
New Evidence for the AND-
and OR-Conjectures

Andrew Drucker

MIT
June 2012

Basic concepts
•  Given: an instance x of a decision problem L.
•  Is x ∈ L?

•  Instance Compression: an algorithm A(x) that
outputs a shorter string x’, such that:

 x’ is in some target language L’ iff x ∈ L.

[Harnik, Naor ‘06; Downey, Fellows; earlier works]

Self-compression
(“kernelization”)

2 A D 3 6 F
G 7 4 E F
6 5 2 1 C 4

1 A 6 9 3 G 7
2 C 3 6 9

G F 2 3 4 D C 6
9 B G 4 2 F 7 A 5 1
D B 1 C F 8 2

C G E 5 9 2 1
B D F 1 C E 4 8 5 9

1 2 4 9 5 D C E
6 F 8 3 B

D 5 7 2 1 9 F
F 9 C 4 5 G

D 6 C 3 2
1 G F A 3 4

Self-compression
(“kernelization”)

2 A D 3 6 F
G 7 4 E F
6 5 2 1 C 4

1 A 6 9 3 G 7
2 C 3 6 9

G F 2 3 4 D C 6
9 B G 4 2 F 7 A 5 1
D B 1 C F 8 2

C G E 5 9 2 1
B D F 1 C E 4 8 5 9

1 2 4 9 5 D C E
6 F 8 3 B

D 5 7 2 1 9 F
F 9 C 4 5 G

D 6 C 3 2
1 G F A 3 4

General compression

2 A D 3 6 F
G 7 4 E F
6 5 2 1 C 4

1 A 6 9 3 G 7
2 C 3 6 9

G F 2 3 4 D C 6
9 B G 4 2 F 7 A 5 1
D B 1 C F 8 2

C G E 5 9 2 1
B D F 1 C E 4 8 5 9

1 2 4 9 5 D C E
6 F 8 3 B

D 5 7 2 1 9 F
F 9 C 4 5 G

D 6 C 3 2
1 G F A 3 4

General compression

2 A D 3 6 F
G 7 4 E F
6 5 2 1 C 4

1 A 6 9 3 G 7
2 C 3 6 9

G F 2 3 4 D C 6
9 B G 4 2 F 7 A 5 1
D B 1 C F 8 2

C G E 5 9 2 1
B D F 1 C E 4 8 5 9

1 2 4 9 5 D C E
6 F 8 3 B

D 5 7 2 1 9 F
F 9 C 4 5 G

D 6 C 3 2
1 G F A 3 4

General compression

2 A D 3 6 F
G 7 4 E F
6 5 2 1 C 4

1 A 6 9 3 G 7
2 C 3 6 9

G F 2 3 4 D C 6
9 B G 4 2 F 7 A 5 1
D B 1 C F 8 2

C G E 5 9 2 1
B D F 1 C E 4 8 5 9

1 2 4 9 5 D C E
6 F 8 3 B

D 5 7 2 1 9 F
F 9 C 4 5 G

D 6 C 3 2
1 G F A 3 4

 Target problem could be harder!

Why study instance compression?

Why study general compression?

Why study general compression?

1)  As with kernelization, can be the first step to solving
an instance.

•  More compression → Greater efficiency!

Why study general compression?

1)  As with kernelization, can be the first step to solving
an instance.

•  More compression → Greater efficiency!

•  Of course, complexity of target language matters….

Why study general compression?

2) Compression makes problems easier to store and
communicate.

Why study general compression?

2) Compression makes problems easier to store and
communicate.

MAKE	 IT	
QUICK…	

BLACK	
WINS!	

Why study general compression?

3)  Transforming a problem to a different domain might
lead to new insights.

•  Idea: leave the problem in improved form for future
generations [Harnik, Naor ’06]

Why study general compression?

3)  Transforming a problem to a different domain might
lead to new insights.

•  Idea: leave the problem in improved form for future
generations [Harnik, Naor ’06]

•  Much of math can be viewed
 in this way…

Why study general compression?

4) Even general compression for hard problems would
 have interesting applications in cryptography…

 [Harnik, Naor ‘06]

Why study general compression?

5) Many known kernel lower-bound techniques apply to
general compression, not just kernelization!
[Fortnow, Santhanam ‘08; Dell, Van Melkebeek ‘10;
D. ‘12]

Why study general compression?

5) Many known kernel lower-bound techniques apply to
general compression, not just kernelization!
[Fortnow, Santhanam ‘08; Dell, Van Melkebeek ‘10;
D. ‘12]

•  Might as well give strongest possible impossibility

statements…

Why study general compression?

6) Studying limits of instance compression: an intriguing
 interplay of computational and info-theoretic ideas.

Why study general compression?

6) Studying limits of instance compression: an intriguing
 interplay of computational and info-theoretic ideas.

•  This talk:
 -new, strong limits to compression for many NP-hard

problems.
 -a notion of quantum compression to which our

methods apply.

Parametrized compression
•  Our convention here: a parametrized problem is just a

language!

 ---e.g., consisting of strings of form x = <G, k> for a

graph problem.

Parametrized compression
•  Our convention here: a parametrized problem is just a

language!

 ---e.g., consisting of strings of form x = <G, k> for a

graph problem.

•  Here k = k(x).

Strong compression
•  Say that A is a strong instance compression reduction

for (L, k), with target language L’, if, for all x:

1.  L’’(A(x)) = L(x);

2.  A runs in time poly(|x|);

3.  |A(x)| < poly(k(x)).

Strong compression
•  Say that A is a strong instance compression reduction

for (L, k), with target language L’, if, for all x:

1.  L’’(A(x)) = L(x);

2.  A runs in time poly(|x|);

3.  |A(x)| < poly(k(x)).

 Kernelization: L = L’

Limits of compression

Limits of compression
•  Problems that are not FPT are not strongly

compressible either.*

Limits of compression
•  Problems that are not FPT are not strongly

compressible either.*
 *(At least, not to a decidable L’.)

Limits of compression
•  Problems that are not FPT are not strongly

compressible either.*
 *(At least, not to a decidable L’.)

•  So for W[1]-, W[2]-hard problems (etc.), we

understand limits to compression.

Limits of compression
•  Problems that are not FPT are not strongly

compressible either.*
 *(At least, not to a decidable L’.)

•  So for W[1]-, W[2]-hard problems (etc.), we

understand limits to compression.

•  A general theory of limits to compression for

problems in FPT?

Limits of compression
•  Yes! [Bodlaender, Downey, Fellows, Hermelin ‘08];

[Harnik, Naor ’06]

•  Uses reducibility between compression tasks.

OR-SAT
•  Input: a collection ψ1 ,…, ψt of Boolean formulas
•  Output: b = ∨j	 [ψj ∈ SAT]	

OR-SAT
•  Input: a collection ψ1 ,…, ψt of Boolean formulas
•  Output: b = ∨j	 [ψj ∈ SAT]	
	

•  Parameter: k = max(|ψj|)

AND-SAT
•  Input: a collection ψ1 ,…, ψt of Boolean formulas
•  Output: b = ∧j	 [ψj ∈ SAT]	

	

•  Parameter: k = max(|ψj|)

AND-SAT
•  Input: a collection ψ1 ,…, ψt of Boolean formulas
•  Output: b = ∧j	 [ψj ∈ SAT]	

	

•  Parameter: k = max(|ψj|)

•  Do they have polynomial kernels?

AND-SAT
•  Input: a collection ψ1 ,…, ψt of Boolean formulas
•  Output: b = ∧j	 [ψj ∈ SAT]	

	

•  Parameter: k = max(|ψj|)

•  Do they have polynomial kernels?
•  Or strong compressions, for any target L’ ?

AND-SAT
•  Input: a collection ψ1 ,…, ψt of Boolean formulas
•  Output: b = ∧j	 [ψj ∈ SAT]	

	

•  Parameter: k = max(|ψj|)

•  Do they have polynomial kernels?
•  Or strong compressions, for any target L’ ?

 OPEN

One approach: sparsification

∨	

ψ2	 ψ3	 ψ4	 ψ5	 ψ1	

One approach: sparsification

∨	

ψ2	 ψ3	 ψ4	 ψ5	 ψ1	

One approach: sparsification

•  Just one possible way to compress an OR of
 SAT instances…

∨	

ψ2	 ψ3	 ψ4	 ψ5	 ψ1	

Limits of compression
•  [Bodlaender et al. ‘08]: Use hardness-of-

compression assumptions for OR-SAT, AND-SAT as
basis for general theory of compression limits:

Limits of compression
•  [Bodlaender et al. ‘08]: Use hardness-of-

compression assumptions for OR-SAT, AND-SAT as
basis for general theory of compression limits:

•  If OR-SAT does not have poly kernels, none of these

parametrized problems do either:
–  k-Path, k-Cycle, k-Short Cheap Tour
–  k-Graph Minor Order Test, k-Bounded Treewidth Subgraph

Test, k-Planar Subgraph Test
–  w-Independent Set, w-Dominating Set
–  k-Short Nondeterministic TM Accepting Computation

Limits of compression
•  [Bodlaender et al. ‘08]: Use hardness-of-

compression assumptions for OR-SAT, AND-SAT as
basis for general theory of compression limits:

•  If OR-SAT does not have poly kernels, none of these

parametrized problems do either:
–  k-Path, k-Cycle, k-Short Cheap Tour
–  k-Graph Minor Order Test, k-Bounded Treewidth Subgraph

Test, k-Planar Subgraph Test
–  w-Independent Set, w-Dominating Set
–  k-Short Nondeterministic TM Accepting Computation

•  Many other examples in subsequent works…

Limits of compression
•  [Bodlaender et al. ‘08]: Use hardness-of-

compression assumptions for OR-SAT, AND-SAT as
basis for general theory of compression limits:

•  If OR-SAT does not have poly kernels, none of these

parametrized problems do either:
–  k-Path, k-Cycle, k-Short Cheap Tour
–  k-Graph Minor Order Test, k-Bounded Treewidth Subgraph

Test, k-Planar Subgraph Test
–  w-Independent Set, w-Dominating Set
–  k-Short Nondeterministic TM Accepting Computation

•  Many other examples in subsequent works…
•  (Same implication holds for general strong

compression!)

Limits of compression
•  If AND-SAT does not have poly kernels, none of

these problems do:
–  k-Cutwidth, k-Modified Cutwidth, k-Search Number
–  k-Pathwidth, k-Treewidth, k-Branchwidth
–  k-Gate Matrix Layout, k-Front Size
–  w-3-Coloring, w-3-Domatic Number

Limits of compression
•  If AND-SAT does not have poly kernels, none of

these problems do:
–  k-Cutwidth, k-Modified Cutwidth, k-Search Number
–  k-Pathwidth, k-Treewidth, k-Branchwidth
–  k-Gate Matrix Layout, k-Front Size
–  w-3-Coloring, w-3-Domatic Number

 These two hardness assumptions:

the “OR- and AND-Conjectures”

Limits of compression
•  Relate hardness of compression to “standard”

complexity assumptions?

Limits of compression
•  Relate hardness of compression to “standard”

complexity assumptions?
•  For OR-SAT, *YES!*

Limits of compression
•  Relate hardness of compression to “standard”

complexity assumptions?
•  For OR-SAT, *YES!*

Theorem [Fortnow, Santhanam ’08]: No strong
compression for OR-SAT,

 unless NP ⊆ coNP/poly.

Limits of compression
•  Relate hardness of compression to “standard”

complexity assumptions?
•  For OR-SAT, *YES!*

Theorem [Fortnow, Santhanam ’08]: No strong
compression for OR-SAT,

 unless NP ⊆ coNP/poly.

•  Applies to deterministic compression schemes, and

randomized w/o false negatives.

Limits of compression
•  Relate hardness of compression to “standard”

complexity assumptions?
•  For OR-SAT, *YES!*

Theorem [Fortnow, Santhanam ’08]: No strong
compression for OR-SAT,

 unless NP ⊆ coNP/poly.

•  Applies to deterministic compression schemes, and

randomized w/o false negatives.
•  Compressibility of AND-SAT (and its relatives)

remained unclear.

Limits of compression
Theorem [D. ‘12]: No strong compression for OR-SAT
or for AND-SAT,

 unless NP ⊆ coNP/poly.

Limits of compression
Theorem [D. ‘12]: No strong compression for OR-SAT
or for AND-SAT,

 unless NP, coNP ⊆ SZK/poly.

Limits of compression
Theorem [D. ‘12]: No strong compression for OR-SAT
or for AND-SAT,

 unless NP, coNP ⊆ SZK/poly.

•  Applies to two-sided error compression schemes, even

with success probability quite close to 1/2.

Limits of compression
Theorem [D. ‘12]: No strong compression for OR-SAT
or for AND-SAT,

 unless NP, coNP ⊆ SZK/poly.

•  Applies to two-sided error compression schemes, even

with success probability quite close to 1/2.

•  Much more modest compression amounts also imply
NP ⊆ SZK/poly, if compression is more reliable.

Limits of compression
Theorem: No strong compression for AND-SAT,

 unless coNP ⊆ NP/poly.

Limits of compression
Theorem: No strong compression for AND-SAT,

 unless coNP ⊆ NP/poly.

For proof sketch:
•  Assume that compression reduction R for AND-SAT

is perfectly reliable:

 R(ψ1 , ψ2 , …, ψT) ∈ L’ iff ψ1 , …, ψT ∈ SAT

Limits of compression

•  R(ψ1 , ψ2 , …, ψT) ∈ L’ iff ψ1 , …, ψT ∈ SAT

Limits of compression

•  R(ψ1 , ψ2 , …, ψT) ∈ L’ iff ψ1 , …, ψT ∈ SAT

•  Let T = T(n) ≤ poly(n), and assume

 R(ψ1 , ψ2 , …, ψT): (formn)T → {0, 1}T/10 .

Limits of compression

•  R(ψ1 , ψ2 , …, ψT) ∈ L’ iff ψ1 , …, ψT ∈ SAT

•  Let T = T(n) ≤ poly(n), and assume

 R(ψ1 , ψ2 , …, ψT): (formn)T → {0, 1}T/10 .

•  Goal: use R to build a non-uniform, interactive proof

system for UNSAT.

Proof sketch
•  Basic observation: suppose ψ1 , …, ψT are

satisfiable, φ is not.

Proof sketch
•  Basic observation: suppose ψ1 , …, ψT are

satisfiable, φ is not.

•  Then, R(ψ1 , …, ψT) ≠ R(φ , ψ2 , …, ψT).

Proof sketch
•  Basic observation: suppose ψ1 , …, ψT are

satisfiable, φ is not.

•  Then, R(ψ1 , …, ψT) ≠ R(φ , ψ2 , …, ψT).

 ∈ L’ ∉ L’

Proof sketch
•  Basic observation’: suppose

 (ψ1 , …, ψT) ~ D ,
where D is a distribution over (SATn)T, and let j ∈ [T].

•  Then, R(ψ1 , …, ψT) , R(ψ1, ψ2 , …, φ, …, ψT)

 jth ind.

are far apart in statistical distance (dist = 1).

Proof sketch
•  Basic observation’: suppose

 (ψ1 , …, ψT) ~ D ,
where D is a distribution over (SATn)T, and let j ∈ [T].

•  Then, R(D) , R(D [φ, j])

are far apart in statistical distance (dist = 1).

A distinguishing task
•  Idea: to prove φ ∈ UNSAT, Prover will
“show off” ability to distinguish between dist’ns

 R(D) , R(D [φ, j]). 	

A distinguishing task
•  Idea: to prove φ ∈ UNSAT, Prover will
“show off” ability to distinguish between dist’ns

 R(D) , R(D [φ, j]). 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

A distinguishing task
•  Idea: to prove φ ∈ UNSAT, Prover will
“show off” ability to distinguish between dist’ns

 R(D) , R(D [φ, j]). 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

A distinguishing task
•  Idea: to prove φ ∈ UNSAT, Prover will
“show off” ability to distinguish between dist’ns

 R(D) , R(D [φ, j]). 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 it’s easy!	

A distinguishing task
•  Main Question: how to choose our D , j ?

 R(D) , R(D [φ, j]).

Indistinguishingability
•  Want: for all ψ ∈ SATn, Prover unable to distinguish

between dist’ns

 R(D) , R(D [ψ, j]). 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Indistinguishingability
•  Want: for all ψ ∈ SATn, Prover unable to distinguish

between dist’ns

 R(D) , R(D [ψ, j]). 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Indistinguishingability
•  Want: for all ψ ∈ SATn, Prover unable to distinguish

between dist’ns

 R(D) , R(D [ψ, j]). 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Indistinguishingability
•  Want: for all ψ ∈ SATn, Prover unable to distinguish

between dist’ns

 R(D) , R(D [ψ, j]). 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ??? 	

Indistinguishingability
•  Want: for all ψ ∈ SATn, Prover unable to distinguish

between dist’ns

 R(D) , R(D [ψ, j]). 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ??? 	

 D : a “disguising distribution”
 for R on SATn .

Efficient Sampleability
•  Also want: D sampleable in poly(n) time, with poly(n)

bits of non-uniform advice.
–  closeness of R(D), R(D [ψ, j]) depends on t, t’:

•  t’ = t – 1: distance ≤ 1 – 1/poly(n)
•  t’ = o(t): distance o(1)

Efficient Sampleability
•  Also want: D sampleable in poly(n) time, with poly(n)

bits of non-uniform advice.

•  Tall order…

–  closeness of R(D), R(D [ψ, j]) depends on t, t’:
•  t’ = t – 1: distance ≤ 1 – 1/poly(n)
•  t’ = o(t): distance o(1)

Efficient Sampleability
•  Also want: D sampleable in poly(n) time, with poly(n)

bits of non-uniform advice.

•  Tall order…

Main lemma: Such a D can be found!
–  closeness of R(D), R(D [ψ, j]) depends on t, t’:

•  t’ = t – 1: distance ≤ 1 – 1/poly(n)
•  t’ = o(t): distance o(1)

The upshot
•  Then, distinguishing task for

 R(D) , R(D [ψ, j])
gives a non-uniform, 2-message, private-coin proof
system for membership of ψ in UNSAT.

•  Implies UNSAT ∈NP/poly by standard techniques.

Indistinguishability
•  Focus on indistinguishability requirement:
For all ψ ∈SATn ,

 R(D) ≈ R(D [ψ, j])

Indistinguishability
•  Focus on indistinguishability requirement:
For all ψ ∈SATn ,

 R(D) ≈ R(D [ψ, j])

•  No clear good choice for j…

Indistinguishability
•  Focus on indistinguishability requirement:
For all ψ ∈SATn ,

 R(D) ≈ R(D [ψ, j])

•  No clear good choice for j…

ψ1 … ψT ψ2 ψ7
R

Indistinguishability
•  Focus on indistinguishability requirement:
For all ψ ∈SATn ,

 R(D) ≈ R(D [ψ, j])

•  No clear good choice for j… so, choose j uniformly!

ψ1 … ψT ψ2 ψ7
R

Indistinguishability
•  Focus on indistinguishability requirement:
For all ψ ∈SATn ,

 Ej [| | R(D) - R(D [ψ, j]) | | stat] <= .9

•  No clear good choice for j… so, choose j uniformly!

ψ1 … ψT ψ2 ψ7
R

Indistinguishability
•  F
For all ψ ∈SATn ,

 Ej [| | R(D) - R(D [ψ, j]) | | stat] <= .9

The game perspective
•  Consider this 2-player, simul-move game:

P1 “Maker”

P2 “Breaker”

The game perspective
•  Consider this 2-player, simul-move game:

P1 “Maker”

P2 “Breaker”

D	

The game perspective
•  Consider this 2-player, simul-move game:

P1 “Maker”

P2 “Breaker”

D	

ψ	

The game perspective
•  Consider this 2-player, simul-move game:

P1 “Maker”

P2 “Breaker”

D	

ψ	

 Payoff to Breaker:
 Ej [| | R(D) - R(D[ψ, j]) | | stat]

The game perspective
•  Consider this 2-player, simul-move game:

P1 “Maker”

P2 “Breaker”

D	

 Payoff to Breaker:
 Ej [| | R(D) - R(D[ψ, j]) | | stat]

ψ	

Want to show: ∃ a Maker strategy to
force Breaker payoff <= .9.

The game perspective
•  Consider this 2-player, simul-move game:

P1 “Maker”

P2 “Breaker”

D	

 Payoff to Breaker:
 Ej [| | R(D) - R(D[ψ, j]) | | stat]

ψ	

Idea: Use Minimax Theorem!

The game perspective
•  Consider this 2-player, simul-move game:

P1 “Maker”

P2 “Breaker”

D	

ψ	

Minimax theorem says: it’s enough to
Show that against any randomized
(“mixed”) strategy for Breaker,
∃a good strategy for Maker.

A simplification
•  Minimax theorem says: it’s enough to show that

against any randomized (“mixed”) strategy for
Breaker, ∃a good strategy for Maker.

A simplification
•  Minimax theorem says: it’s enough to show that

against any randomized (“mixed”) strategy for
Breaker, ∃a good strategy for Maker.

•  Just show: ∀ distributions Y over SATn ,
 ∃ a dist’n DY over (SATn)T such that:

Ej, ψ~Y [|| R(DY) - R(DY [ψ, j]) || stat] <= .9

A simplification
•  Minimax theorem says: it’s enough to show that

against any randomized (“mixed”) strategy for
Breaker, ∃a good strategy for Maker.

•  Just show: ∀ distributions Y over SATn ,
 ∃ a dist’n DY over (SATn)T such that:

Ej, ψ~Y [|| R(DY) - R(DY [ψ, j]) || stat] <= .9

•  Natural idea: try DY := Y ⊗ Y ⊗ … ⊗ Y.

Product distributions
 DY = Y ⊗ Y ⊗ … ⊗ Y

•  If j ∈ [t] is uniform, ψ ~ Y, then forming

the dist’n
 DY[ψ, j]

 is like conditioning on a uniformly-chosen
coordinate of DY!

•  Intuition: this shouldn’t affect output

distribution by too much, since |R| < t…

Product distributions
 DY = Y ⊗ Y ⊗ … ⊗ Y

•  If j ∈ [T] is uniform, ψ ~ Y, then forming the dist’n

 DY[ψ, j]
 is like conditioning on a uniformly-chosen
 coordinate of DY !

Product distributions
 DY = Y ⊗ Y ⊗ … ⊗ Y

•  If j ∈ [T] is uniform, ψ ~ Y, then forming the dist’n

 DY[ψ, j]
 is like conditioning on a uniformly-chosen
 coordinate of DY !

•  Intuition: this shouldn’t affect R’s output

distribution by too much, since |R| << T…

Product distributions
 DY = Y ⊗ Y ⊗ … ⊗ Y

•  If j ∈ [T] is uniform, ψ ~ Y, then forming the dist’n

 DY[ψ, j]
 is like conditioning on a uniformly-chosen
 coordinate of DY !

•  Intuition: this shouldn’t affect R’s output

distribution by too much, since |R| << T…

•  Can prove this intuition.
•  Intuition: this

Product distributions
 DY = Y ⊗ Y ⊗ … ⊗ Y

•  If j ∈ [T] is uniform, ψ ~ Y, then forming the dist’n

 DY[ψ, j]
 is like conditioning on a uniformly-chosen
 coordinate of DY !

•  Intuition: this shouldn’t affect R’s output

distribution by too much, since |R| << T…

•  Basic idea: mutual information between R(DY) and a
typical input coord. is small…

The game perspective

P1 “Maker”

P2 “Breaker”

The game perspective

P1 “Maker”

P2 “Breaker”

ψ ~ Y	

The game perspective

P1 “Maker”

P2 “Breaker”

DY

ψ ~ Y	

The game perspective

P1 “Maker”

P2 “Breaker”

DY

This choice works for Maker!

ψ ~ Y	

The game perspective

P1 “Maker”

P2 “Breaker”

Applying Minimax Thm…
A fixed choice works for
Maker!

The game perspective

P1 “Maker”

P2 “Breaker”

D*

The game perspective

P1 “Maker”

P2 “Breaker”

ψ 	

D*

The game perspective

P1 “Maker”

P2 “Breaker”

ψ 	

D*

	 	 Ej	 [|	 	 	 |	 	 	 	 	 R(D*)	 	 -‐	 	 R(D*	 [ψ,	 j])	 |	 |	 	 	 stat]	 	 	 	 <=	 	 	 	 .9	

The game perspective

P1 “Maker”

P2 “Breaker”

ψ 	

D*

	 	 Ej	 [|	 	 	 |	 	 	 	 	 R(D*)	 	 -‐	 	 R(D*	 [ψ,	 j])	 |	 |	 	 	 stat]	 	 	 	 <=	 	 	 	 .9	

Strictly, D* is a distribution over
distributions…

An issue
•  Problem: This D * may not be efficiently sampleable.

An issue
•  Problem: This D * may not be efficiently sampleable.

•  Idea: “Sparsify” Maker’s strategies!

An issue
•  Problem: This D * may not be efficiently sampleable.

•  Idea: “Sparsify” Maker’s strategies!

 DY = Y ⊗ Y ⊗ … ⊗ Y

An issue
•  Problem: This D * may not be efficiently sampleable.

•  Idea: “Sparsify” Maker’s strategies!

 DY = Y ⊗ Y ⊗ … ⊗ Y

 D’Y = Ŷ ⊗ Ŷ ⊗ … ⊗ Ŷ

 Ŷ = a fixed, poly(n)-sized sample from Y.

An issue
•  Problem: This D * may not be efficiently sampleable.

•  Idea: “Sparsify” Maker’s strategies!

 DY = Y ⊗ Y ⊗ … ⊗ Y

 D’Y = Ŷ ⊗ Ŷ ⊗ … ⊗ Ŷ

 Ŷ = a fixed, poly(n)-sized sample from Y.

Note: D’Y is easy to (non-uniformly) sample!

P1 “Maker”

P2 “Breaker”

P1 “Maker”

P2 “Breaker”

ψ ~ Y	

P1 “Maker”

P2 “Breaker”

D’Y

ψ ~ Y	

P1 “Maker”

P2 “Breaker”

This choice works
(almost as well) for
Maker!

ψ ~ Y	

D’Y

Wrapping up
•  Minimax Thm. now implies: a fixed distribution D**

over easy-to-sample distributions D’Y, that works
against all Breaker strategies.

•  Obtain our final Maker strategy D*** as a dist’n over
poly(n) samples drawn from D**.

Wrapping up
•  Minimax Thm. now implies: a fixed distribution D**

over easy-to-sample distributions D’Y, that works
against all Breaker strategies.

•  Obtain our final Maker strategy D*** as a dist’n over
poly(n) samples drawn from D**.

Wrapping up
•  Minimax Thm. now implies: a fixed distribution D**

over easy-to-sample distributions D’Y, that works
against all Breaker strategies.

•  Obtain our final Maker strategy D*** as a dist’n over
poly(n) samples drawn from D**.

D***	

Wrapping up
•  Minimax Thm. now implies: a fixed distribution D**

over easy-to-sample distributions D’Y, that works
against all Breaker strategies.

•  Obtain our final Maker strategy D*** as a dist’n over
poly(n) samples drawn from D**.

D***	
 @%#$!!

Wrapping up
•  Minimax Thm. now implies: a fixed distribution D**

over easy-to-sample distributions D’Y, that works
against all Breaker strategies.

•  Obtain our final Maker strategy D*** as a dist’n over
poly(n) samples drawn from D**.

D***	

This is the “Disguising Distribution”
Arthur will use in our protocol.

Quantum to the rescue?

•  Can we use the added computational power
of quantum algorithms,

 and the added expressive power of quantum states,
 to get around this limit to efficient compression?

Quantum to the rescue?

•  Can we use the added computational power
of quantum algorithms,

 and the added expressive power of quantum states,
 to get around this limit to efficient compression?

 x

 ρ

Compression to quantum states

•  Input: an instance (x, k) of parametrized decision
problem L.

•  Output of a quantum compression scheme: a quantum
state ρ on c = c(|x|, k) qubits, such that ρ “contains
the answer” to L(x):

•  ∃a measurement M, depending only on c, such that
 M(ρ) = L(x) (w. h. p.)

Compression to quantum states

•  Input: an instance (x, k) of parametrized decision
problem L.

•  Output of a quantum compression scheme: a quantum
state ρ on c = c(|x|, k) qubits, such that ρ “contains
the answer” to L(x):

•  ∃a measurement M, depending only on c, such that
 M(ρ) = L(x) (w. h. p.)

•  M need not be efficiently performable!

Compression to quantum states

•  Input: an instance (x, k) of parametrized decision
problem L.

•  Output of a quantum compression scheme: a quantum
state ρ on c = c(|x|, k) qubits, such that ρ “contains
the answer” to L(x):

•  ∃a measurement M, depending only on c, such that
 M(ρ) = L(x) (w. h. p.)

•  Strong compression: c(|x|, k) = kO(1).

Compression to quantum states

•  Quantum compression could share some of the uses
of classical compression.

•  Might be the basis for interesting new quantum
algorithms…

Quantum to the rescue?

•  Do efficient strong quantum compression reductions
exist for OR-SAT, AND-SAT?

Quantum to the rescue?

•  Do efficient strong quantum compression reductions
exist for OR-SAT, AND-SAT?

•  Probably not:

Theorem: No efficient strong quantum compression
for OR-SAT or AND-SAT,

 unless NP, coNP ⊆ QSZK/poly.

Quantum to the rescue?

•  Do efficient strong quantum compression reductions
exist for OR-SAT, AND-SAT?

•  Probably not:

Theorem: No efficient strong quantum compression
for OR-SAT or AND-SAT,

 unless NP, coNP ⊆ QSZK/poly.

•  Limits to compression are as quantitatively strong as

for our classical results.

Challenges

Challenges
•  Extend our lower bounds to the “oracle

communication model” of [Dell, Van Melkebeek ‘10]?

Challenges
•  Extend our lower bounds to the “oracle

communication model” of [Dell, Van Melkebeek ‘10]?

•  A positive theory of quantum instance compression?

Challenges
•  Extend our lower bounds to the “oracle

communication model” of [Dell, Van Melkebeek ‘10]?

•  A positive theory of quantum instance compression?

•  Other applications for “disguising distributions?”

Challenges
•  Extend our lower bounds to the “oracle

communication model” of [Dell, Van Melkebeek ‘10]?

•  A positive theory of quantum instance compression?

•  Other applications for “disguising distributions?”

hmm…	

Thanks!

