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Abstract

In this paper, we propose a novel deep neural network architecture, Sequence-to-
Sequence Audio2Vec, for unsupervised learning of fixed-length vector representa-
tions of audio segments excised from a speech corpus, where the vectors contain
semantic information pertaining to the segments, and are close to other vectors in
the embedding space if their corresponding segments are semantically similar. The
design of the proposed model is based on the RNN Encoder-Decoder framework,
and borrows the methodology of continuous skip-grams for training. The learned
vector representations are evaluated on 13 widely used word similarity benchmarks,
and achieved competitive results to that of GloVe. The biggest advantage of the
proposed model is its capability of extracting semantic information of audio seg-
ments taken directly from raw speech, without relying on any other modalities such
as text or images, which are challenging and expensive to collect and annotate.

1 Introduction

Natural language processing (NLP) techniques such as GloVe [Pennington et al., 2014] and
word2vec [Mikolov et al., 2013] transform words into fixed dimensional vectors. The vectors
are obtained by unsupervised learning from co-occurrences information in the text, and contain
semantic information about the word which are useful for many NLP tasks. Given the observation
that humans learn to speak before they can read or write, one might wonder that since machines can
learn semantics from raw text, might they also be able to learn the semantics of a spoken language
from raw speech as well?

Previous research has explored the concept of learning vector representations from speech [He et al.,
2017, Kamper et al., 2016, Chung et al., 2016, Settle and Livescu, 2016, Bengio and Heigold, 2014,
Levin et al., 2013]. These approaches were based on notions of acoustic-phonetic similarity, rather
than semantic, so that different instances of the same underlying word would map to the same point in
the embedding space. Our work uses a very different skip-gram formulation to focus on the semantics
of neighboring acoustic regions, rather than acoustic segment associated with the word itself.

Recent research by Harwath and Glass [2017], Harwath et al. [2016], Harwath and Glass [2015] has
presented a deep neural network model capable of rudimentary spoken language acquisition using
raw speech training data paired with contextually relevant images. Using this contextual grounding,
the model learned a latent semantic audio-visual embedding space. In this paper, we propose a deep
neural network architecture capable of learning fixed-length vector representations of audio segments
from raw speech without any other modalities, such that the vector representations contain semantic
information of underlying words. The proposed model, called Sequence-to-Sequence Audio2Vec,
integrates an RNN Encoder-Decoder framework with the concept of continuous skip-grams, and can
handle arbitrary length speech segments. The resulting vector representations contain information
pertaining to the meaning of the underlying spoken words such that semantically similar words
produce vector representations that are nearby in the embedding space.
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2 Proposed Approach

Our goal is to learn a fixed-length vector representation of an audio segment that is represented by a
variable-length sequence of acoustic features such as Mel-Frequency Cepstral Coefficients (MFCCs),
x = (x1,x2, ...,xT ), where xt is the acoustic feature at time t and T is the length of the sequence. We
desire that this fixed-length vector representation is able to describe the semantics of the original audio
segment to some degree. Below we first review the RNN Encoder-Decoder framework in Section 2.1,
followed by formally proposing the Sequence-to-Sequence Audio2Vec model in Section 2.2.

2.1 RNN Encoder-Decoder Framework

Recurrent neural networks (RNNs) are neural networks whose hidden neurons form a directed cycle.
Given a sequence x = (x1,x2, ...,xT ), an RNN updates its hidden state ht according to the current
input xt and the previous ht−1. The hidden state ht acts as a form of internal memory at time t
that enables the network to capture dynamic temporal information, and also allows the network to
process variable length sequences. Unfortunately, in practice RNNs do not seem to learn long-term
dependencies well, so Long Short-Term Memory (LSTM) networks [Hochreiter and Schmidhuber,
1997], an advanced version of the vanilla RNN, have been widely used to conquer such difficulties.

An RNN Encoder-Decoder consists of an Encoder RNN and a Decoder RNN [Sutskever et al., 2014,
Cho et al., 2014]. The Encoder reads the input sequence x = (x1,x2, ...,xT ) sequentially, and
the hidden state ht of the RNN is updated accordingly. After the last symbol xT is processed, the
corresponding hidden state hT is interpreted as the learned representation of the entire input sequence.
Subsequently, by initializing its hidden state using hT , the Decoder generates an output sequence y =
(y1,y2, ...,yT ′) sequentially, where T and T ′ can be different, or, in other words, the sequence lengths
of x and y can be different. Such a sequence-to-sequence framework does not constrain the input
or target sequences, and has been successfully applied to a wide range of challenging tasks such as
machine translation [Sutskever et al., 2014, Cho et al., 2014], video caption generation [Venugopalan
et al., 2015], abstract meaning representation parsing and generation [Konstas et al., 2017], and
acquisition of acoustic word embeddings [Chung et al., 2016].

2.2 Sequence-to-Sequence Audio2Vec

Figure 1: The Seq2seq Audio2vec model consists of an Encoder RNN and a Decoder RNN. The
Encoder first takes an audio segment x(n) = (x

(n)
1 ,x

(n)
2 , ...,x

(n)
T ) as input and encodes it into a

vector representation of fixed dimensionality z(n). The Decoder then maps z(n) to several audio
segments x(i), i ∈ {n− k, ..., n− 1}

⋃
{n+ 1, ..., n+ k} within in a certain range k (in this exam-

ple, k = 1). To successfully decode nearby audio segments, the encoded vector representation z(n)

should contain semantic information about the current audio segment x(n).

2



Figure 1 depicts the structure of the proposed Sequence-to-Sequence Audio2Vec model (Seq2seq
Audio2vec), which integrates the RNN Encoder-Decoder framework with a continuous skip-gram for
unsupervised learning of audio segment representations that contain semantic information.

The idea of Seq2seq Audio2vec is simple: for each audio segment x(n) in a speech corpus, the model
is trained to predict the audio segments {x(n−k), ...,x(n−1),x(n+1), ...,x(n+k)} within a certain
range k before and after x(n). By applying such a methodology, the audio segments of semantically
similar spoken words are mapped to nearby points in the embedding space produced by the encoder.
Figure 1 is an instance of Seq2seq Audio2vec setting k = 1.

The details of the proposed Seq2seq Audio2vec are as follows. Seq2seq Audio2vec consists of an
Encoder RNN and a Decoder RNN. Given the n-th audio segment in any speech corpus, represented as
a sequence of acoustic features x(n) = (x

(n)
1 ,x

(n)
2 , ...,x

(n)
T ) of any length T , the Encoder RNN reads

each acoustic feature x
(n)
t sequentially and updates the hidden state h

(n)
t accordingly. After the last

acoustic feature x(n)
T has been read and processed, the hidden state h(n)

T of the Encoder RNN is viewed
as the learned representation z(n) of the current audio segment x(n). The Decoder RNN now takes
over the process. It first initializes its hidden state with h

(n)
T , then for each audio segment x(i), i ∈

{n− k, ..., n− 1}
⋃
{n+ 1, ..., n+ k} within a certain range k before and after x(n), the Decoder

RNN generates another sequence yi = (y
(i)
1 ,y

(i)
2 , ...,y

(i)
T ′ ). The target of the output sequence y(i) is

set to be the corresponding audio segment x(i), that is, the Decoder RNN attempts to predict all of the
nearby audio segments at the same time. Note that it is the same Decoder RNN that generates all the
output audio segments, and the audio segments can have different lengths. To successfully decode the
nearby audio segments, the learned representation z(n) should contain sufficiently useful information
about the semantics of the current audio segment x(n). The model is trained by minimizing the
general mean squared error

∑
i∈{n−k,...,n−1}

⋃
{n+1,...,n+k}

∥∥x(i) − y(i)
∥∥2.

3 Experiments

3.1 Experimental Setup

We use LibriSpeech [Panayotov et al., 2015], a large corpus of read English speech, as the data
for experimentation. The corpus contains about 500 hours of broadband speech produced by 1252
speakers. Acoustic features consisted of 13 dimensional MFCCs produced every 10ms. The corpus
was segmented according to word boundaries obtained by forced alignment with respect to the
reference transcriptions, resulting in a large set of audio segments {x(1),x(2), ...,x(|C|)}, where |C|
denotes the total number of audio segments (and words) in the corpus.

The Seq2seq Audio2vec model was implemented with PyTorch. The Encoder consists of 3-layers of
LSTMs using 300 hidden units (so the dimensionality of the learned vector representations was 300),
and the Decoder was a single-layer LSTM model with 300 hidden units. The model was trained by
stochastic gradient descent without momentum, with a fixed learning rate of 1e− 3 and 500 epochs.
We set k to 5, meaning that during training, the model took the current audio segment x(n) as input
and attempted to predict the audio segments of the five preceding and following word segments.

After training the model, the Decoder RNN was no longer needed and could be discarded. Each
audio segment x(n) in the corpus was processed by the Encoder RNN, and encoded as a vector
representation z(n) of 300 dimensions. The vector representations representing the audio segments of
the same word were then averaged to obtain a single 300-dim vector.

3.2 Evaluation and Results

We evaluated the vector representations learned by the proposed Seq2seq Audio2vec model on 13
different benchmarks [Faruqui and Dyer, 2014] that have been widely used to measure word similarity.
They are: WS-353 [Yang and Powers, 2006], WS-353-REL [Agirre et al., 2009], WS-353-SIM,
MC-30 [Miller and Charles, 1991], RG-65 [Rubenstein and Goodenough, 1965], Rare-Word [Luong
et al., 2013], MEN [Bruni et al., 2012], MTurk-287 [Radinsky et al., 2011], MTurk-771 [Halawi
et al., 2012], YP-130 [Yang and Powers, 2006], SimLex-999 [Hill et al., 2015], Verb-143 [Baker
et al., 2014], and SimVerb-3500 [Gerz et al., 2016]. These 13 benchmarks contain different numbers
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of pairs of English words that have been assigned similarity ratings by humans, and each of them tries
to evaluate the word vectors in terms of different aspects. For example, RG-65 and MC-30 focus
on nouns, YC-130 and SimVerb-3500 focus on verbs, and Rare-Word focuses on rare-words. We
compared the vector representations learned by Seq2seq Audio2vec with GloVe trained on Wikipedia
2014. The similarity between a given pair of words was calculated by computing the cosine similarity
between their corresponding vector representations. We then reported the Spearman’s rank correlation
coefficient ρ between the rankings produced by each model against the human rankings [Myers and
Well, 1995]. The results were displayed in Table 1 From Table 1, we can see that the performance of

Table 1: The Spearman’s rank correlation coefficient ρ between the rankings produced by each model
against the human rankings. #(word pairs) is the number of word pairs in the dataset, and #(not
found) is the number of word pairs whose vector representations could not be found.

No. Dataset #(word pairs) Seq2seq Audio2vec GloVe Wikipedia 2014
#(not found) ρ #(not found) ρ

1 WS-353 353 21 0.5324 0 0.6054
2 WS-353-REL 252 12 0.4959 0 0.5725
3 WS-353-SIM 203 7 0.5842 0 0.6638
4 MC-30 30 0 0.6647 0 0.7026
5 RG-65 65 0 0.7274 0 0.7662
6 Rare-Word 2034 783 0.3158 252 0.4118
7 MEN 3000 122 0.6877 0 0.7375
8 MTurk-287 287 13 0.5647 0 0.6332
9 MTurk-771 771 22 0.6010 0 0.6501
10 YP-130 130 0 0.5173 0 0.5613
11 SimLex-999 999 0 0.2985 0 0.3705
12 Verb-143 144 0 0.2877 0 0.3051
13 SimVerb-3500 3500 126 0.2023 2 0.2267

the vector representations learned by Seq2seq Audio2vec is competitive to the performance of GloVe
word vectors on most of the word similarity tasks. This demonstrates that our proposed Seq2seq
Audio2vec is capable of capturing semantic information from raw speech and representing it in a
fixed-length vector representation, although the scores of our model were consistently lower than
that obtained by GloVe. Aside from the differences due to the speech and text training data, we
believe the reason for this difference is due to the inherent variability in speech production. Unlike
textual representations, every instance of any spoken word ever uttered is different, due to vocal tract
differences across speakers, speaking styles, contextual differences, and environmental conditions,
to name but a few of the major influences on a speech recording. Clearly, one of the challenges for
learning semantics directly from raw speech is to derive a more robust mechanism to address these
issues. To us, what is more impressive is that many of the test scores are close.

Using word similarity tasks as the only way to measure the quality of word vectors is not perfect
and can sometimes lead to incorrect inferences [Faruqui et al., 2016, Schnabel et al., 2015]. In
this preliminary study, we used these word similarity benchmarks to validate the effectiveness of
the proposed model for learning meaningful vector representations from speech. In the future, we
will evaluate the vector representations learned by our model on other downstream NLP tasks. It
is also true, that some supervision was incorporated into the learning by using forced alignment
segmentations as the basis for audio segments. In the future, it would be interesting to explore less
supervised segmentations to learn word boundaries [Kamper et al., 2017b,a, 2015].

4 Conclusion and Future Work

In this paper, we proposed a Seq2seq Audio2vec model for unsupervised learning of audio segment
representations. The vector representations generated by the model were evaluated on 13 commonly
used word similarity benchmarks and were compared to those produced by GloVe from text data. To
the best of our knowledge, this is the first work that attempts to learn fixed-length vector representa-
tions that contain semantic information directly, and only from raw speech. In the future, we will
evaluate the vector representations on other tasks to examine their usefulness for speech and language
processing.
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