
High-Confidence Predictions Under Adversarial
Uncertainty

Andrew Drucker

IAS

Andrew Drucker, IAS High-Confidence Predictions 1/47



Setting: prediction on binary sequences

x = (x1, x2, x3, . . .) ∈ {0, 1}ω

Bits of x revealed sequentially.

Goal: make some nontrivial prediction about unseen bits of
sequence x , given bits seen so far.
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Setting: prediction on binary sequences

x = (x1, x2, x3, . . .)

Question: What kinds of assumptions on x are needed to
make interesting predictions?

Our message: Surprisingly weak ones.
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Modeling questions

Prediction: a game between the Predictor and Nature.

What kind of opponent is Nature?
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Probabilistic models

x = (x1, x2, x3, . . .)

x ∼ D,

where D is some known probability distribution.

Problem: how to choose correct D for realistic applications?
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Classes of assumptions

x = (x1, x2, x3, . . .)

Adversarial models:
x ∈ A,

where A ⊆ {0, 1}ω is some known set.

Interested in worst-case performance.

These assumptions can be quite “safe”...

Our focus today.
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Prior work on adversarial prediction

Gales and fractal dimension
[Lutz ‘03; Athreya, Hitchcock, Lutz, Mayordomo ‘07]

Gales: a class of betting strategies, to bet on unseen bits of
x ∈ A.

Goal: reach a fortune of ∞, on any x ∈ A.

The “handicap” we need can be related to measures of fractal
dimension for A...
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Prior work on adversarial prediction

Ignorant forecasting

What is the chance of rain tomorrow?

Basic test of a meteorologist: “calibration.”

If governing distribution D is known, easy to achieve with
Bayes’ rule...

But: calibration can also be achieved by an ignorant
forecaster! [Foster, Vohra ’98]

Andrew Drucker, IAS High-Confidence Predictions 8/47



Prior work on adversarial prediction

x = (x1, x2, x3, . . .)

These works’ goal: long-term, overall predictive success.

Our focus: make a single prediction with high confidence.
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0-prediction

Our main scenario: want to predict a single 0 among the
bits of x .

(We lose if prediction fails OR if we wait forever!)

Interpretation: choose a time to “safely” perform some
action;

[xt = 0] means “time t is safe.”
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Possible assumptions

ε-biased arrivals assumption: bits of x independent, with

Pr[xt = 1] = ε.

Best strategy succeeds with prob. 1− ε.
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Possible assumptions

Very strong assumption...

Idea (not new): study adversarial “relaxations” of ε-biased
model.
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Possible assumptions

Let
Nt := x1 + . . .+ xt .

ε-sparsity assumption: say that x is ε-sparse if

lim sup
t→∞

Nt/t ≤ ε.
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Possible assumptions

Let
Nt := x1 + . . .+ xt .

ε-weak sparsity assumption: say that x is ε-weakly sparse if

lim inf
t→∞

Nt/t ≤ ε.
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Our main result

Theorem

For any ε, γ > 0, there is a (randomized) 0-prediction strategy Sε,γ
that succeeds with prob. ≥ 1− ε− γ,

on any ε-weakly sparse sequence.

Can do nearly as well as under ε-biased arrivals!

(Adversary’s sequence gets fixed before randomness in Sε,γ ...)
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Proof ideas

Divide sequence into “epochs:”

(r -th epoch of length Kr = Θ(r2).)

Run a separate 0-prediction algorithm for each individual
epoch.
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Proof ideas

Easy claim: x is ε-weakly sparse

⇓

∃ a subsequence of “nice” epochs,
whose 1-densities are at most ε+ γ/3.

Let ε′ = ε+ γ/2.
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Proof ideas

Idea: give an algorithm S with the properties:

1 Makes a 0-prediction with noticeable prob. on each nice
epoch;

2 On every epoch,

Pr

[
true prediction

]
≥
(
1−ε′
ε′

)
· Pr

[
false prediction

]
.

(Would achieve our goal!)
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Proof ideas

Pr

[
true prediction

]
?
≥

(
1−ε′
ε′

)
· Pr

[
false prediction

]

Whoops—can’t achieve this!

Modified goal: an upper bound(
1−ε′
ε′

)
· Pr

[
false prediction

]
- Pr

[
true prediction

]
≤ (small)
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Proof ideas

Pr

[
true prediction

]
?
≥

(
1−ε′
ε′

)
· Pr

[
false prediction

]

Whoops—can’t achieve this!

Modified goal: an upper bound(
1−ε′
ε′

)
· Pr

[
false prediction

]
- Pr

[
true prediction

]
≤ O(1/|Kr |)
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Proof ideas

During the r -th epoch, alg. maintains a stack of “chips”
(initially empty);

stack’s height

l

algorithm’s “courage” to predict next bit of x will be a 0.

Andrew Drucker, IAS High-Confidence Predictions 23/47



Proof ideas

During the r -th epoch, alg. maintains a stack of “chips”
(initially empty);

stack’s height

l

algorithm’s “courage” to predict next bit of x will be a 0.

Andrew Drucker, IAS High-Confidence Predictions 23/47



Stack dynamics
Assume

ε′ =
p

d
= 1− q

d
.

Observe a 0: add p “courage chips.”

Observe a 1: remove q chips.

e.g., p = 1:
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Making predictions

Let Ht = stack height after observing first t bits of r -th
epoch.

Overall algorithm for epoch r :

1 Choose t∗ uniformly from {1, 2, . . . ,Kr};
2 Observe first t∗ − 1 bits;

3 Predict a 0 on step t∗ with probability

Ht∗−1

d · Kr
,

else make no prediction this epoch.
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Analysis ideas

1 If fraction of 1s in r -th epoch is ≤ ε+ γ/3 < p/d ,

a 0-prediction is made in epoch r with Ω(1) prob.

=⇒ Eventually (in some epoch), a prediction is made.
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Analysis ideas

2 To compare odds of correct and incorrect 0-predictions,

analyze each chip’s contribution.
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Analysis ideas

Intuition:

If a chip remains on the stack long enough, fraction of 1s while
it’s on is . p/d = ε′.

GOOD! (Contributes mostly to successful predictions.)

Total contribution to failure probability of other (“bad”) chips
is small.

We can analyze all chips in a simple, unified way...
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Analysis ideas

Fix attention to a chip c on input x .

Let zeros(c) (ones(c)) denote the number of zeros (ones)
appearing after steps where c is on the stack.
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Analysis ideas

Chip c’s contribution to success and failure probabilities:
↓ ↓

zeros(c)

d · K 2
r

,
ones(c)

d · K 2
r

.

To compare: show that zeros(c) and ones(c) obey a linear
inequality...
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Analysis ideas

Claim:
q · ones(c) − p · zeros(c) ≤ q.

Proof: LHS bounded by the net loss in stack height between first
appearance of c and (possible) removal...

c is removed along with ≤ q other chips!

Let’s sum over all c ...

Andrew Drucker, IAS High-Confidence Predictions 31/47



Analysis ideas

Summing over all c (at most p · Kr chips total):

q ·
∑

c

ones(c) − p ·
∑

c

zeros(c) ≤ pqKr .

Q.E.D.

Q.E.D.

Andrew Drucker, IAS High-Confidence Predictions 32/47



Analysis ideas

Summing over all c (at most p · Kr chips total):

(q/p) ·
∑

c ones(c)

d · K 2
r

−
∑

c

zeros(c)

d · K 2
r

≤ q

dKr
.

(q/p) · Pr[failure in epoch r ] − Pr[success in epoch r ]

≤ O(K−1r ) = O(r−2).

Q.E.D.
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Analysis ideas

Summing over all c (at most p · Kr chips total):

(q/p) ·
∑

c ones(c)

d · K 2
r

−
∑

c

zeros(c)

d · K 2
r

≤ q

dKr
.

(
1− ε′

ε′

)
· Pr[failure in epoch r ] − Pr[success in epoch r ]

≤ O(K−1r ) = O(r−2).

Q.E.D.
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Also in the paper

Bit prediction for broader classes of assumptions:

E.g., predict a bit (0 or 1), under the assumption that a
certain word appears only rarely.

General statement involves finite automata.

Andrew Drucker, IAS High-Confidence Predictions 35/47



Also in the paper

Also: high-confidence predictions under no assumptions on x!
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Ignorant interval-forecasting

Sequence x ∈ {0, 1}ω: now completely arbitrary.

Goal: predict the fraction of 1s in an unseen interval, with
high accuracy and high confidence.

(Huh?)
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Ignorant interval-forecasting

Our “hook”—we get to choose the position and size of the
prediction-interval.

Interval-forecaster alg.: makes a prediction of form:

“A p fraction of the next N bits will be 1s.”
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Ignorant interval-forecasting

Theorem

For any ε, δ > 0, there is a ignorant interval-forecaster Sε,δ that is
accurate to ±ε, with success probability 1− δ.

Runtime of Sε,δ is finite: = 2O(ε−2δ−1).
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The approach

Consider x ∈ {0, 1}2n
, n = d4/(ε2δ)e.

Arrange bits of x on leaves of a binary tree T .
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The approach

Forecasting algorithm:

1 Choose a random walk W from root in T of length n − 1;

2 Pick a uniform t∗ ∈ {0, 1, . . . , n − 1}, and select t∗th vertex
along W;

3 Predict that
(fraction of 1s in right subtree) =

(fraction of 1s in left subtree).
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Analysis idea

For 0 ≤ t ≤ n let
Xt ∈ [0, 1]

denote the fraction of 1s below the t-th step vertex.

Fact: For any fixed bit-sequence x ,

X0,X1, . . . ,Xn

is a martingale, from which:

E[(Xt+1 − Xt)(Xs+1 − Xs)] = 0,

for all s < t. Thus:

1 ≥ E[(Xn − X0)2] =
∑

0≤t<n

E[(Xt+1 − Xt)2] .
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Analysis idea

∑
0≤t<n

E[(Xt+1 − Xt)2] ≤ 1

(Xt+1 − Xt)2 small =⇒ t is a good choice for t∗!

(i.e., left and right subtrees have similar 1-densities).

So w.h.p. over walk W, most choices for t∗ are good!
Q.E.D.
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Questions

Characterize the sets A ⊂ {0, 1}ω for which confident
0-prediction is possible?

Connection with fractal dimension, à la (Lutz et al.)?
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Questions

For which distributions D on {0, 1}∞ can we extend to a
“supporting set” A, preserving easiness of prediction?
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Questions

Is there a minimax theorem for 0-prediction?

Hard set A for 0-prediction ⇒ hard distribution D over A?

Would give alternate (non-constructive) proof of our main
result...

More examples of surprisingly confident prediction?
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Thanks!
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