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Basic concepts 
•  Given: an instance x of a decision problem L.  
•  Is x ∈ L? 

•  Instance Compression: an algorithm A(x) that 
outputs a shorter string x’, such that: 

  
    x’ is in some target language L’   iff    x ∈ L. 

 
[Harnik, Naor ‘06; Downey, Fellows; earlier works] 
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               Target problem could be harder!
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3)  Transforming a problem to a different domain might 
lead to new insights. 

•  Idea: leave the problem in improved form for future 
generations [Harnik, Naor ’06] 

•  Much of math can be viewed  
    in this way… 



Why study general compression? 

4)  Even general compression for hard problems would  
 have interesting applications in cryptography… 

     [Harnik, Naor ‘06] 
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5)  Many known kernel lower-bound techniques apply to 
general compression, not just kernelization! 
[Fortnow, Santhanam ‘08; Dell, Van Melkebeek ‘10;  
D. ‘12] 
 
•  Might as well give strongest possible impossibility 

statements… 
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Why study general compression? 

6) Studying limits of instance compression: an intriguing 
 interplay of computational and info-theoretic ideas. 

•  This talk:   
 -new, strong limits to compression for many NP-hard 

problems. 
 -a notion of quantum compression to which our 

methods apply.  
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•  Our convention here: a parametrized problem is just a 

language!  
  
 ---e.g., consisting of strings of form x = <G, k>  for a 

graph problem. 
 
•  Here k = k(x). 
 



Strong compression 
•  Say that A is a strong instance compression reduction 

for (L, k), with target language L’, if, for all x: 
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1.    L’’(A(x)) =  L(x); 
 
2.    A runs in time poly(|x|); 
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   Kernelization:  L = L’ 
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problems in FPT? 

 



Limits of compression 
•  Yes!  [Bodlaender, Downey, Fellows, Hermelin ‘08]; 

[Harnik, Naor ’06]  

•  Uses reducibility between compression tasks. 
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One approach: sparsification 

•  Just one possible way to compress an OR of  
   SAT instances… 

∨	  

ψ2	   ψ3	   ψ4	   ψ5	  ψ1	  



Limits of compression 
•   [Bodlaender et al. ‘08]:               Use hardness-of-

compression assumptions for  OR-SAT, AND-SAT as 
basis for general theory of compression limits: 



Limits of compression 
•   [Bodlaender et al. ‘08]:               Use hardness-of-

compression assumptions for  OR-SAT, AND-SAT as 
basis for general theory of compression limits: 

 
•  If OR-SAT does not have poly kernels, none of these 

parametrized problems do either: 
–   k-Path,  k-Cycle, k-Short Cheap Tour 
–   k-Graph Minor Order Test, k-Bounded Treewidth Subgraph 

Test, k-Planar Subgraph Test 
–   w-Independent Set,  w-Dominating Set 
–   k-Short Nondeterministic TM Accepting Computation 



Limits of compression 
•   [Bodlaender et al. ‘08]:               Use hardness-of-

compression assumptions for  OR-SAT, AND-SAT as 
basis for general theory of compression limits: 

 
•  If OR-SAT does not have poly kernels, none of these 

parametrized problems do either: 
–   k-Path,  k-Cycle, k-Short Cheap Tour 
–   k-Graph Minor Order Test, k-Bounded Treewidth Subgraph 

Test, k-Planar Subgraph Test 
–   w-Independent Set,  w-Dominating Set 
–   k-Short Nondeterministic TM Accepting Computation 

•  Many other examples in subsequent works… 



Limits of compression 
•   [Bodlaender et al. ‘08]:               Use hardness-of-

compression assumptions for  OR-SAT, AND-SAT as 
basis for general theory of compression limits: 

 
•  If OR-SAT does not have poly kernels, none of these 

parametrized problems do either: 
–   k-Path,  k-Cycle, k-Short Cheap Tour 
–   k-Graph Minor Order Test, k-Bounded Treewidth Subgraph 

Test, k-Planar Subgraph Test 
–   w-Independent Set,  w-Dominating Set 
–   k-Short Nondeterministic TM Accepting Computation 

•  Many other examples in subsequent works… 
•  (Same implication holds for general strong 
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•  For OR-SAT,  *YES!* 
 
Theorem [Fortnow, Santhanam ’08]:  No strong 
compression for OR-SAT, 

    unless NP ⊆ coNP/poly. 
 
•  Applies to deterministic compression schemes, and 

randomized w/o false negatives. 
•  Compressibility of AND-SAT (and its relatives) 

remained unclear. 
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or for AND-SAT, 

    unless NP, coNP ⊆ SZK/poly. 
 
•  Applies to two-sided error compression schemes, even 

with success probability quite close to 1/2. 

•  Much more modest compression amounts also imply 
NP ⊆ SZK/poly, if compression is more reliable. 
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•  Goal: use R to build a non-uniform, interactive proof 

system for UNSAT. 
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 D :  a “disguising distribution”  
 for R on SATn . 
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Efficient Sampleability 
•  Also want:  D  sampleable in poly(n)  time, with poly(n) 

bits of non-uniform advice. 

•  Tall order…  

Main lemma:  Such a D can be found! 
–  closeness of R( D ), R(D [ψ, j] ) depends on t, t’: 

•  t’ = t – 1:   distance  ≤ 1 – 1/poly(n) 
•  t’ = o(t):     distance  o(1) 

 



The upshot 
•  Then, distinguishing task for 

    R( D )   ,   R(D [ψ, j] ) 
gives a non-uniform, 2-message, private-coin proof 
system for membership of ψ in UNSAT. 
 
•  Implies UNSAT ∈NP/poly by standard techniques. 
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•  Just show: ∀ distributions Y over SATn ,  
 ∃ a dist’n DY  over (SATn)T  such that:      

Ej, ψ~Y  [  ||     R( DY )  -  R(DY [ψ, j] ) ||   stat ]    <=   .9 
 
 
•  Natural idea: try  DY   :=    Y ⊗ Y ⊗ … ⊗ Y. 
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Product distributions 
      DY   =    Y ⊗ Y ⊗ … ⊗ Y 

 
•  If  j ∈ [T]  is uniform, ψ ~ Y, then forming the dist’n

      DY[ψ, j] 
 is like conditioning on a uniformly-chosen  
 coordinate of DY ! 

 
•  Intuition: this shouldn’t affect R’s output 

distribution by too much, since |R| << T…  

•  Basic idea: mutual information between R(DY) and a 
typical input coord. is small… 
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Strictly, D* is a distribution over 
distributions… 
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An issue 
•  Problem:  This D * may not be efficiently sampleable. 

•  Idea: “Sparsify” Maker’s strategies! 

 DY   =    Y ⊗ Y ⊗ … ⊗ Y 

 D’Y   =   Ŷ ⊗ Ŷ ⊗ … ⊗ Ŷ 

 Ŷ = a fixed, poly(n)-sized sample from Y. 
 
Note:   D’Y  is easy to (non-uniformly) sample! 
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P1  “Maker” 

P2  “Breaker” 

This choice works 
(almost as well) for 
Maker! 

ψ ~ Y	  

D’Y 
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Wrapping up 
•  Minimax Thm. now implies:   a fixed distribution D** 

over easy-to-sample distributions  D’Y, that works 
against all Breaker strategies. 

•  Obtain our final Maker strategy D*** as a dist’n over 
poly(n) samples drawn from D**. 

D***	  
 

This is the “Disguising Distribution” 
Arthur will use in our protocol. 
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Compression to quantum states 

•  Input: an instance (x, k) of parametrized decision 
problem L. 

•  Output of a quantum compression scheme: a quantum 
state ρ on   c = c(|x|, k)  qubits, such that ρ “contains 
the answer” to L(x): 

•  ∃a measurement M, depending only on c, such that 
    M(ρ)  =  L(x)       (w. h. p.) 
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Compression to quantum states 

•  Input: an instance (x, k) of parametrized decision 
problem L. 

•  Output of a quantum compression scheme: a quantum 
state ρ on   c = c(|x|, k)  qubits, such that ρ “contains 
the answer” to L(x): 

•  ∃a measurement M, depending only on c, such that 
    M(ρ)  =  L(x)       (w. h. p.) 

 
•  Strong compression: c(|x|, k) = kO(1). 



Compression to quantum states 

•  Quantum compression could share some of the uses 
of classical compression.  

•  Might be the basis for interesting new quantum 
algorithms… 
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Quantum to the rescue? 

•  Do efficient strong quantum compression reductions 
exist for OR-SAT, AND-SAT? 

•  Probably not: 

Theorem:  No efficient strong quantum compression 
for OR-SAT or AND-SAT, 

    unless NP, coNP ⊆ QSZK/poly. 
 
•  Limits to compression are as quantitatively strong as 

for our classical results. 
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Challenges 
•  Extend our lower bounds to the “oracle 

communication model” of [Dell, Van Melkebeek ‘10]? 

•  A positive theory of quantum instance compression? 

•  Other applications for “disguising distributions?” 

hmm…	




Thanks! 


