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Abstract

We show that quantum algorithms can be used to re-prove a classical theorem in approximation
theory, Jackson’s Theorem, which gives a nearly-optimal quantitative version of Weierstrass’s Theorem on
uniform approximation of continuous functions by polynomials. We provide two proofs, based respectively
on quantum counting and on quantum phase estimation.

1 Introduction

In many mathematical contexts it is convenient to approximate complicated objects by simpler ones. A typ-
ical example is the approximation of arbitrary continuous functions on a closed interval by polynomials [14].
Weierstrass’s Theorem [16] states that this can always be done. More precisely, the real polynomials are
“dense” in the space C[0, 1] of continuous real functions on the unit interval: for every g ∈ C[0, 1] and ε > 0,
there exists a polynomial p(x) such that |p(x)− g(x)| ≤ ε for all x ∈ [0, 1].

Bernstein [4] gave a simple and elegant probabilistic construction of such approximating polynomials,
which can be described as follows (see also [2, after Chapter 7]). Given a function g ∈ C[0, 1] that we want
to approximate, fix an n ≥ 1 and flip n independent coins, each coming up ‘1’ with probability x. Count
the Hamming weight |w| of the resulting string w ∈ {0, 1}n, and output g(|w|/n). Note that the expected
value of |w|/n is exactly x, and with high probability we’ll have |w|/n = x±O(1/

√
n). But then the output

g(|w|/n) should usually be a good estimate of g(x). Indeed, consider the expected value of the output of this
algorithm, as a function of x:

Bg,n(x) := Ew[g(|w|/n)] =

n∑
k=0

(
n
k

)
2n

xk(1− x)n−kg(k/n).

This Bg,n is a polynomial in x of degree n. Since |w|/n is probably close to x, we intuitively expect Bg,n(x)
to be close to g(x), provided g does not fluctuate too much on intervals of width 1/

√
n. To capture this

fluctuation, define the modulus of continuity of g at scale δ as

ωδ(g) := sup
x,y:|x−y|≤δ

|g(x)− g(y)|.

This is a measure of the “smoothness” of g: the lower the value ωδ(g), the more “smooth” g is and the
smaller our approximation error should be. Now an easy argument shows that for every x ∈ [0, 1] we have

|Bg,n(x)− g(x)| = O(ω1/
√
n(g)),

confirming the above intuition.
It is possible to reduce the error of approximation much further. An improvement of Bernstein’s result

was shown by Jackson [10]. Using trigonometric ideas, he proved

∗MIT, adrucker@mit.edu. Supported by a DARPA YFA grant. The author was supported during part of this work by an
Akamai Presidential Graduate Fellowship.
†CWI Amsterdam, rdewolf@cwi.nl. Partially supported by a Vidi grant from the Netherlands Organization for Scientific

Research (NWO), and by the European Commission under the projects Qubit Applications (QAP, funded by the IST directorate
as Contract Number 015848) and Quantum Computer Science (QCS).

1



Theorem 1 (Jackson) There exists a universal constant C, such that for every g ∈ C[0, 1] and positive
integer n, there is a degree-n polynomial p satisfying |p(x)− g(x)| ≤ Cω1/n(g) for all x ∈ [0, 1].

This quality of approximation is based on the maximum fluctuation of g at a much smaller scale than
Bernstein’s (1/n instead of 1/

√
n). Up to the constant factor, Jackson’s Theorem is optimal for approxima-

tion guarantees based on the modulus of continuity. Several different proofs of the theorem are known, see
for instance [5, 7].

In this paper we show how one can implement Bernstein’s idea with a quantum algorithm, improving its
error bound to the one in Jackson’s Theorem. Our idea is quite simple: we replace Bernstein’s “algorithm”,
which basically counts the number of ones in a bitstring of n coin flips, with a quantum counting algorithm.
It was shown by Brassard et al. [6] that quantum algorithms can perform (approximate) counting more
efficiently than classical algorithms, and this yields an improvement over Bernstein’s approach.

Let us sketch our proof strategy in somewhat greater detail. To begin, we perform N = n2 x-biased coin
flips instead of n, yielding a string w ∈ {0, 1}N . Now we have |w|/N = x ± O(1/

√
N) = x ± O(1/n) with

high probability, so |w|/N is a much more precise estimator of x than the |w|/n of Bernstein’s proof. We
then run a quantum counting algorithm making n/2 “quantum queries” to w. This algorithm computes an
estimator A of |w|/N , such that with high probability

|A− |w|/N | ≤ O(1/n).

Accordingly, with high probability A also approximates x within error O(1/n). Then intuitively the function

Qg,N (x) := Ew,A[g(A)]

should approximate g up to error roughly ω1/n(g). The expectation in the above expression is over both the
choice of w, and over the randomness generated by the measurements in the quantum counting algorithm
that runs on w and outputs A.

It is well known that the acceptance probability of an n/2-query quantum algorithm is an N -variate
multilinear polynomial (in the bits of w) of degree at most n (see [3]). Taking the expectation over w turns
this into a univariate polynomial in x of degree at most n, since the expectation of a monomial wi1 · · ·wid is
exactly xd. Working out the details (Section 3), Qg,N is indeed a degree-n polynomial that approximates g
within error bound O(ω1/n(g)). This reproves Jackson’s theorem.

As we explain in the next section, efficient quantum counting relies on a more basic procedure called
quantum phase estimation [11]. In Section 4 we give a second proof of Jackson’s Theorem that is directly
based on phase estimation. This naturally yields a proof of the trigonometric version of Jackson’s Theorem
(Theorem 2 below), but in fact the two versions are equivalent (see [14]). A trigonometric polynomial of
degree n can be defined in two equivalent ways: as a sum of the form p(x) =

∑n
k=−n αke

2πixk, or as
a sum of the form p(x) = a0 +

∑n
k=1 (ak cos(2πkx) + bk sin(2πkx)), where αk, ak, bk are scalars, possibly

complex.1 A trigonometric polynomial is real if it maps real numbers to real numbers, or equivalently, if
the coefficients ak, bk are all real. Note that a trigonometric polynomial is a 1-periodic continuous function.
The trigonometric polynomials are dense in the set of all such functions, and the trigonometric version of
Jackson’s Theorem gives a quantitative refinement of this fact:

Theorem 2 (Jackson, trigonometric version) There exists a universal constant C, such that for every
1-periodic function g ∈ C[R] and positive integer n, there is a degree-n real trigonometric polynomial p
satisfying |p(x)− g(x)| ≤ Cω1/n(g) for all x ∈ R.

The best constant was determined by Korneichuk, who showed that every 1-periodic g ∈ C[R] can be
approximated by a degree-n trigonometric polynomial with error ε < ω1/2n(h), which is essentially optimal.2

Though the ideas used in our two approaches to Jackson’s Theorem are closely related, we feel both have
merit. The one based on quantum counting (Section 3) is a quantum generalization of Bernstein’s proof,

1The equivalence of the definitions follows from Euler’s formula eiθ = cos θ + i sin θ.
2By [12, Theorem 6.2.2], every 2π-periodic h ∈ C[R] can be approximated by a degree-n trigonometric polynomial with error

ε < ωπ/n(h); we have restated this here for 1-periodic functions. The error bound is essentially optimal: for every n and α > 0,
there is a 2π-periodic function h such that every degree-n polynomial differs from h by at least (1− 1/2n−α)ωπ/n(h) (see [12,
Lemma 6.2.3]).
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while the one based on phase estimation (Section 4) is a more “direct” approach since phase estimation is the
basis for quantum counting. The phase estimation approach is in fact closely related to Jackson’s original
proof, as we explain in Section 5.

Finally, let us mention that this paper fits in a sequence of recent applications of quantum computational
techniques establishing or casting new light on results that have nothing to do with quantum computing
itself. We refer to [8] for a survey.

2 Preliminaries: Phase estimation and quantum counting

Here we sketch how phase estimation works and how it can be used to do approximate quantum counting.
The presentation is based on Brassard et al. [6]; the phase estimation algorithm is due to Kitaev [11].

2.1 Phase estimation

Suppose we can apply a certain unitary U as often as we want, and we are given one of U ’s eigenvectors,
|u〉, with unknown eigenvalue e2πix for x ∈ [0, 1). We would like to learn x. Quantum phase estimation
allows us to approximate x up to any desired precision, as described below. It will be convenient to define
the following distance for approximations: d(x̃, x) := minc∈Z |c+x− x̃| ∈ [0, 1/2], so 2πd(x̃, x) is the shortest
distance along the unit circle from e2πix to e2πix̃.

We start with a 2-register quantum state, where the first register contains the uniform superposition over
M basis states, and the second contains the eigenvector |u〉:

1√
M

M−1∑
y=0

|y〉 ⊗ |u〉.

Now, conditioned on the first register’s value y, apply U to the second register y times, i.e., map |y〉⊗ |u〉 7→
e2πixy|y〉 ⊗ |u〉. This gives

1√
M

M−1∑
y=0

e2πixy|y〉 ⊗ |u〉.

From now on we ignore the second register. Apply the inverse quantum Fourier transform over ZM to get

1√
M

M−1∑
y=0

e2πixy
1√
M

M−1∑
z=0

e−2πiyz/M |z〉 =

M−1∑
z=0

αz|z〉, where αz =
1

M

M−1∑
y=0

e2πiyd(z/M,x).

If we measure this, we get a random variable Z ∈ {0, . . . ,M − 1} with distribution

Pr[Z = z] = |αz|2 =

{
1 if d(z/M, x) = 0,
sin(Md(z/M,x)π)2

M2 sin(d(z/M,x)π)2 otherwise,
(1)

where we used the identities
∑M−1
y=0 ry = (1 − rM )/(1 − r) and |1 − eiφ| = 2| sin(φ/2)|. Note that the first

case is just the limit of the second case as d(z/M, x) → 0. The distribution Pr[Z = z] is peaked at values
of z where d(z/M, x) is small, so we can use X̃ := Z/M as our estimate of x. The probability of outcome
X̃ = x̃ falls off quadratically with its distance from x: if x̃ 6= x then (using sin(φ) ≥ 2φ/π for φ ∈ [0, π/2])

Pr[X̃ = x̃] = Pr[Z = x̃M ] ≤ 1

4M2d(x̃, x)2
. (2)

For convenience, we let 1/0 =∞ and consider Eq. (2) to hold vacuously when d(x̃, x) = 0.
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2.2 Quantum counting

Suppose we have an input w ∈ {0, 1}N whose Hamming weight |w| we want to estimate, using a quantum
query algorithm that can access w by means of the query operator Ow, which maps |i〉 7→ (−1)wi |i〉. Then
we can perform approximate counting using phase estimation as follows.

For simplicity assume N = 2n. Define a unitary U = −H⊗nO0H
⊗nOw, where O0 is the unitary that

puts a ‘−’ in front of the all-0 state, and H is the Hadamard transform. This U is known as the Grover
iterate, and is the crucial ingredient in the quantum search algorithm [9, 6]. Let |Ψ1〉 = 1√

|w|

∑
i:wi=1 |i〉 and

|Ψ0〉 = 1√
N−|w|

∑
i:wi=0 |i〉 be the uniform superpositions over the 1-bits and the 0-bits of w, respectively.

One can show [6] that U has the following two orthogonal eigenvectors, with corresponding eigenvalues:

|Ψ+〉 =
1√
2

(|Ψ1〉+ i|Ψ0〉) with λ+ = e2iθ,

|Ψ−〉 =
1√
2

(|Ψ1〉 − i|Ψ0〉) with λ− = e−2iθ,

where θ = arcsin(
√
|w|/N) ∈ [0, π/2].

Note that |w|/N = sin(θ)2. We want to estimate θ by means of phase estimation on U . For this we would
need an eigenvector of U with eigenvalue related to θ. We cannot easily construct one of the two eigenvectors
|Ψ+〉 and |Ψ−〉. However, the uniform superposition

|u〉 =
1√
N

N∑
i=1

|i〉 =

√
|w|
N
|Ψ1〉+

√
N − |w|
N

|Ψ0〉

is a linear combination of |Ψ+〉 and |Ψ−〉. This |u〉 is independent of w and easy to construct. We can analyze
this as if the second register contains a mixture of the two eigenvectors. Thus, doing phase estimation on
U with starting vector |u〉, we will be estimating either θ or −θ. Since sin(θ)2 = sin(−θ)2, we don’t care
whether we estimate θ or −θ (assume the first one for simplicity). Phase estimation with |u〉 as starting vector
produces a random variable Z ∈ {0, . . . ,M − 1}, such that the distribution of Z/M is peaked around θ/π.
Accordingly, we use θ̃ := πZ/M as our estimate of θ, and A := sin(θ̃)2 as our estimator of |w|/N = sin(θ)2.
Note that the number of queries of this procedure is the number of applications of U , which is M−1. Eq. (2)
gives a tradeoff between the number of queries and the error in our approximation of θ, which translates
into an error in our approximation of |w|/N . Brassard et al. [6] work out various points on this tradeoff in
detail.

3 Jackson’s Theorem by quantum counting

In this section we provide the details of the idea sketched in the Introduction, combining Bernstein’s proba-
bilistic approach with a quantum counting algorithm. We first present a direct approach that does not quite
work; we then explain how a simple modification allows the proof to go through.

We want to construct an approximating polynomial of degree n for a given continuous function g ∈ C[0, 1].
We start by setting N := n2 and letting w ∈ {0, 1}N be a string obtained by flipping N coins, each with
probability x of ‘1’. Since its Hamming weight |w| is binomially distributed with expectation xN and
variance x(1 − x)N , we have E[|x − |w|/N |] ≤

√
Var[|w|/N ] =

√
x(1− x)/N = O(1/n). We now want to

estimate |w|/N using quantum counting. As explained in Section 2, we define θ := arcsin(
√
|w|/N), so that

sin(θ)2 = |w|/N . Letting M > 1 be an integer to be fixed later, quantum counting with M − 1 queries
produces a random variable Z ∈ {0, . . . ,M − 1}, such that by Eq. (2),

Pr[Z = z] ≤ 1

4M2d(z/M, θ/π)2
,

where d(·, ·) is as defined in Section 2.1. Since Z/M is concentrated (with respect to the distance d(·, ·))
around θ/π, we can use θ̃ := πZ/M as our estimate of θ, and A := sin(θ̃)2 as our estimate of |w|/N . We
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claim that the angles θ̃, θ are likely to be close “modulo π”: we have

E[d(θ̃/π, θ/π)] =

M−1∑
z=0

Pr[Z = z] · d(z/M, θ/π) ≤ 2

M
+

∑
z∈{0,...,M−1},
|z−Mθ/π|≥1

1

4M2d(z/M, θ/π)

= O

(
1

M
+

1

M

M∑
t=1

1

t

)
= O

(
logM

M

)
. (3)

The function f(t) = sin(t)2 is π-periodic and its derivative satisfies |f ′(t)| = | sin(2t)| ≤ 1. Thus

| sin(θ̃)2 − sin(θ)2| ≤ π · d(θ̃/π, θ/π), (4)

and hence also

E[|A− |w|/N |] = E[| sin(θ̃)2 − sin(θ)2|] ≤ π · E[d(θ̃/π, θ/π)] = O((logM)/M). (5)

Define a function p : [0, 1]→ R by

p(x) := Ew,A[g(A)] =
∑
a

Ew[Pr[A = a | w]] · g(a), (6)

where Pr[w] = x|w|(1− x)N−|w| depends on x, and Pr[A = a | w] is the probability that quantum counting
on input w yields estimate a for |w|/N . The following lemma from [3] implies that for any fixed value a,
Pr[A = a | w] is a low-degree polynomial in the N variables of w:

Lemma 3 (BBCMW) Consider a quantum algorithm that makes at most T queries to w ∈ {0, 1}N and
outputs the result of a measurement on the final state. Then the probability Pr[A = a | w] of any specific
output a is an N -variate multilinear real polynomial in w of degree at most 2T .

Each polynomial Pr[A = a | w] is a linear combination of monomials in w1, . . . , wN , of degree at most 2T .

A degree-d monomial wi1 · · ·wid has expectation Ew[wi1 · · ·wid ] =
∏d
j=1 Ew[wij ] = xd, which is a polynomial

in x of degree d. Hence each expression Ew[Pr[A = a | w]] in Eq. (6) is a polynomial in x of degree at most
2M − 2. Then the function p defined in Eq. (6) is itself also a polynomial in x of degree at most 2M − 2.
Choosing M := n/2 + 1, p has degree at most n.

Next we argue that p approximates g fairly well. First, recall the definition of ωδ(g) from the Introduction;
we have the elementary property ωδ+δ′(g) ≤ ωδ(g) + ωδ′(g), and therefore ωcδ(g) ≤ dce · ωδ(g). Now, for
every x ∈ [0, 1] we bound

|p(x)− g(x)| ≤ Ew,A[|g(A)− g(x)|]
≤ Ew,A[ω|A−x|(g)]

≤ Ew,A[ω|A−|w|/N |(g) + ω|x−|w|/N |(g)]

≤ Ew,A [d|A− |w|/N | · (n/ log n)e]ωlogn/n(g) + Ew [d|x− |w|/N | · ne]ω1/n(g)

≤ O(ωlogn/n(g) + ω1/n(g))

≤ O(ωlogn/n(g)), (7)

where in the penultimate step we used that E[|A−|w|/N |] = O((log n)/n) and E[|x−|w|/N |] = O(1/n). The
error bound we derived is already substantially better than Bernstein’s bound of O(ω1/

√
n(g)), but worse

than Jackson’s optimal error bound O(ω1/n(g)) by a logarithmic factor. To get rid of this factor, we want
an estimate of |w|/N with expected error O(1/n) instead of O((log n)/n).

Taking an algorithmic perspective, it is easy to see how to get a more sharply concentrated estimate.
We run the quantum counting procedure three times, yielding estimates Z1, Z2, Z3 for θM/π. These yield
estimates θ̃i := πZi/M for θ, for i = 1, 2, 3. We then get estimates A1, A2, A3 for |w|/N , by taking Ai :=
sin(θ̃i)

2. We let A′ := med(A1, A2, A3) be defined as the median of these three estimates, and use A′ as
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our improved estimate for |w|/N . In order to keep the total number of queries at most n/2 (and hence the
degree at most n), we will now spend M := n/6 queries for each of the three runs of quantum counting,
assuming for simplicity that 6 divides n.

We now show that this approach yields a tighter estimate. First, it can be easily verified that for real
variables a, b, c, t,

|med(a, b, c)− t| ≤ med(|a− t|, |b− t|, |c− t|). (8)

It follows that |A′ − |w|/N | is at most the median of |Ai − |w|/N |, over i = 1, 2, 3. Using Eq. (4) applied to
each of the θ̃i, we obtain |Ai − |w|/N | ≤ π · d(θ̃i/π, θ/π). If we define a random variable dmed as the median
of the quantities d(θ̃i/π, θ/π), for i = 1, 2, 3, then we have

|A′ − |w|/N | ≤ π · dmed. (9)

We now bound E[dmed]. Fix an integer k ≥ 1. For dmed ∈ [k/M, (k + 1)/M) to occur, it is necessary that
some Zi satisfies d(Zi/M, θ/π) ∈ [k/M, (k + 1)/M), and some Zj with j 6= i satisfies d(Zj/M, θ/π) ≥ k/M .
There are at most two possible values z ∈ {0, 1, . . . ,M − 1} satisfying d(z/M, θ/π) ∈ [k/M, (k+ 1)/M), and
there are just 6 possible pairs i, j. Thus, we have

Pr [dmed ∈ [k/M, (k + 1)/M)] ≤

6 · Pr [d(Z1/M, θ/π) ∈ [k/M, (k + 1)/M)] ·
∑
z′:

d(z′/M,θ/π)≥k/M

Pr[Z2 = z′]

≤ O

 1

M2(k/M)2

∑
k′≥k

1

M2(k′/M)2

 (using Eq. (2))

≤ O

 1

k2

∑
k′≥k

1

(k′)2


≤ O

(
1

k3

)
.

It follows that

E[dmed] ≤
1

M
+
∑
k≥1

k + 1

M
·O
(

1

k3

)
=

1

M
·O

1 +
∑
k≥1

1

k2

 = O (1/M) = O(1/n),

and by Eq. (9) we get E[|A′ − |w|/N |] = O (1/n).
We redefine the polynomial p as p(x) := Ew,A′ [g(A′)]. By our revised setting M = n/6, p(x) is a

polynomial of degree ≤ n. Following the steps of Eq. (7) with appropriate changes, we have

|p(x)− g(x)| ≤ Ew,A′ [ω|A′−|w|/N |(g) + ω|x−|w|/N |(g)]

≤ Ew,A′ [d|A′ − |w|/N | · ne]ω1/n(g) +O(ω1/n(g))

≤ O(ω1/n(g)).

This proves Theorem 1.

4 Jackson’s Theorem by phase estimation

As explained in Section 2, quantum counting is based on quantum phase estimation. In this section we
describe an alternative way to prove (the trigonometric version of) Jackson’s theorem. We will no longer
estimate the weight of a string of x-biased coin flips, but instead apply quantum phase estimation directly
to a unitary which “encodes” x.

6



Suppose we apply phase estimation to the 1×1 unitary U = [e2πix] to estimate x. Since U is 1-dimensional,
every vector |u〉 is an eigenvector with eigenvalue e2πix. As explained in Section 2, using up to M − 1
applications of U , phase estimation produces a Z ∈ {0, . . . ,M −1}, distributed as in Eq. (1), so that Z/M is
concentrated around x (with respect to the distance d(·, ·)). Let M := n/3 + 1, assuming for simplicity that
3 divides n. Suppose we apply phase estimation three times, getting outcomes Z1, Z2, Z3 ∈ {0, . . . ,M − 1}.
Define Y as the median of g(Zi/M) over i = 1, 2, 3; we use Y as an estimate of g(x). Note how we now take
medians after applying g, in contrast to our previous approach.3

In order to approximate the continuous 1-periodic function g ∈ C[R], consider the quantum algorithm
that produces an estimate Y as above, using the unitary U = [e2πix]. We define p(x) := E[Y ]. Referring back
to our description of phase estimation, we see that the amplitudes of the final state of our quantum algorithm
are linear combinations of e2πixk for k ∈ {0, . . . , 3(M − 1)}. Hence the final measurement probabilities are
trigonometric polynomials in x of degree 3(M − 1) = n.4 Accordingly, p is such a polynomial as well.

Since the distribution of each Zi is concentrated around x (with respect to d(·, ·)) and g is continuous
and 1-periodic, we expect p(x) to be close to g(x). We make this precise next. For each i, the definition of
ωδ(g) and the fact that g is 1-periodic implies that

|g(Zi/M)− g(x)| ≤ dd(Zi/M, x) · neω1/n(g). (10)

Eq. (8) implies that |Y − g(x)| is at most the median of |g(Zi/M) − g(x)|, over i = 1, 2, 3. By analogy
with the previous section, define the random variable dmed as the median of d(Zi/M, x), i = 1, 2, 3. From
Eq. (10), we obtain

|Y − g(x)| ≤ ddmed · neω1/n(g). (11)

Reasoning identical to that of the previous section yields E[dmed] = O(1/M) = O(1/n), and therefore

|p(x)− g(x)| ≤ E [|Y − g(x)|]
≤ E [ddmed · ne]ω1/n(g)

= O(ω1/n(g)).

This proves Theorem 2, the trigonometric version of Jackson’s Theorem.

5 Relation to classical proofs

Our approach to Jackson’s Theorem in both sections bears strong similarities with classical proofs. The
first approach, using quantum counting, was modelled on the probabilistic interpretation of Bernstein’s
polynomial approximation. The second approach, using phase estimation, also has a very close relation to
a classical technique in approximation theory, the method of convolution with an approximation kernel [15].
This method was employed by Jackson in his original proof [10]. We explain this method and its relation to
our proof next.

Suppose K(t) ∈ C(R), the “approximation kernel,” is a nonnegative, 1-periodic function concentrated

around zero (mod 1), and such that
∫ 1

0
K(t)dt = 1. Then for any x ∈ R, the function Kx(t) := K(t− x) is

concentrated around x (mod 1). This suggests that, for a 1-periodic function h(t) ∈ C(R), the convolution
of h with K, i.e.,

(h ∗K)(x) :=

∫ 1

0

h(s)K(s− x)ds,

should give a good approximation to h(x). As for degree considerations, a key fact is that, if K is a degree-n
trigonometric polynomial, then so is (h ∗ K) (see, e.g., [15, Chap. 3]). Finally, note that the expression
defining (h ∗ K)(x) is exactly E[h(x̃)], when x̃ ∈ [0, 1) is an approximation to x drawn according to the

3We could have taken medians after applying g in Section 3 as well, but we wanted to keep a conceptual focus on obtaining
a sharp estimate of the quantity |w|/N (in analogy with Bernstein’s proof). In the phase estimation approach, sharpening our
estimate of x would be slightly more involved, and taking medians after applying g yields a more streamlined proof.

4While the amplitudes are linear combinations of e2πixk for k ∈ {0, . . . , 3(M − 1)}, the probabilities are sums of amplitudes
times their conjugates, and hence are linear combinations of e2πixk with k ∈ {−3(M − 1), . . . , 3(M − 1)}.
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density function Kx. Thus the convolution approach resembles the phase-estimation approach (with a single
application of phase estimation), except that an estimator with a continuous distribution is used.5

In fact, even the distribution of the estimates we derive from phase estimation is intimately related to
the approximation kernels used in Jackson’s original proof [10, 13, 7]. A classical approximation kernel is
the Fejér kernel Fn : R→ R (n > 0 is an integer parameter), given by

Fn(t) =
1

n

(
sin(πnt)

sin(πt)

)2

,

with Fn(0) = n for continuity. Note that Fn as defined here is 1-periodic (it is usually defined in a 2π-periodic
form). Also, Fn can be re-expressed as a trigonometric polynomial of degree n− 1. Now we compare this to
our analysis of phase estimation in Section 2. Consulting Eq. (1), if the unknown eigenvalue e2πix (x ∈ [0, 1))
satisfies Mx /∈ Z, then the estimate ỹ = Z/M to x produced by phase estimation (z ∈ {0, . . . ,M − 1}) is
distributed as

Pr[ỹ = z/M ] =
1

M2

(
sin(πM(z/M − x))

sin(π(z/M − x))

)2

=
1

M
FM (z/M − x).

We used the properties of the sine function and the definition of d(·, ·) to get this equivalent form from
Eq. (1). Hence ỹ is distributed as a discretized, renormalized Fejér kernel re-centered at x. (If Mx ∈ Z, then
Pr[ỹ = x] = 1.)

Recall that our proof required a sharper estimate than that given by plain phase estimation—we had to
apply phase estimation three times. Similarly, the convolution g ∗ Fn of g with the Fejér kernel fails to give
a sufficiently close approximation to g to prove Jackson’s Theorem. A sharper approximation is provided by
the so-called Jackson kernel, obtained by squaring and renormalizing the Fejér kernel:

Jn(t) = cF 2
n(t), (12)

where c > 0 is chosen so that
∫ 1

0
Jn(t)dt = 1. Jackson showed that |(g ∗ Jn)(x) − g(x)| = O(ω1/n(g)) for

all x ∈ [0, 1]. This (g ∗ Jn) is a trigonometric polynomial of degree 2(n − 1), which can be reduced to
degree ≤ n by using Jbn/2c in place of Jn. Note how squaring and renormalizing the Fejér kernel has the
effect of sharpening its concentration; this is somewhat analogous to the sharpening we achieve by taking
medians-of-three in our quantum algorithms above.6
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