(n). In the second, “interaction” part we
describe how the interaction with Merlin proceeds.

The setup: Define
T := n1000K .

First, P runs the polynomial-time algorithm A(1T), yielding a circuit CB defining the set family
B = (B1, . . . , Ba) for a = a(T), with each B` ⊂ [T] of size k = k(T). Next, P explicitly computes
B1, . . . , Ba; this can be done in polynomial time. Recall that a(t) ≥ t1−o(1) and k(t) ≤ to(1); thus
we can assume that n is large enough that

a > T .999 + 2 , k ≤ T .0001

(we can handle smaller values of n by brute force).
For i ∈ [T], define ci := |{` ∈ [a] : i ∈ B`}|. Let J ⊆ [T] be the set of all i for which ci > T .001

(a polynomial-time computable set). Using condition 3 in Definition 9.1, we may assume n is large
enough that no set B` is contained entirely within J .

Letting
h = h(n) := 2 · b.5 log2(a)c , s = s(n) := b2h(n)/18.5c ,

we note that h is even and satisfies h(n) ∈ [.999 log2 T, log2 T] = [999K log2 n, 1000K log2 n]. Thus
to prove the Theorem it will suffice to give an (h(n), s(n))-promise list-enumeration protocol for
SAT (we will be able to apply Lemma 9.12 with C := 999K).

For v ∈ {0, 1}h, let num(v) :=
∑

h′∈[h] vh′ · 2h
′−1 be v interpreted as an integer in its binary

expansion. We have num(v) ≤ 2h − 1 < a. Say that ` ∈ [a] is meaningful if ` = num(v) for some
v ∈ {0, 1}h of Hamming weight exactly h/2. Let M ⊂ [a] be the meaningful indices; M can be
enumerated in polynomial time. Using a standard binomial estimate we have (for large n)

|M | =

(
h

h/2

)
≥ 2h√

2h
> T .999 = n999K . (26)

For each h′ ∈ [h], we let xh
′

denote the variables appearing in the input formula ψh
′
, and let

ni ≤ n be their number. We assume these variable-sets are disjoint for each h′ (after relabeling if
necessary). For each i ∈ [T], define a (fanin-2) Boolean circuit Γi which takes input variables

(x1, . . . , xh) ∈ {0, 1}n1+...+nh ,

and accepts exactly if the following conditions hold: letting bh′ := ψh
′
(xh

′
) and b := (b1, . . . , bh),

we have:

63

1. ||b|| = h/2;

2. [i ∈ Bj] holds, for j := num(b).

We argue that Γi can be implemented efficiently. First, b can be computed by a circuit of
O(nh log2 n) = O(n log2 n) gates which simulates each ψh

′
. Given b, one may easily check con-

dition 1 with O(h) gates, and check condition 2 with O(log n) gates to compute j, and T o(1) ≤ no(1)

gates to check if i ∈ Bj (using the circuit CB,T given by Definition 9.1 for the eligible function
f). Thus we can implement Γi with O(n log2

2 n) gates. By applying Cook’s reduction, we derive a
3-CNF Γ′i of O(n log2

2 n) clauses, such that Γ′i is satisfiable exactly if Γi is satisfiable.
Each Γ′i can be given a description of bitlength O(n log3

2 n), which for sufficiently large n is
less than ñ := n2. By padding we obtain a description 〈Γ′i〉 of length exactly ñ. Also, for future
use, let ψsat, ψunsat be two formulas which are satisfiable and unsatisfiable, respectively, and whose
descriptions are of bitlength ñ.

We next define a probabilistic experiment Expt, defined with reference to

ψ := (ψ1, . . . , ψh) .

It will be clear from the description that Expt can be performed by a Boolean circuit CExpt

ψ
(given

uniform random input bits) of size ≤ poly(T, n) = poly(n), and that this circuit can be constructed
from ψ in poly(n) time. Expt proceeds as follows:

1. For each i ∈ J , set φi := Γ′i;

2. Let d :=
⌈
log2

(
|M |
T .95

)⌉
;

// Note that T .95/(2|M |) ≤ 2−d ≤ T .95/|M |.

3. For each j ∈M , let Xj be an independent Bernoulli trial with E[Xj] = 2−d;
// (Xj)j∈M can be sampled efficiently and exactly using |M | · d uniform random bits.

4. For each i ∈ [T] \ J , let

φi :=

{
φsat if ∃j ∈M : [Xj = 1] ∧ [i ∈ Bj] ,
φunsat otherwise;

5. Apply the f -compression reduction R to (〈φ1〉, . . . , 〈φT 〉) ∈ {0, 1}T×ñ, outputting the resulting
string z.
// Note that T = n1000K = (n2)500K = t1(ñ), so that R is guaranteed to output a string
z ∈ {0, 1}≤t2(ñ), where t2(ñ) ≤ (n2)K = n2K .

For any j ∈ M and b ∈ {0, 1}, we also define the modified experiment Expt′(j; b), defined
with respect to ψ, which proceeds exactly as Expt except that we fix the value Xj := b. Let

C
Expt′(j;b)

ψ
denote a Boolean circuit of size ≤ poly(n) which performs Expt′(j; b) upon ψ (given

uniform random input bits); this circuit can also be efficiently constructed by P . (Our primary
interest here is the case where b = 1.)

64

For each j ∈M , define the string σj :=
〈
CExpt

ψ
, C

Expt′(j;1)

ψ

〉
. We are interested in the statistical

distance between the output distributions of the two circuits described in σj on uniformly random
inputs. Let n ≤ n′ ≤ poly(n) be a sufficiently large value such that each σj can be given a
description of length exactly n′ (by padding if necessary; we can and do choose to work with a
descriptive system for circuit-pairs that allows such padding).

With reference to Definition 4.12 and Theorems 4.16 and 4.17, recall that the promise problem

SD
≤1/3
≥2/3 = (ΠY ,ΠN) is contained in pr- SZK ⊆ pr-AM.49 Let VSD(σ, r, w) be a polynomial-time

verifier algorithm defining an Arthur-Merlin protocol to solve SD
≤1/3
≥2/3; we may insist that VSD

possesses perfect completeness (although this is not essential) and has soundness ≤ 2−n
′

on input
σ ∈ ΠY ∪ ΠN of length |σ| = n′. Let R(n′),W (n′) ≤ poly(n′) be the expected lengths of r, w
respectively for σ of length n′.

The interaction: For each j ∈M , P produces the string σj =
〈
CExpt

ψ
, C

Expt′(j;1)

ψ

〉
as described

above. P then runs the protocol VSD in parallel for each σj , generating an independent random
string rj ∈ {0, 1}R(n) for each j ∈M . For each such j, Prover is asked to provide wj ∈ {0, 1}W (n).
For each j ∈M , P computes ej := VSD(σj , rj , wj) ∈ {0, 1}.

If there are at least s = b2h/18.5c indices j ∈M for which ej = 0, then P outputs “⊥”. Otherwise
P outputs the list consisting of 0h along with all v ∈ {0, 1}h of Hamming weight h/2 for which we
have enum(v) = 0. This list contains at most s strings; P pads the output list to size exactly s by
duplicating strings if necessary.

Correctness analysis: Now we prove that P is a (h(n), s(n))-promise list-enumeration protocol.
The bound on the output list size is immediate from our construction; we will argue the other
required properties hold.

The next claim is the key to showing that there is always a Prover strategy that forces most
of the bits ej to equal 1. The claim follows from the same ideas used to prove our “distributional
stability” lemma (Lemma 6.2). However, direct application of that lemma would be too slack for
our application here.

In the following, we use R to denote the random variable describing the output of Expt. For
b ∈ {0, 1}, let R(j;b) denote the output of Expt′(j; b).

Claim 9.13. For j ∈M , let

δj :=
∣∣∣∣∣∣R(j;1) −R

∣∣∣∣∣∣
stat

,

and say that j ∈M is influential if δj > .01. Let M∗ ⊆M denote the influential indices. Then for
sufficiently large n, we have |M∗| ≤ n53K .

Proof. The T input formulas to Expt are each of length ñ. Recall that the f -compression reduction
R, on T = n1000K = (n2)500K = t1(ñ) inputs of length ñ, is guaranteed to produce an output of

length at most t2(ñ) = n2K . Thus, with (Xj)j∈M as in Expt, we have I
(

(Xj)j∈M ; R
)
≤ n2K .

For each j ∈M , let Yj be distributed as Xj but independent of R. By Lemma 4.4 and Fact 4.6,∑
j∈M

DKL ((Xj ,R)||(Yj ,R)) ≤ n2K . (27)

49It is important for our work here that the “Yes” case ΠY is that in which the two circuits’ distributions are close
in statistical distance.

65

From the definitions of DKL and of Expt′(j; 1), and using the nonnegativity of DKL and the chain
rule for divergence (see Section 4.1), we have

DKL ((Xj ,R)||(Yj ,R)) ≥ Pr[Xj = 1] ·DKL

(
(1,R(j;1))||(1,R)

)
= Pr[Xj = 1] ·DKL

(
R(j;1)||R

)
.

We also recall that in Expt, we have (for each j ∈M)

Pr[Xj = 1] ≥ T .95/(2|M |) ≥ T .95/(2T) = .5n−50K

(for large n). Combining our work gives∑
j∈M

DKL

(
R(j;1)||R

)
≤ 2n50K · n2K = 2n52K . (28)

Using Pinsker’s inequality (Theorem 4.7), we note that for each j ∈M∗, we have DKL

(
R(j;1)||R

)
≥

(.01)2 = .0001. Combining this with Eq. (28), we find that (for large n) |M∗| < 2 · 104n52K <
n53K .

Now for analysis, let us fix any input formulas ψ = (ψ1, . . . , ψh) to P , each of description
length n; for the present part of the analysis we do not need to make any assumption about their
satisfiability status. It follows immediately from Claim 9.13 that there are at least |M | − n53K

indices j ∈ M for which the string σj produced by P lies in the “yes” set ΠY of SD
≤1/3
≥2/3. As

the Arthur-Merlin protocol VSD has perfect completeness, it follows that for any setting to the
challenge strings (rj)j∈M , there exist responses (wj)j∈M such that ej = VSD(σj , rj , wj) = 1 for at
least |M | −n53K indices j ∈M . This is greater than |M | − s since, for sufficiently large n, we have

s ≥ 2h/18.5 − 1 > 2(999/18.5)K logn − 1 = n54K − 1

(where we used our bound h ≥ 999K log2 n). Thus for any ψ where n is sufficiently large, there is
always a Prover strategy that prevents P from ever outputting “⊥”.

For the next part of the analysis, again fix the input formulas ψ = (ψ1, . . . , ψh), and let

b
∗

:=
(
χSAT(ψ1), . . . , χSAT(ψh)

)
. (29)

Our remaining task is to show that if ψ contains either 0 or h/2 satisfiable formulas, then Prover
cannot (except with low probability) cause P to output a nonempty list which does not contain b

∗
.

If ||b∗|| = 0 (all ψh
′

are unsatisfiable), then this is immediate, since by construction, any nonempty
list output by our protocol P automatically includes 0h. Thus, for the remainder of the proof we
fix ψ = (ψ1, . . . , ψh) and assume

||b∗|| = h/2 , letting j∗ := num(b
∗
) ∈ M .

For each j ∈M , we define
B′j := Bj \ J ,

a nonempty set. (These may not all be distinct.)

Claim 9.14. 1. Let (φ1, . . . , φT) be the (random) formulas generated in Expt, and for i ∈ [T]
let ui := χSAT(φi). Let u = (u1, . . . , uT). For sufficiently large values of n, with probability
at least .99 we have f(u) = f(0T).

66

2. Now let (φ1, . . . , φT) be the (random) formulas generated in Expt′(j∗; 1). For i ∈ [T] let
u′i := χSAT(φi). Let u′ = (u′1, . . . , u

′
T). For sufficiently large values of n, with probability at

least .99 we have f(u′) = ¬f(0T).

Proof. (1.) As ||b∗|| = h/2, we see from the definition of the formulas Γ′i that, for i ∈ J , the formula
φi = Γ′i is satisfiable exactly if i ∈ Bj∗ . For i ∈ [T] \ J , with reference to steps 3-4 of Expt, we see
that ui = 1 exactly if there exists a j ∈M for which Xj = 1 and i ∈ B′j . Let z := 1Bj∗∩J ∈ {0, 1}T
be the characteristic vector for Bj∗ ∩ J . Then our observations yield

u = z ∨
∨
j∈M

Xj · 1B′j .

By an application of Lemma 9.4 (with u playing the role of z′), we have

Pr[f(u) 6= f(z)] ≤ .01 .

Finally, note that Bj∗ ∩J is a proper subset of Bj∗ (since Bj∗ * J), and Bj∗ is a minimal sensitive
block for f with respect to input 0T (by condition 2 of the eligibility property for f). Thus
f(z) = f(0T), and the Claim follows.

(2.) For i ∈ J , we see with reference to the definition of Γ′i and the fact [j∗ = num(b
∗
)], that

the formula φi = Γ′i is satisfiable (and u′i = 1) exactly if i ∈ Bj∗ . For i ∈ [T] \ J , we have u′i = 1
exactly if there exists a j ∈ M for which Xj = 1 and i ∈ B′j . Recall that Xj∗ is fixed to 1 in
Expt′(j∗; 1). Letting ẑ := 1Bj∗ , it follows that

u′ = ẑ ∨

Yj∗ · 1B′
j∗
∨

∨
j∈M\{j∗}

Xj · 1B′j

where we introduce a new variable Yj∗ that is independent of and identically distributed to (Xj)j∈M\{j∗}.
(Yj∗ ’s outcome is actually irrelevant to u′, and is introduced only to match the conditions of
Lemma 9.4.) Applying Lemma 9.4 to the modified collection of random variables which substitutes
Yj∗ for Xj∗ , we infer that with probability ≥ .99 we have

f(u′) = f(ẑ) .

Now ẑ is the characteristic vector of the entire block Bj∗ , which is sensitive for f on input 0T , so
f(z) = ¬f(0T). This completes the proof of Claim 9.14.

Let β := f(0T) ∈ {0, 1} (a value which may not be efficiently computable). It follows from item
1 of Claim 9.14 and the f -compression property of R (with ξ(n) < .1) that, with probability at
least .99(.9) > .89 over Expt we have

L′(R) = β .

Similarly, for j∗ = num(b
∗
), then from item 2 of Claim 9.14 we find that probability greater than

.89 over Expt′(j; 1) we have L′(R(j∗;1)) = ¬β. It follows that∣∣∣∣∣∣R(j∗;1) −R
∣∣∣∣∣∣

stat
> 1− 2 · .11 > 2/3 .

67

Thus, the string σj
∗

=
〈
CExpt

ψ
, C

Expt′(j;1)

ψ

〉
produced by our protocol P is in the “no” set ΠN of

the promise problem SD
≤1/3
≥2/3. From the soundness property of VSD it follows that, with probability

at least 1− 2−n
′ ≥ 1− 2−n over the random string rj

∗
, all possible choices of the proof string wj

∗

yield
ej∗ = VSD(σj

∗
, rj
∗
, wj

∗
) = 0 .

Notice that P can only output a nonempty list of strings (v1, . . . , vs) ∈ {0, 1}s×h that does not
contain b

∗
if enum(b

∗
) = ej∗ = 1. We conclude that for any Prover strategy in P , the probability this

occurs is at most 2−n. We have shown that P is an (h(n), s(n))-list-enumeration protocol. This
completes the proof of Theorem 9.2.

9.6 Application to AND- and OR-compression

In this section we use Theorem 9.2 to rule out strong compression for OR(SAT) and or AND(SAT).
The only further ingredient needed is the following lemma, connecting these compression tasks to
the monotone address function mADDR from Definition 9.3—an eligible function.

Lemma 9.15. Fix integers C, c ≥ 1. Let f : {0, 1}∗ → {0, 1} be the monotone address function
mADDR.

1. Suppose that there is a PPT OR-compression reduction R for L = SAT, with parameters

t1(n) = nC , t2(n) ≤ nc , ξ(n) ≤ .1 ,

and some target language L′.

Then there is a PPT f -compression reduction R′ for SAT with parameters

t′1(n) = nC , t′2(n) ≤ n2c , ξ(n) ≤ .1 ,

and target language L′.

2. The same conclusion from item 1 holds, if there is a PPT AND-compression reduction R for
L = SAT, with parameters (t1(n), t2(n), ξ(n)) and target language L′ as in item 1.

The parameters t′1(n), t′2(n) in the statement above are suboptimal for ease of presentation.
The idea of the proof of Lemma 9.15, item 1 is to express f = mADDR as a (monotone) DNF,
and to transform an input to f ◦ SAT to an input to OR(SAT) in a way induced by this DNF
representation. Item 2 is similar, but uses a monotone CNF representation of f . All we be will
essentially using about f is that the clauses in these monotone representations are short, not too
numerous, and efficiently computable.

Proof of Lemma 9.15. (1.) Given an input tuple (〈ψ1〉, . . . , 〈ψnC 〉) ∈ {0, 1}nC×n (here we take
t′1(n) = nC SAT instances of length n), we first make some definitions and observations that will
enable us to define and analyze the behavior of our f -compression reduction R′ applied to this
input. First, let k be the largest value for which 2k + 2k ≤ nC ; we can assume k > 1, and we have
2k + 2k ≥ .5nC . We may safely discard all 〈ψj〉 with j > 2k + 2k since, by the definition of the

68

“padded” function f = mADDR, they are irrelevant to our compression task. For ease of reference,
we relabel our 2k + 2k relevant formulas as

(φ0, . . . , φ2k−1, π0, . . . , π2k−1) ,

and define the (unknown) values x∗ = (x∗0, . . . , x
∗
2k−1

), y∗ = (y∗0, . . . , y
∗
2k−1) by

x∗` := χSAT(φ`) , y∗j := χSAT(πj) ,

so that
(f ◦ SAT)(φ0, . . . , φ2k−1, π0, . . . , π2k−1) = mADDR2k(x∗, y∗) .50 (30)

For use in the reduction, we next describe the DNF representation of the monotone function
mADDR2k(x, y). For each w = (w0, . . . , wk−1) ∈ {0, 1}k, define the set Sw ⊆ [0, 2k − 1] by

Sw := {2`+ 1 : w` = 1} ∪ {2` : w` = 0} .

Also, let T1, . . . , T(2k
k+1)

⊆ [0, 2k − 1] be a enumeration of all size-(k + 1) subsets of [0, 2k − 1],

computable in time poly(2k) ≤ poly(t). Using the notation v(w) :=
∑

`∈[0,k−1]w` · 2`, we have the
DNF representation

mADDR2k(x, y) =

 ∨
w∈{0,1}k

xv(w) ∧
∧
j∈Sw

yj

 ∨
 ∨

1≤p≤(2k
k+1)

 ∧
j∈Tp

yj

 (31)

(valid for all x, y), whose clauses correspond to the 2k+
(

2k
k+1

)
different minimal inputs to mADDR2k

causing it to output 1. Note that the value D := 2k +
(

2k
k+1

)
is at most 22k ≤ n2C = (n2)C = t1(ñ).

With this representation in mind, we define some SAT instances. For each w ∈ {0, 1}k, define
a Boolean formula Πw := φv(w) ∧

∧
j∈Sw

πj . For 1 ≤ p ≤
(

2k
k+1

)
, define Γp :=

∧
j∈Tp πj . Note that

[Πw ∈ SAT]⇐⇒

x∗v(w) ∧
∧
j∈Sw

y∗j = 1

 and [Γp ∈ SAT]⇐⇒

 ∧
j∈Tp

y∗j = 1

 ,

so that mADDR2k(x∗, y∗) = 1 exactly if at least one Γp or Πw is satisfiable. Then using Eq. (30), ∨
w∈{0,1}k

χSAT(Πw)

∨
 ∨

1≤p≤(2k
k+1)

χSAT(Γp)

 = (f ◦SAT)(φ0, . . . , φ2k−1, π0, . . . , π2k−1) . (32)

Now by construction, each Πw and Γp is an AND of at most k + 1 = O(log2 n) formulas, each of
size at most n, so for large n each Πw and Γp can be given a description of size exactly ñ := n2

(padding as necessary).
The reduction R′ acts as follows. It first constructs descriptions (〈Πw〉)w, (〈Γp〉)p as above,

combining them into a single list, and pads out this list with t1(ñ) − D ≥ 0 copies of the string

50In this proof we use the definition (f ◦SAT)(Γ1, . . . ,ΓN) := f(χSAT(Γ1), . . . , χSAT(ΓN)), a slight abuse of notation
since f ◦ SAT is used elsewhere to denote a parametrized problem.

69

〈ψunsat〉 ∈ {0, 1}ñ, describing a fixed unsatisfiable formula ψunsat. Let Ψ ∈ {0, 1}t1(ñ)×ñ denote our
resulting list. Our reduction R′ then outputs the (possibly randomized) result of applying R to
this list:

z := R
(
Ψ
)
.

The analysis of R′ is simple given our work thus far. First, R′ is clearly polynomial-time. By the
compression guarantee of R applied to the input-tuple Ψ, we have |z| ≤ t2(ñ) ≤ (n2)c = n2c, so we
may choose t′2(·) as claimed. For correctness, note that the input Ψ to R satisfies (OR◦SAT)(Ψ) = 1
exactly if some Πw or some Γp is satisfiable; by Eq. (32), this occurs exactly if

1 = (f ◦ SAT)(φ0, . . . , φ2k−1, π0, . . . , π2k−1) = (f ◦ SAT)(ψ1, . . . , ψn
C

) .

As R is a compression reduction for OR(SAT) with ξ(n) ≤ .1, we conclude that [L′(z) = (f ◦
SAT)(ψ1, . . . , ψn

C
)] holds with probability at least .9. This proves item 1.

(2.) For this item, we fix notation as before and observe the CNF representation

mADDR2k(x, y) =

 ∧
w∈{0,1}k

xv(w) ∨
∨

j∈[2k]\Sw

yj

 ∧
 ∧

1≤p≤(2k
k+1)

 ∨
j∈Tp

yj

 . (33)

Using this representation, we reduce from an f ◦SAT instance to an AND(SAT) instance in perfect
analogy with item 1, and again apply the reduction R (which now is an AND-compression reduction
for SAT; this time we pad the input-tuple to R with copies of a satisfiable formula ψsat).

Theorem 9.16. Let c ≥ 1 be an integer. Suppose there is either an OR-compression or an AND-
compression reduction for SAT, with parameters

t1(n) = n1000c , t2(n) ≤ nc , ξ(n) ≤ .1 ,

and any target language L′. Then, NP ⊆ coAM.

Proof. Let f := mADDR as in Lemma 9.15. Under either assumption, we can apply one of the two
items of that Lemma to obtain an f -compression reduction for SAT, with parameters

t′1(n) = n1000c , t′2(n) ≤ n2c , ξ′(n) ≤ .1 ,

and target language L′. Recall that f is eligible, as shown in Section 9.1. We then apply Theo-
rem 9.2, with K := 2c, to conclude NP ⊆ coAM.

10 Questions for further study

1. Can we extend the limitations we show on efficient compression for AND(SAT) and OR(SAT),
to give corresponding lower bounds on the cost of solving these problems in the oracle com-
munication model studied by Dell and Van Melkebeek [DvM10]? These authors were able to
extend the lower bounds of [FS11] for OR(SAT) to this more general setting. Proceeding by
straightforward analogy in our case seems to fail, however.

70

2. Using our results on the infeasibility of compression for AND(SAT), can we extend the work
of [DvM10] to prove new kernel-size lower bounds for interesting problems with polynomial
kernels, under the assumption NP * coNP/poly?

3. Can we obtain a tighter quantitative understanding of the limits to efficient f -compression
of NP-complete languages, where f is a combining function other than OR or AND? The

case f =
∨m
i=1

(∧m
j=1 x

i,j
)

is an interesting candidate for study. We have also left open the

feasibility of strong f -compression for certain functions f with very low block sensitivity.

4. Can we find other applications for the Disguising-Distribution Lemma?

Acknowledgements

I thank Scott Aaronson, Hans Bodlaender, Holger Dell, Lance Fortnow, Russell Impagliazzo, James
Lee, Dieter van Melkebeek, Ashwin Nayak, Karolina Soltys, Salil Vadhan, Thomas Vidick, Avi
Wigderson, Ryan Williams, and several reviewers for helpful comments. Thanks especially to
Russell, Ashwin, and Salil for allowing me to include their alternative proof suggestions.

References

[AA94] Manindra Agrawal and Vikraman Arvind. Polynomial time truth-table reductions to
p-selective sets. In Structure in Complexity Theory Conference, pages 24–30, 1994.

[Aar08] Scott Aaronson. Quantum certificate complexity. J. Comput. Syst. Sci., 74(3):313–322,
2008.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[ABG03] Amihood Amir, Richard Beigel, and William I. Gasarch. Some connections between
bounded query classes and non-uniform complexity. Inf. Comput., 186(1):104–139,
2003. Earlier version in Structure in Complexity Theory ’90.

[Adl78] Leonard M. Adleman. Two theorems on random polynomial time. In 19th IEEE
FOCS, pages 75–83, 1978.

[AH91] William Aiello and Johan H̊astad. Statistical zero-knowledge languages can be recog-
nized in two rounds. J. Comput. Syst. Sci., 42(3):327–345, 1991.

[ALRS98] Sigal Ar, Richard J. Lipton, Ronitt Rubinfeld, and Madhu Sudan. Reconstructing
algebraic functions from mixed data. SIAM J. Comput., 28(2):487–510, 1998. Earlier
version in FOCS ’92.

[Alt94] Ingo Althöfer. On sparse approximations to randomized strategies and convex combi-
nations. Linear Algebra and its Applications, 199, Supplement 1(0):339 – 355, 1994.

[BDFH09] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin.
On problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.
Earlier version in ICALP ’08.

71

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree com-
plexity: a survey. Theor. Comput. Sci., 288(1):21–43, 2002.

[BFT97] Harry Buhrman, Lance Fortnow, and Leen Torenvliet. Six hypotheses in search of a
theorem. In IEEE Conference on Computational Complexity, pages 2–12, 1997.

[BG81] Charles H. Bennett and John Gill. Relative to a random oracle A, PA != NPA !=

co-NPA with probability 1. SIAM J. Comput., 10(1):96–113, 1981.

[BH08] Harry Buhrman and John M. Hitchcock. NP-hard sets are exponentially dense unless
coNP ⊆ NP/poly. In 23rd IEEE Conference on Computational Complexity, pages 1–7,
2008.

[BJK11a] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Cross-composition: A
new technique for kernelization lower bounds. In STACS, pages 165–176, 2011.

[BJK11b] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernel bounds for path
and cycle problems. In IPEC, pages 145–158, 2011.

[BJK11c] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Preprocessing for
treewidth: A combinatorial analysis through kernelization. In 38th ICALP, pages
437–448, 2011.

[BKS95] Richard Beigel, Martin Kummer, and Frank Stephan. Approximable sets. Inf. Com-
put., 120(2):304–314, 1995. Earlier version in IEEE Structure in Complexity Theory
’94.

[BTY11] Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint
cycles and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011. Earlier
version in ESA ’09.

[Buh] Harry Buhrman. Personal communication.

[CCDF97] Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes
of parameterized tractability. Annals of Pure and Applied Logic, 84(1):119 – 138, 1997.

[CFM11] Yijia Chen, Jörg Flum, and Moritz Müller. Lower bounds for kernelizations and other
preprocessing procedures. Theory Comput. Syst., 48(4):803–839, 2011.

[CKR95] Richard Chang, Jim Kadin, and Pankaj Rohatgi. On unique satisfiability and the
threshold behavior of randomized reductions. J. Comput. Syst. Sci., 50(3):359–373,
1995.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-
Interscience, 2nd edition, 2006.

[DF99] R. G. Downey and M.R. Fellows. Parametrized Complexity. Springer (Monographs in
Computer Science), 1st edition, 1999.

[DLS09] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors
and IDs. In 36th ICALP, pages 378–389, 2009.

72

[DM12] Holger Dell and Dániel Marx. Kernelization of packing problems. In 23rd ACM-SIAM
SODA, pages 68–81, 2012.

[DvM10] Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. In 42nd ACM STOC, pages 251–260,
2010.

[FGM+89] Martin Fürer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis Zachos.
On completeness and soundness in interactive proof systems. Advances in Computing
Research, 5:429–442, 1989.

[FHT03] Alexei A. Fedotov, Peter Harremoës, and Flemming Topsøe. Refinements of pinsker’s
inequality. IEEE Transactions on Information Theory, 49(6):1491–1498, 2003.

[For87] Lance Fortnow. The complexity of perfect zero-knowledge (extended abstract). In
Alfred V. Aho, editor, 19th ACM STOC, pages 204–209, 1987.

[FS11] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and suc-
cinct PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. Earlier version in STOC
’08.

[GN07] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kerneliza-
tion. SIGACT News, 38(1):31–45, 2007.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. In 18th ACM STOC, pages 59–68, 1986.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and
algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6):1757–
1767, 1999. Earlier version in FOCS ’98.

[GSV98] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In 30th ACM STOC, pages 399–
408, 1998.

[GV11] Oded Goldreich and Salil P. Vadhan. On the complexity of computational problems re-
garding distributions (a survey). Electronic Colloquium on Computational Complexity
(ECCC), TR11-004:4, 2011.

[HN10] Danny Harnik and Moni Naor. On the compressibility of NP instances and crypto-
graphic applications. SIAM J. Comput., 39(5):1667–1713, 2010.

[HW12] Danny Hermelin and Xi Wu. Weak compositions and their applications to polynomial
lower bounds for kernelization. In 23rd ACM-SIAM SODA, pages 104–113, 2012.

[JJUW11] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP = PSPACE.
J. ACM, 58(6):30, 2011. Earlier version in STOC ’10.

[KdW04] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally
decodable codes via a quantum argument. J. Comput. Syst. Sci., 69(3):395–420, 2004.
Earlier version in STOC ’03.

73

[KNTSZ07] Hartmut Klauck, Ashwin Nayak, Amnon Ta-Shma, and David Zuckerman. Interaction
in quantum communication. IEEE Transactions on Information Theory, 53(6):1970–
1982, 2007.

[Kra12] Stefan Kratsch. Co-nondeterminism in compositions: a kernelization lower bound for
a Ramsey-type problem. In 23rd ACM-SIAM SODA, pages 114–122, 2012.

[KW00] Alexei Kitaev and John Watrous. Parallelization, amplification, and exponential time
simulation of quantum interactive proof systems. In 32nd ACM STOC, pages 608–617,
2000.

[KW12] Stefan Kratsch and Magnus Wahlström. Compression via matroids: a randomized
polynomial kernel for odd cycle transversal. In 23rd ACM-SIAM SODA, pages 94–
103, 2012.

[LMM03] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large games using
simple strategies. In 4th ACM Conference on Electronic Commerce, pages 36–41, 2003.

[LY94] Richard J. Lipton and Neal E. Young. Simple strategies for large zero-sum games with
applications to complexity theory. In 26th ACM STOC, pages 734–740, 1994.

[Nay99a] Ashwin Nayak. Lower bounds for Quantum Computation and Communication. PhD
thesis, University of California, Berkeley, 1999.

[Nay99b] Ashwin Nayak. Optimal lower bounds for quantum automata and random access codes.
In 40th IEEE FOCS, pages 369–377, 1999.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, 2000.

[Nis91] Noam Nisan. CREW PRAMs and decision trees. SIAM J. Comput., 20(6):999–1007,
1991. Earlier version in STOC ’89.

[Ogi95] Mitsunori Ogihara. Polynomial-time membership comparable sets. SIAM J. Comput.,
24(5):1068–1081, 1995.

[Oka00] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. J.
Comput. Syst. Sci., 60(1):47–108, 2000. Earlier version in STOC ’96.

[OP04] Masanori Ohya and Denes Petz. Quantum Entropy and its Use. Texts and Monographs
in Physics. Springer-Verlag, Heidelberg, 2nd edition, 2004.

[Pos11] Alexey Pospelov. Faster polynomial multiplication via discrete Fourier transforms. In
CSR, pages 91–104, 2011.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.
Earlier version in STOC ’95.

[Reg12] Oded Regev. Entropy-based bounds on dimension reduction in l1. Israel Journal of
Mathematics, 2012. arXiv:1108.1283.

74

[RW09] Mark D. Reid and Robert C. Williamson. Generalised pinsker inequalities. In COLT,
2009.

[Sha10] Ronen Shaltiel. Derandomized parallel repetition theorems for free games. In IEEE
Conference on Computational Complexity, pages 28–37, 2010.

[Siv99] D. Sivakumar. On membership comparable sets. J. Comput. Syst. Sci., 59(2):270–280,
1999. Earlier version in CCC ’98.

[Sud96] Madhu Sudan. Maximum likelihood decoding of reed solomon codes. In FOCS, pages
164–172, 1996.

[SV03] Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge.
J. ACM, 50(2):196–249, 2003.

[SV08] Pranab Sen and Srinivasan Venkatesh. Lower bounds for predecessor searching in the
cell probe model. J. Comput. Syst. Sci., 74(3):364–385, 2008. Earlier version in CCC
’03.

[Tal13] Avishay Tal. Properties and applications of boolean function composition. In ITCS,
pages 441–454, 2013.

[vL99] J. H. van Lint. Introduction to coding theory, volume 86 of Graduate Texts in Mathe-
matics. Springer-Verlag, Berlin, 3rd edition, 1999.

[VV86] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions.
Theor. Comput. Sci., 47(3):85–93, 1986. Earlier version in STOC ’85.

[VW85] Uzi Vishkin and Avi Wigderson. Trade-offs between depth and width in parallel com-
putation. SIAM J. Comput., 14(2):303–314, 1985. Earlier version in FOCS ’83.

[Wat02] John Watrous. Limits on the power of quantum statistical zero-knowledge. In 43rd
IEEE FOCS, pages 459–468, 2002.

[Wat03] John Watrous. PSPACE has constant-round quantum interactive proof systems.
Theor. Comput. Sci., 292(3):575–588, 2003. Earlier version in FOCS ’99.

[Wat09] John Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput., 39(1):25–
58, 2009. Earlier version in STOC ’06.

[Weg91] Ingo Wegener. The Complexity of Boolean Functions. Wiley Teubner on Applicable
Theory in Computer Science. John Wiley and Sons Ltd., 1991.

[Yap83] Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes.
Theor. Comput. Sci., 26:287–300, 1983.

75

A Alternative proofs of distributional stability

A.1 A proof based on Raz’s lemma

R. Impagliazzo and S. Vadhan noted a similarity between distributional stability lemmas and a
probabilistic lemma implicit in work of Raz [Raz98]. Vadhan pointed us to the following convenient
form, given by Shaltiel in [Sha10, Lemma 3.1]:

Lemma A.1. There is a c > 0 for which the following holds. Let X1, . . . , Xt be i.i.d. random
variables, and T an event with Pr[T] ≥ 2−∆. Then for the conditioned variables Xj

[T] we have

Ej∼U[t] [||X
j
[T] −X

j ||stat] ≤ ε :=

√
c∆

t
.

With this lemma we can derive a distributional stability result as follows. Suppose R : St →
{0, 1}≤t′ is given, and consider independent inputs Xj ∼ D to R. We let R denote the random
output value. For any output z of R, Lemma A.1 above implies that

Ei∼U[n]
[||Xj

[R=z] −X
j ||stat] ≤

√
c log2(1/Pr[R = z])/t .

Taking expectations over z ∼ R and using Jensen’s inequality,

Ez∼R,i∼U[n]
[||Xj

[R=z] −X
j ||stat] ≤ Ez

[√
c log2(1/Pr[R = z])/t

]
≤
√

Ez [c log2(1/Pr[R = z])/t]

=
√
c ·H(R)/t

(by the definition of Shannon entropy)

<
√
c(t′ + 1)/t .

Let R′ = R(Y 1, . . . , Y t) denote a sample of R based on inputs Y 1, . . . , Y t ∼ D⊗t that are inde-
pendent of X1, . . . , Xt. Now the crucial observation is that, for each j ∈ [t], we have the chain of
equalities

Ez[||Xj
[R=z] −X

j ||stat] = ||(Xj ,R)− (Xj ,R′)||stat = Exj∼D[||R[Xj=xj] −R||stat] .

Each equality follows from the “distinguishability interpretation” of statistical distance. Combining
we get

Exj∼D[||R[Xj=xj] −R||stat] <
√
c(t′ + 1)/t) ,

which is comparable to what we got from the previous approach (up to constant factors; here we
have assumed i.i.d. variables Xj , but this is not essential for this approach).

A.2 A proof based on the Average Encoding Theorem

The Average Encoding Theorem of [KNTSZ07] is a tool in quantum information theory, that has
the following classical analogue. (See [SV08, Fact 5], where a purely classical proof is given. We
restate the result slightly, converting from `1 distance to statistical distance.)

76

Theorem A.2. Let X,M be random variables. Let Π be the distribution governing M . Then for
the conditioned distributions Π[X=x] we have

∑
x

Pr[X = x] · ||Π[X=x] −Π||stat ≤
√

ln 2 · I(X;M)

2
.

Using Theorem A.2 along with techniques suggested by Nayak and similar to those in the proof
of [KNTSZ07, Theorem 5.4],51 we can derive a distributional-stability result as follows. Again say
we are given R : St → {0, 1}t′ , and consider independent inputs Xj ∼ D to R, giving an output
distribution denoted R. Applying Theorem A.2 to X := Xj ,M := R, we have

Exj∼Xj

[
||R[Xj=x] −R||stat

]
≤
√

ln 2 · I(Xj ; R)

2
.

Averaging over j ∈ [t] and applying Jensen’s inequality and Lemma 4.4, we obtain

Ej∼U[t],xj∼Xj

[
||R[Xj=x] −R||stat

]
≤ Ej∼U[t]

[√
ln 2 · I(Xj ; R)

2

]

≤

√
ln 2 · Ej∼U[t] [I(Xj ; R)]

2

≤
√

ln 2 · (t′ + 1)

2t
.

B Our original distributional stability lemma

In this section we include our original proof of a distributional stability lemma, based on coding-
theoretic ideas. This lemma proves a distributional stability result for mappings R : {0, 1}t×n →
{0, 1}≤t′ , where t′+ 2 ≤ t. In an earlier draft, we used more complicated ideas to prove complexity
upper bounds from AND-compression reductions where t′ = O(t log t). This latter case can now be
handled in the same way as the case t′ � t, using the alternative bound on distributional stability
provided by Lemma 6.2, item 2.

First, we provide some further needed background.

B.1 Entropy and the unreliability of compressive encodings

It is a basic principle of information theory that one cannot reliably encode a uniformly-generated
t-bit message by an encoding of length t − 2 or less. (We can save essentially one bit by using
a variable-length output.) Below we state and prove a standard claim that generalizes this fact,
giving quantitative bounds on the reliability of compressive encoding methods.

Lemma B.1. Let t ∈ N+, and let U be some finite universe. Say we are given a possibly-randomized
“encoding” function

Enc(x, y) : {0, 1}t × {0, 1}N → U ,

51(That proof uses a version of the Average Encoding Theorem that treats Hellinger distance rather than statistical
distance.)

77

depending on a “message” input x ∈ {0, 1}t along with a “public randomness” input y ∈ {0, 1}N .
(Enc may also have additional internal randomness.) Say we are also given a (possibly-randomized,
possibly-unreliable) “decoding” function

Dec(x, y) : U × {0, 1}N → {0, 1}t ,

that also has access to the public randomness y.
Suppose X,Y are two independent random variables over {0, 1}t, {0, 1}N respectively. For j ∈

[t], let
pj := Pr

X,Y
[Decj(Enc(X,Y), Y) = Xj] ,

where X = (X1, . . . , Xt), and where Decj is the jth output bit of Dec.
Let pavg := 1

t

∑t
j=1 pj. Then, we must have

H(pavg) ≥
1

t
(H(X)− log2(|U |)) .

Our proof is closely modeled on the proof of a corresponding, but deeper, quantum result [KdW04,
Appendix B].52 To prove Lemma B.1, we will use another basic information-theoretic fact, Fano’s
inequality:

Lemma B.2 (Fano). [CT06, Chapter 2] Suppose Zin, Zout are two random variables: Zin an
“input message” over some alphabet Σ, and Zout an “output message” over any domain. Let Z̃in
be a (possibly-randomized) function of Zout, that attempts to recover the value Zin. Let

perr := Pr[Z̃in 6= Zin] .

Here the randomness is over the entire experiment. Then, we have

H(perr) + perr · log2 (|Σ| − 1) ≥ H(Zin|Zout) .

We only use the case |Σ| = 2, so the second term on the left-hand side vanishes.

Proof of Lemma B.1. First we ask whether pavg ≥ .5. If not, we simply negate all of the decoding
functions Decj , giving the modified average success probability p′avg = 1−pavg, for which H(p′avg) =
H(pavg). Next, note that the success probabilities pj are taken over the randomness both in X and
in Y (as well as in Enc,Dec). As Y is independent of X, we may non-uniformly fix some setting to
Y that maximizes the sum of the conditional success probabilities. Then the re-modified average
success probability satisfies p′′avg ≥ p′avg ≥ .5. As H(·) is decreasing on [.5, 1], any lower bound
proved for H(p′′avg) will also lower-bound the H(pavg) for the original encoding scheme with public
randomness. Thus in the remainder of the proof, we assume pavg ≥ .5 and that the scheme uses no
public randomness: our encoding Enc applies to X alone, and our decoding functions apply to the
message Enc(X) alone.

The chain rule for conditional entropy and the subadditivity of entropy imply that

H(X|Enc(X)) =

t∑
j=1

H(Xj |X1, . . . , Xj−1, Enc(X)) ≤
t∑

j=1

H(Xj |Enc(X)) . (34)

52(or, Appendix A in the arxiv version. This part of [KdW04] is itself a rederivation of a result from [Nay99b]; a
similar result and proof appears in Nayak’s thesis [Nay99a, Theorem 3.2.8].)

78

Next, we apply Fano’s inequality, with Zin := Xj , and Zout := Enc(X). Thus in this analysis
we simply view (Xj′)j′ 6=j as additional sources of randomness in the encoding process. We let

Z̃in := Decj(Enc(X)). Xj is binary—Σ = {0, 1}—so Fano’s inequality gives

H(pj) = H(1− pj) ≥ H(Xj |Enc(X)) .

Summing over j and using Eq. (34),

t∑
j=1

H(pj) ≥ H(X|Enc(X))

≥ H(X)−H(Enc(X)) , (35)

again using subadditivity. Now, Enc(X) is a message over U , so H(Enc(X)) ≤ log2(|U |). Also,
the function H is concave on [0, 1]. Applying these observations to Eq. (35), and using Jensen’s
inequality, we have

H(pavg) ≥
1

t

t∑
j=1

H(pj) ≥
1

t
(H(X)− log2(|U |)) .

B.2 Bounds on the inverse entropy function

For α ∈ [0, 1], we will denote by H−1
+ (α) the unique H-preimage of α in the range [.5, 1]. Similarly,

let H−1
− (α) denote the unique H-preimage of α in the range [0, .5]. The following bounds on the

inverse entropy function are useful in understanding the bounds provided by our original distribu-
tional stability lemma (Lemma B.4, to be presented shortly). These bounds on H−1

+ (·) are meant
to be simple and illustrative, and are not quite best-possible.

Lemma B.3. We have the following facts:

1. If m > 0 is sufficiently large, then H−1
+ (1/m) < 1− 1/(4m log2m).

2. H−1
+ (1− δ) ≤ .5 +

√
ln 2
2

√
δ +O(δ3/2).

Proof. (1.) First consider any value p ∈ (0, 1/2). We can upper-bound H(p) in the following way:

H(p) = p log2(1/p) + (1− p︸ ︷︷ ︸
≤1

) log2(1/(1− p)︸ ︷︷ ︸
≤1+2p

)

< p log2(1/p) + 2p︸︷︷︸
(using log(1+c)<c for c>0)

< 3p log2(1/p) .

From this, one can easily verify that for m ≥ 106, we have

H

(
1

4m log2m

)
<

1

m
.

79

Thus for such m,

H−1
−

(
1

m

)
>

1

4m log2m
,

so that

H−1
+

(
1

m

)
= 1−H−1

−

(
1

m

)
< 1− 1

4m log2m
,

giving item 1.

(2.) The binary entropy function H is infinitely differentiable on (0, 1), with

H(.5) = 1, H ′(.5) = 0, H ′′(.5) = −4(ln 2)−1 .

Thus for β ∈ [0, .25) we have

H(.5 + β) ≤ 1− 4(ln 2)−1β2 +O(β3) .

By considering settings β :=
√

ln 2
2

√
δ ± O(δ3/2) and using that H(·) is decreasing on (.5, 1), we

verify item 2.

B.3 The lemma

Lemma B.4. Let R(x1, . . . , xt) : {0, 1}t×n → {0, 1}≤t′ be any possibly-randomized mapping, where
t, t′ ∈ N+ satisfy t′ + 2 ≤ t.

Then, R is δ-distributionally stable with respect to any input distributions D1, . . . ,Dt, where

δ := 2H−1
+

(
1− t′ + 1

t

)
− 1 .

We will prove Lemma B.4 by a reduction to an encoding/decoding task that allows us to apply
Lemma B.1.

Proof of Lemma B.4. Let D1, . . . ,Dt be independent distributions over {0, 1}n, and for j ∈ [t], let
γj be as in Definition 6.1 for F := R.

Consider the following encoding/decoding experiment involving t “Receivers.” In the experi-
ment, we will use R as a communication channel to attempt to transmit t bits b1, . . . , bt. Receiver
j ∈ [t] will be responsible for attempting to recover the value bj . Formally:

1. For j ∈ [t], let yj , wj ∼ Dj (here yj , wj are independent of each other and of all other yj
′
, wj

′
);

2. Also, and independently, for j ∈ [t] let bj ∼ U{0,1};

3. If bj = 0, let xj := yj . Otherwise, let xj := wj ;

4. Let z := R(x1, . . . , xt) (a possibly-randomized value), and let z be sent to the Receivers. Let
{yj}j∈[t] be visible to the receivers as public randomness;

5. Each Receiver j outputs a guess b̃j for bj , based on the values of the two random variables yj

and z). Specifically, Receiver j uses the maximum-likelihood rule b̃j := ML(b|yj , z), described
in Section 2.1.

80

Note that in making the guess b̃j , Receiver j does not inspect the values yj
′
, j′ 6= j.

We analyze this experiment. First observe that, conditioned on a value yj seen by Receiver
j and on the value bj ∈ {0, 1} (which Receiver j does not see in the actual experiment), but
leaving the other values {yj′}j 6=j unconditioned, the conditional distribution on z is that z ∼
R(D1, . . . ,Dj−1, y

j ,Dj+1, . . . ,Dt) if bj = 0, and z ∼ R(D1, . . . ,Dj , . . . ,Dt) if bj = 1.
Also, bj is unbiased and independent of yj . Thus, by the distinguishability interpretation of

statistical distance (see Section 2.1), Receiver j’s success probability in guessing bj , conditioned
exclusively on an observed value yj , equals

1

2

(
1 +

∣∣∣∣R(D1, . . . ,Dj−1, y
j ,Dj+1, . . . ,Dt)−R(D1, . . . ,Dj , . . . ,Dt)

∣∣∣∣
stat

)
.

Thus Receiver j’s overall success probability in the experiment is precisely 1
2(1 + γj), where γj is

as in the definition of distributional stability for R with respect to D1, . . . ,Dt.
In our present setup, we can regard

z = R(x1, . . . , xt) =: Enc(b1, . . . , bt, y
1, . . . , yt)

as a randomized encoding function of b1, . . . , bt, with public randomness y1, . . . , yt and additional
private randomness w1, . . . , wt. Similarly, we can view

(b̃1, . . . , b̃t) =: Dec(z, y1, . . . , yt)

as a (deterministic) decoding function. The success probability of our encoding/decoding experi-
ment in successfully decoding bj is 1

2(1 + γj).

Now H(b1, . . . , bt) = t, and H(Enc(b1, . . . , bt, y
1, . . . , yt)) ≤ log2

(∣∣∣{0, 1}≤t′∣∣∣) < t′+1. Applying

Lemma B.1, we find that

H

1

2

1 +
1

t

t∑
j=1

γj

 ≥ 1

t

(
t− (t′ + 1)

)
= 1− t′ + 1

t
,

which implies that

1

t

t∑
j=1

γj ≤ 2H−1
+

(
1− t′ + 1

t

)
− 1 = δ .

Thus, R is δ-DS with respect to D1, . . . ,Dt. As these distributions were arbitrary, this proves
Lemma B.4.

C Proof of quantum distributional stability

We use various concepts and results of quantum information theory. In particular, we assume
familiarity with the notion of bipartite and reduced states. For a bipartite state ρA,B on subsystems
A,B, we let ρA (resp. ρB) denote the reduced state over A (resp.B). We let S(ρ) := −Tr(ρ log2 ρ)
denote the Von Neumann entropy of a quantum state (here, identifying ρ with its density matrix).
In analogy to the classical case, the entropy of a d-qubit state can be shown to be at least 0 and at

81

most d. We define the quantum mutual information between subsystems A,B of a bipartite state
ρAB as

Iq(A;B) := S(ρA) + S(ρB)− S(ρAB) .

See [NC00], and Chapter 11 in particular, for more background in quantum information.
We will sometimes speak of quantum systems containing a subsystem that is a classical random

variable X. By this we mean a state of form

ρX,Y =
∑

x∈supp(X)

Pr[X = x] · |x〉〈x| ⊗ σx , (36)

for some collection of quantum states {σx} on a fixed number of qubits (the “Y -subsystem”).

Lemma C.1. [NC00, Theorem 11.8.5, p. 513] For a classical random variable X, and a state of
the form in Eq. (36), we have

S(ρX,Y) = H(X) +
∑
x

Pr[X = x]S(σx) .

In particular, considering the case where Y is an empty register, we have S(ρX) = H(X).
We have the following elementary bound on the quantum mutual information between a classical

message and its quantum encoding.53

Lemma C.2. For a classical random variable X, and a state of the form in Eq. (36), with the
states {σx} on d qubits, we have

Iq(X;Y) = S(ρY)−
∑
x

Pr[X = x]S(σx) ≤ d .

Proof. Using Lemma C.1, we calculate

Iq(X;Y) = S(ρX) + S(ρY)− S(ρXY)

= H(X) + S(ρY)−

[
H(X) +

∑
x

Pr[X = x]S(σx)

]
= S(ρY)−

∑
x

Pr[X = x]S(σx)

≤ d ,

since ρY consists of d qubits and S(σx) ≥ 0 for each x.

Not all properties of classical entropy and mutual information are inherited by their quantum
counterparts.54 However, we have [Nay99a, p. 33 and Appendix A]:

Fact C.3. Quantum mutual information obeys the following properties, for all X,Y, Z:

1. Iq(X;Y) = Iq(Y ;X) ≥ 0;

53I thank Scott Aaronson and Thomas Vidick for helping me to understand this fact.
54For example, it is not generally true that S(ρAB) ≤ S(ρA) by analogy with the fact that H((X,Y)) ≥ H(X).

Fact 4.1. Note, though, that we don’t use this classical fact in proving Lemma 6.2.

82

2. Iq(X; (Y,Z)) = Iq(X;Y) + Iq((X,Y);Z)− Iq(Y ;Z);

3. (Strong subadditivity) Iq(X; (Y,Z)) ≥ Iq(X;Y);

4. Iq(X;Z) = 0 if the subsystems X,Z are independent classical random variables.

Item 3 is a nontrivial fact in the quantum setting, with multiple equivalent formulations;
see [NC00, Chapter 11].

With these facts in hand, the proof of Lemma C.4 below exactly follows that of Lemma 4.4.

Lemma C.4. If X1, . . . , Xt are independent classical random variables and Y a quantum subsys-
tem, then

Iq(Y ; (X1, . . . , Xt)) ≥
∑
j∈[t]

Iq(Y ;Xj) .

Next, we need quantum analogues of Pinsker’s and Vajda’s inequalities. For mixed states ρ, σ
over the same number of qubits, define the relative entropy (a quantum analogue of Kullback-Leibler
divergence) as

S(ρ||σ) := Tr(ρ log2(σ))− S(ρ) .

We also have the following analogue of Fact 4.6 [KNTSZ07, p. 10]:

Fact C.5. I(A;B) = S(ρAB||ρA ⊗ ρB).

A quantum Pinsker inequality was explicitly proved in [KNTSZ07, Theorem III.1].55 However,
that proof actually demonstrates a more general principle:

Theorem C.6 ([KNTSZ07]). Suppose that for some α, β ≥ 0, the (classical) statistical distance
and Kullback-Leibler divergence obey the relationship

||X − Y ||stat ≥ α =⇒ DKL(X||Y) ≥ β .

for every pair of classical distributions X,Y .
Then, for any pair ρ, σ of quantum states,

||ρ− σ||tr ≥ α =⇒ S(ρ||σ) ≥ β .

Combining this principle with the classical Pinsker and Vajda inequalities, we obtain:

Corollary C.7 (Quantum Pinsker inequality). For any states ρ, σ,

S(ρ||σ) ≥ 2

ln 2
· ||ρ− ρ′||2tr

Corollary C.8 (Quantum Vajda inequality). For any states ρ, σ,

S(ρ||σ) ≥ 1

ln 2

(
ln

(
1

1− ||ρ− σ||tr

)
− 1

)
.

55An earlier version appears in [OP04].

83

In the quantum setting we let R denote the mixed quantum state R(X1, . . . , Xt), where Xj ∼
Dj . The inequality

Iq((X
1, . . . , Xt); R) ≤ t′

follows from Lemma C.1, since R ∈ MSt′ . With the assembled tools in hand, the proof of
Lemma 8.10 is essentially identical to that of Lemma 6.2. The one difference is that the clas-
sical equality

||(Xj ,R)− (Y j ,R)||stat = Exj∼Dj

[∣∣∣∣R (D1, . . . ,Dj−1, x
j ,Dj+1, . . . ,Dt

)
−R (D1, . . . ,Dt)

∣∣∣∣
stat

]
we used there is replaced by the inequality

||(Xj ,R)− (Y j ⊗R)||tr ≥ Exj∼Dj

[∣∣∣∣R (D1, . . . ,Dj−1, x
j ,Dj+1, . . . ,Dt

)
−R (D1, . . . ,Dt)

∣∣∣∣
tr

]
.

This inequality follows by considering the experiment that first measures the Xj register, then
performs an optimal distinguishing measurement on R conditioned on the outcome of the first
measurement. Note that this inequality goes in the needed direction.

84

	Introduction
	Instance compression and parametrized problems
	Previous work: results and motivation
	Our results
	Results on classical compression
	Results on quantum compression

	Our techniques
	The overall approach
	The Disguising-Distribution Lemma
	Extension to the quantum case

	Organization of the paper

	Preliminaries I
	Statistical distance and distinguishability

	Proof of Theorem 1.1
	Preliminaries II
	Information theory background
	Basic complexity classes and promise problems
	Arthur-Merlin protocols
	Statistical zero-knowledge and the SD problem
	f-compression reductions

	Parametrized problems and parametrized compression
	Parametrized problems
	OR-expressive and AND-expressive parametrized problems
	Parametrized compression
	Connecting parametrized compression and f-compression

	Technical lemmas
	Distributional stability
	Sparsified distributional stability
	Building disguising distributions

	Limits to efficient (classical) compression
	Complexity upper bounds from OR-compression schemes
	Application to AND- and OR-compression of NP-complete languages
	On f-compression for combining functions of high block sensitivity
	Limits to strong compression for parametrized problems
	Application to problems with polynomial kernelizations

	Extension to quantum compression
	Trace distance and distinguishability of quantum states
	Quantum f-compression
	Quantum complexity classes
	Quantum distributional stability
	Building quantum disguising distributions
	Complexity upper bounds from quantum compression schemes

	On f-compression for combining functions of low block sensitivity
	Eligible functions and their properties
	A codeword-reconstruction result
	None-versus-one protocols
	Membership comparability
	From f-compression to membership-comparison protocols
	Application to AND- and OR-compression

	Questions for further study
	Alternative proofs of distributional stability
	A proof based on Raz's lemma
	A proof based on the Average Encoding Theorem

	Our original distributional stability lemma
	Entropy and the unreliability of compressive encodings
	Bounds on the inverse entropy function
	The lemma

	Proof of quantum distributional stability

