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Abstract
Data serialization is critical for many datacenter applications,
but thememory copies required tomove application data into
packets are costly. Recent zero-copy APIs expose NIC scatter-
gather capabilities, raising the possibility of offloading this
datamovement to theNIC.However, as thememory coordina-
tion required for scatter-gather adds bookkeeping overhead,
scatter-gather is not always useful. We describe Cornflakes, a
hybrid serialization library stack that uses scatter-gather for
serialization when it improves performance and falls back to
memory copies otherwise. We have implemented Cornflakes
within a UDP and TCP networking stack, across Mellanox
and Intel NICs. On a Twitter cache trace, Cornflakes achieves
15.4% higher throughput than prior software approaches on
a custom key-value store and 8.8% higher throughput than
Redis serialization within Redis.
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1 Introduction
Data serialization [1, 2, 52–54] is on the critical path for nearly
all datacenter networking. As a result, it consumes much dat-
acenter processing time: Google reports that Protobuf con-
sumes 9.6% of its fleetwide cycles [23]1 and Meta reports that
serialization consumes 6.7% of the CPU cycles in seven impor-
tant microservices [47]. As NICs increase in throughput to
400 Gbps [33] and even 1.6 Tbps [17] in the next decade, data
serializationwill be an increasingly expensive tax on datacen-
ter applications. This tax will be especially challenging for
ultra-low-latency datacenter stacks that process packets in a
fewmicroseconds [3, 21, 36, 43, 50] or sub-microsecond [58].

At its core, serialization requires data movement: software
serialization libraries use the CPU to copy application data
values scattered inmemory into a single, contiguous buffer for
I/O.2 Experiments we present in Section 2 find that eliminat-
ing datamovement in serialization could improve throughput
for low-latency applications by up to 2×; these results agree
with past work showing that data movement is a large part of
serialization’s overhead [42, 55]. Novel NIC designs [55] and
accelerators [19, 23, 38] have shown benefits to offloading
serialization to hardware [22, 23, 47], but custom hardware
is expensive to develop and deploy.
This paper takes another approach: accelerating network

serializationwith existing, commodity hardware. Prior work
has shown performance benefits from using DMA and zero-
copy APIs to gather data into a contiguous region for trans-
mission [8, 15, 21, 42, 58]. However, none have designed or
demonsrated a complete serialization library formicrosecond-
scale applications on modern datacenter NICs.
To be easy to use and incorporate into applications, such

a library must have a similar API to existing copy-based ap-
proaches, despite the fact that the librarymayasynchronously

1This includes serialization both for networking and storage.
2Some serialization libraries also encode fields (e.g., Protobuf varint
compression); libraries like Cap’n Proto and FlatBuffers do not as long as
the host uses Little Endian. All perform data movement.
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transferapplicationdata intoNICmemory.Providinga friendly
API on top of asynchronous I/O of application memory intro-
duces overheads that can easily negate the benefits of hard-
ware offload; at timescales of hundreds of nanoseconds even
small factors, such as individual cache misses, impact per-
formance. To have a similar API to existing approaches, the
librarymust provide twopropertieswhose overheadsmust be
carefullymanaged:memory safety andmemory transparency.

Memory safety is necessary to prevent data races between
the application and NIC [48, 58]. When a NIC sends data, the
send is asynchronous. A race can occur if the application frees
data while the NIC is accessing it. Zero-copy systems prevent
these safety violations through techniques such as reference
counting ofmessage buffers,while copying-based approaches
automatically provide memory safety by returning data to
the application immediately.

Memory transparency refers to the library accepting data
regardless of the data’s location in the address space. Typi-
cally, NICs can only DMA from pages pinned physically by
the kernel (so they are not swapped out). Thus a library can
only zero-copy application data in pinned pages (DMA-safe
memory).3 A scatter-gather serialization stack must accept
objects with pointers to arbitrary application addresses, auto-
matically determine which fields are not in pinned memory,
and copy those fields instead.

Bothmemory safety and transparencyhave software penal-
ties that can negate the benefits of hardware offload in mi-
crosecond environments. Memory safety and transparency
require the stack to access bookkeeping data structures (e.g.,
reference counts, pinned memory address ranges) on every
I/O. These accesses can cause cache misses, adding hundreds
of nanoseconds to processing times. These overheads are
critical; Section 2.4 shows that while raw scatter-gather out-
performs copying even for small 64-byte objects, cachemisses
in the scatter-gather code path cause copying to be faster.
The impact of memory coordination on performance mo-

tivates a hybrid serialization stack that dynamically chooses
between scatter-gather and copying. Prior work observes
that copying sometimes outperforms zero-copy for small
buffers [6, 8, 16, 48, 58], and has varying recommendations for
a tradeoff point, including 16 kB [48], 10 kB [8], and 1 kB [58].
At the microsecond timescale, designing a hybrid stack re-
quires understanding the tradeoffs between scatter-gather
and copy, including their potential software overheads, and
an algorithm that efficiently chooses between the two.
In summary, a scatter-gather serialization stack should

provide four properties: a standard API similar to existing
approaches, zero-copy safety when directly accessing appli-
cation memory, a hybrid API that transparently chooses be-
tween scatter-gather and copy, and efficient implementations
of these mechanisms that enable it to match or surpass the
performance of existing libraries.

3Kernel bypass stacks provide pinned memory allocators for this reason.

This paper presents Cornflakes, a new, hybrid, co-designed
zero-copy serialization library and networking stack that pro-
vides these four properties. In doing so, it makes two main
intellectual contributions. First, a measurement study con-
ducted onmodernMellanoxNICsfinds that scatter-gather I/O
can improve serialization performance for buffers as small as
512 bytes (§5). Importantly, this result incorporates the over-
heads of memory safety and transparency. Second, the paper
contributes a transparent, hybrid serialization API, which
guarantees use-after-free protection for zero-copy I/O, while
ensuring both code paths (copy and zero-copy) execute effi-
ciently (§3). Cornflakes leverages both of these contributions,
transparently zero-copyingfields inDMA-safememorywhen
the fields are at least 512 bytes large.

Our evaluation of Cornflakes explores zero-copy serializa-
tion within UDP and TCP stacks, on Intel and Mellanox NICs.
Cornflakes achieves within 3% of the throughput of and up
to 128% better throughput than general-purpose serialization
libraries in a customkey-value store, and 8.8%higher through-
put than Redis’s serializationwhen used in Redis, on a variety
of realistic workloads that cover cases where scatter-gather
can and cannot provide performance gains. The hybrid ap-
proach can provide between 1.4% and 14.0% improvement
against an only scatter-gather approach. One particular API
optimization the stack supports, serialize-and-send ( §3.2.3),
provides between 7.7% and 17.4% throughput gain.

2 Revisiting Serialization in the Datacenter
This section introduces our target systemmodel ( §2.1) and
discusses the capabilities and limitations of scatter-gather in
serialization. It reports two key findings. First, scatter-gather
serialization can in some cases significantly outperform cur-
rent copy-based libraries ( §2.2). Second, given the library
must provide memory safety and transparency guarantees
( §2.3), scatter-gather’s improvements are contingent upon
the size of objects and software overheads. For smaller objects,
copying costs less than safely managing an additional DMA
operation ( §2.4). This tradeoffmotivates a hybrid approach
that combines scatter-gather and copy.

We focus on serialization only, rather than deserialization,
because existing libraries (Cap’n Proto, FlatBuffers) already
provide zero-copy deserialization. They can turn serialized
payloads back into in-memory data structures without data
copies. We do not study accelerating encoding: while some
older serialization libraries, like Protobuf, encode integers
to reduce space, more recent wire formats like Cap’n Proto
and FlatBuffers forgo this because the tradeoff between CPU
cycles and network bandwidth has changed. Furthermore,
encoding can be accelerated in hardware if needed [23, 55].

2.1 Target SystemModel
We assume a standard datacenter server using TCP or UDP
with a 100 Gbps+ commodity NIC. We assume a low-latency

201



Cornflakes SOSP ’23, October 23–26, 2023, Koblenz, Germany

Buffer 1

Buffer 2

Current Libraries Two-Copy One-Copy Zero-Copy

Buffer 1 Buffer 1 Buffer 1

Buffer 2 Buffer 2 Buffer 2

    

Buf 1 Buf 2

Buf 1 Buf 2Buf 1 Buf 2

Buf 1 Buf 2

Allocate, copy,
add object header Allocate, copy

Buf 1 Buf 2

Allocate pinned buffer,
copy, add packet header 

Allocate pinned buffer,
copy, add packet header 

Allocate pinned buffer,
copy, add packet header 

Allocate small 
pinned buffer 

for packet 
header

Pi
nn

ed
 M

em
or

y 
Re

gi
on

Application

Serialization

Networking

Figure 1: Four approaches to transmit twonon-contiguousfields. Se-
rialization libraries likeCap’nProto or FlatBuffers calculate anobject
header and do two copies, one into a contiguous buffer and one into
pinned memory. “Two-Copy” eliminates adding the header, “One-
Copy” directly copies into pinnedmemory and “Zero-Copy” tells the
NIC to make three PCIe requests to coalesce the buffers while con-
structing the packet, assuming the buffers live inDMA-safememory.

kernel-bypass network stack [13, 24, 30, 34, 36, 58],which sup-
ports zero-copy I/O, such as Google’s widely deployed Snap
stack [30]. We target applications benefiting from end-to-end
latencies in the tens of microseconds, such as in-memory
caches (e.g., Redis [44], memcached [11]), and assume that
they use a low-latency stack rather than a POSIXAPI through
the Linux kernel. Because these latencies are only relevant
in the datacenter, we assume that stacks either use no en-
cryption or a NIC encryption offload [37]. We focus on data
structures that fit in a jumbo frame of about 9000 bytes to
study scatter-gather for sub-MTUsizedobjects; our prototype
implementation could be extended to support segmentation.

2.2 The Overhead of Copies in Serialization
To quantify the potential gains from scatter-gather serial-
ization, we measure a minimal application: a simple echo
server that reads and echoes a serialized message. The server
has almost no application-level processing and the message
has a simple format (two 2048-byte fields). We measure the
performance of three commonly used serialization libraries:
Protobuf [53], FlatBuffers [52], and Cap’n Proto [54]. To de-
compose the costs of serialization, we also measure three
manual serialization approaches, shown in Figure 1.
The echo application has 16 concurrent clients sending

to a single-core server, which deserializes, reserializes, and
transmits the data back. All libraries use a minimal UDP net-
working stack built on the Mellanox OFED interface [32].
Section 6.1 provides more detail on the machines.

Figure2showstheresults.Witha<50 µs latency, the through-
put without serialization is 77 Gbps, the zero-copy stack
achieves 48 Gbps, and existing libraries achieve 13-15 Gbps.
Data copies are the significant cost. A single copy reduces
throughput to 28 Gbps, while a second copy reduces it to 23
Gbps; the second copy is less expensive because its source
data is cached.

Figure 2: 99th percentile (p99) latency as achieved load increases
of serialization libraries, 2-copy, 1-copy, zero-copy baselines, and no
serialization. The echo server deserializes and reserializes a list with
two 2048 byte elements. Even a single copy significantly reduces
the achieved load for a particular p99 latency.

2.3 Safely Transmitting ApplicationMemory
Figure 2 shows that scatter-gather can improve the perfor-
mance of a serialization library. However, these results rep-
resent an upper bound on the potential performance gains.
A scatter-gather serialization library that maintains a similar
API as existing libraries requiresmemory safety andmemory
transparency, which both introduce software overheads.
Memory safety means that application data sent with the

library must remain alive until the networking stack is done
with it. The library must ensure application objects are not
freed until all pendingDMAs on themare completed. Systems
such as Demikernel [58] and DPDK provide this “use-after-
free” protection with per-application-buffer reference counts.
Therefore, for each I/O and completion, the scatter-gather
stack needs to access and update a reference count.
Memory transparency means that the library can handle

memory in any location correctly, even though the NIC can
only access pinnedmemory. The library should transparently
support copying data that cannot be safely DMA’d, without
extraprogrammereffort.Asa result, the libraryneeds to check
each I/O address against a metadata structure containing the
ranges of currently pinned memory pages.

Extramemory accesses per scatter-gather I/O causes cache
misses, which add significant overhead at the packet process-
ing timescales in Figure 2. 77 Gbps is 2.35 million packets per
second from a single core, or 426 ns per packet. At 48 Gbps, a
core has 683 ns per packet. A typical main memory access (an
L3 cachemiss) takes 100 ns; each access to uncachedmetadata
would consume 15-23% of packet processing time.

2.4 Case for a Hybrid Approach
Tounderstandhowcachemisses (whichmemorytransparency
and memory safety cause) affect the performance tradeoff
between scatter-gather and copying, we ran a scatter-gather
microbenchmark. Two load generators query a server con-
taining a large array of memory, about 5× larger than L3
cache (see §6.1 for the hardware cluster). The requests con-
tain IDs that map to non-contiguous physical buffers within
the array; the server sends back the buffers concatenated
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Figure 3: Highest achieved throughput for querying a 2048-byte
packet assembled from 32 to 1 non-contiguous physical buffers,
comparing copying, scatter-gather with software overheads, and
raw scatter-gather. Raw scatter-gather strictly outperforms copying
even for 64-byte buffers, butwith software overheads, scatter-gather
only outperforms copying for 512-byte buffers and above.

together (either using scatter-gather or copying). We com-
pare the throughput of copying, scatter-gather with software
overheads, and raw scatter-gather. In the software overheads
baseline, each physical buffer has multiple virtual buffer IDs
associated with it; client requests contain virtual IDs and the
server accesses a reference count per virtual ID. To induce
cachemisses on reference count accesses, we increase the size
of the reference count array to about 5× larger than the L3
cache, by increasing the number of virtual IDs per physical
buffer. Real applications contain data (e.g., keys) that com-
pete for cache spacewith zero-copy reference counts, causing
cache misses on reference count accesses. This application
has no competing data, and there are not enough physical
buffers for 1 reference count per buffer to cause cache misses,
sowe artificially increase the size of the reference count array.

Figure 3 shows the results. Raw scatter-gather always out-
performs copying, even for 32 64-byte buffers, given scatter-
gather never brings the physical buffer data into the cache.
With software overheads, however, the cost of the cache
misses outweigh the benefits from scatter-gather for buffers
smaller than 512 bytes. There are two important implications
of these results. First, the stack must be hybrid and support
both copy and zero-copy, because of zero-copy software over-
heads (also to support serializing data residing in non-DMA
safe regions of memory). Second, software overheads are crit-
ical. The entire library must be designed around minimizing
the number of cachemisses it can suffer for each transmission.

3 Cornflakes Design
Cornflakes is a hybrid serialization library that is co-designed
with an integrated networking stack. It provides a general-
purpose serialization API that safely and transparently han-
dles scatter-gather’saccesses toapplicationmemory. It achieves
this on commodity NICs in modern datacenter servers.

Cornflakes consists of three pieces: a collection of common
data types, a compiler togenerate code that builds customdata
structures on top of these types, and a co-designed runtime
library and networking stack that serializes, sends, receives
and deserializes messages. Cornflakes has four design goals:

Standard, simple API. Cornflakes’s programming model
should be as similar as possible to programming models pro-
vided by libraries such as Protobuf [53], such that it can be in-
corporated into existing applicationswithminimal effort.Due
to the NIC’s asynchronous access of application memory, the
programming model cannot exactly match that of Protobuf.
Transparently hybrid. Cornflakes should copy application
data when it resides in non-DMA-safe memory or when zero-
copy would add too much overhead, without programmer
effort or knowledge.
Zero-copy safety. Cornflakes should ensure that if a pro-
gram frees memory after sending it, Cornflakes can continue
to use the memory. The memory will not be fully released
until the transmission (and potential re-transmission) com-
pletes. Even though Cornflakes does not provide protection
against concurrent sends and writes, Cornflakes’s use-after-
free guarantee applies to a wide range of applications such
as Redis, versioned key-value stores, applications written in
managed languages or applications written for asynchronous
networkingAPIs; these applications naturally avoid updating
data in place during sends.
Fast. Every cycle matters at timescales of microseconds, so
Cornflakes must avoid creating intermediate data structures
and minimize the amount of metadata it must access to guar-
antee memory safety and transparency.
To meet these goals, Cornflakes deviates from existing

serialization libraries in three ways. First, Cornflakes trans-
parently supports both zero-copy and copy data ( §3.2.2). A
data structure definition specifies a bytes or string field as
usual, and this field can be represented as either a memory
safe zero-copyable reference, or data that has been copied.
Therefore, Cornflakes automatically supports non-DMA-safe
memory. Second, Cornflakes dynamically applies a per-field
heuristic at assignment time to decide which representation to
try to use, based on the field size ( §3.2.1). Cornflakes uses this
heuristic because more complex heuristics cause additional
cachemisses,which are a significant overhead atmicrosecond
timescales. Third, Cornflakes introduces a novel interface be-
tween the serialization library andnetworking stack: serialize-
and-send ( §3.2.3). In order tominimize intermediate represen-
tations of data that incur extra overhead, the Cornflakes net-
working stackdirectly accepts customobjects.Wefirst discuss
Cornflakes’s overall programmingmodel ( §3.1) before diving
deeper into these features ( §3.2) and the wire format ( 3.3).

3.1 Cornflakes’s ProgrammingModel
At a high level, Cornflakes’s programming model is nearly

identical to existing serialization libraries. To use Cornflakes,
a developer defines a data structure schema such as the GetM
message shown in Listing 1, using Protobuf’s existing schema
language. Next, the developer invokes the Cornflakes com-
piler to generate objects and their implementations for the
messages in the schema file (impl GetM in Listing 1). Finally,
the developer constructs and fills in a Cornflakes object in
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message GetM {
optional uint32 id = 1;
optional repeated string keys = 2;
optional repeated bytes vals = 3;

}

impl GetM { // some functions omitted
fn new() -> Self; // constructor
fn init_vals(&mut self, cap: usize); // list initializer
fn get_mut_vals(&self) -> &mut List<CFPtr>; // getter
fn deserialize(pkt: RcBuf) -> Self; // deserializer

}

impl CornflakesObj for GetM {
fn object_len(&self) -> usize;
fn write_object_header(&self, &mut [u8]);
fn iterate_over_copy_entries(&self, &mut [u8]);
fn iterate_over_zero_copy_entries(&self, callback: Fn(RcBuf) );

}

Listing 1: The schema for a GetM object with a list of keys and
values, with the Rust interface produced by Cornflakes’s compiler.
Like other libraries, the interface includes setters, getters, and
deserialize functions. The interface exposes iterators that the
Cornflakes networking stack uses to finish serialization, rather than
an explicit serialize function.

pub struct RcBuf { // Reference counted buffer
data_pointer: *mut c_void; // pointer to beginning of allocation
offset: usize; // offset into buffer
len: usize; // length of reference
refcnt: *mut Atomic<u8>; // reference count

}

impl Network {
fn alloc(&self, size: usize) -> RcBuf;
fn recv_packet(&self) -> RcBuf;
fn recover_ptr(&self, ptr: &[u8]) -> Option<RcBuf>;
fn send_object(&self, obj: impl CornflakesObj);

}

Listing 2: Cornflakes networking stack API. The networking stack
allocates reference counted buffers (RcBuf) for applications to use,
receives network data into RcBufs, and recovers RcBufs from raw
pointers. The networking stack directly sends Cornflakes generated
objects, rather than scatter-gather arrays.

their code with the generated functions. For list fields, the
compiler generates additional initialization functions that
reserve space for the list (e.g., init_vals in Listing 1) and ap-
pend functions (not shown). We briefly introduce two base
programmingprimitives thatCornflakesuses toprovidemem-
ory safety, memory transparency, and a hybrid API: reference
counted buffers (RcBuf) and hybrid smart pointers (CFPtr),
before going over an example application.
Ref-counted buffers (RcBuf).When the application, serial-
ization library and networking stack are accessing the same
memory asynchronously, higher layers must not free and re-
allocate memory lower layers are still accessing. Cornflakes’s
networking stack provides an allocator that returns buffers
of reference-counted, DMA-safe memory, shown in Listing 2:
RcBuf. Allocating or cloning an RcBuf increments its refer-
ence count and dropping an RcBuf decrements its reference
count; Cornflakes automatically frees the underlying mem-
ory when the last outstanding reference is dropped. Existing

pub enum CFPtr {
Copy(Vec<u8>),
ZeroCopy(RcBuf)

}

impl CFPtr {
fn new(ptr: &[u8], conn: &Network) -> Self;

}

Listing 3: The CFPtr abstraction in Cornflakes represents either
a reference counted buffer, or data directly copied into a vector. The
constructor takes in raw bytes, so developers need not worry about
whether the data passed in resides in a DMA-safe RcBuf or not.

fn handle_get(&self, pkt: RcBuf, conn: &Network) {
let getm = GetM::deserialize(pkt);
getm.init_vals(getm.get_keys().len());
for key in getm.get_keys().iter() {

let val = self.map.get(key);
let ptr = CFPtr::new(val, conn);
getm.get_mut_vals().append(ptr);

}
conn.send_object(getm);

}

Listing 4: Example code for an application using Cornflakes to
handle a request for multiple values from a key-value store. If the
values queried reside in DMA-safe memory and are larger than the
size threshold, Cornflakes will send the data structure without any
memory copies.

kernel bypass systems such as Demikernel [58] and DPDK
also provide reference counted, DMA-safe buffers to applica-
tions, but Cornflakes directly integrates the abstraction into
a serialization library.
Hybrid smart pointers (CFPtr). To enable a hybrid stack,
Cornflakes provides smart pointers that encapsulate zero-
copy references to data or copied data. Cornflakes generated
code represents bytes or stringfields as CFPtr objects (shown
in Listing 3). A CFPtr either contains a vector of bytes (copied
data that will later be copied into a DMA buffer) or an RcBuf

(that will be sent with an extra scatter-gather entry). The con-
structor of CFPtr is agnostic to the location of the underlying
memory (e.g., on the stack, unpinned heap memory, middle
of an RcBuf allocation); Cornflakes transparently recovers the
RcBuf if the pointer passed in is part of an RcBuf allocation.

3.1.1 Example Application. Listing 4 shows a simple ex-
ample application that implements a key-value store with
Cornflakes, using the GetMmessage defined inListing 1,which
is used both to receive data and send outgoing data. The appli-
cationfirst deserializes an incoming GetM request and reserves
space for the outgoing values in the list inside the GetM ob-
ject, depending on the number of keys that will be queried
(init_vals). For each key, the application queries the value,
constructs a CFPtr object with the raw pointer to the corre-
sponding value, and appends the CFPtr to the valsfieldwithin
the GetM (append). Finally, the application sends the GetM di-
rectly to the networking stack (send_object); the application
does not need to separately call “serialize” before sending.
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3.2 Serialization Library Features
This section describes three aspects of Cornflakes designed
for efficient use of scatter-gather: the scatter-gather heuristic
( §3.2.1), the construction of CFPtr objects with this heuristic
( §3.2.2), and the combined serialize-and-send API ( §3.2.3).

3.2.1 Scatter-gatherHeuristic. Cornflakes’sdynamicde-
cision whether to copy or zero-copy a field must be efficient.
Cornflakes uses a fast-to-compute size threshold and only
uses zero-copy for bytes and stringfields larger than or equal
to the threshold. Section 5 shows experiments that derive a
threshold for our hardware platforms, 512 bytes. Cornflakes
performs the threshold check when CFPtr data structures are
constructed, to be appended into the data structure.

We explored a design thatwaited until the send_object call
to choose which fields to use scatter-gather for, after all fields
are set. This design allowed for heuristics that make decisions
based on multiple fields or field size distributions. We found,
however, that this strategy incurs both a metadata cache miss
(reference count access) and data cache miss (data access)
in certain cases. When constructing a CFPtr (e.g., CFPtr::new
in Listing 3) to store inside a Cornflakes object, Cornflakes
accesses and increments the reference count if the rawpointer
is inside DMA-safe memory. If Cornflakes later decides to
copy this field due to the heuristic, Cornflakes will also incur
adata cachemiss; both cachemisses are a significant overhead.
Therefore, Cornflakes only considers heuristics that can be
calculated on a per-field basis as individual CFPtr objects are
constructed, suchas the size threshold.Thisway, for eachfield,
Cornflakes incurs either a data cache miss (copying the data)
or a metadata cache miss (incrementing the reference count).

3.2.2 Constructing CFPtr. Cornflakes uses CFPtr to pro-
vide its transparent, hybrid API. The CFPtr construction de-
pends onwhether the data should be transmittedwith scatter-
gather or not. The CFPtr constructor first executes the scatter-
gather heuristic by comparing the data size to the threshold.
Copy. If the size is smaller than the threshold, the constructor
copies the data into a vector and returns the Copy variant of
CFPtr. The Cornflakes networking stack later copies the copy
data again into a DMA-safe buffer. Because the data is already
in cache from the first copy, the second copy is cheap. Corn-
flakes uses efficient arena allocation for the vectors inside
CFPtr that offer fast allocation and mass deallocation in order
to avoid more expensive heap allocations for copied data.
Zero-copy. For data larger than the threshold, Cornflakes
first checkswhether thedata resideswithinDMA-safe (pinned)
memory using the networking stack’s recover_ptr function
(Listing 2). If so, recover_ptr further recovers the reference
count associated with the raw pointer, increments it, and con-
structs and returns an RcBuf. The reference count lookup is
a map lookup and fast arithmetic operation. If memory is
not within a DMA-safe region, Cornflakes cannot safely use
zero-copy and instead copies the data.

3.2.3 Combined Serialize-and-send. Cornflakes uses a
combined serialize-and-sendAPI to eliminate the cost of inter-
mediate transformations of data that cause additional cache
misses. Current scatter-gather networking stacks take scatter-
gather arrays as input and internally iterate over the array to
send the referenced buffers (e.g., Linux’s writev takes as an ar-
gument a struct iovec *iov and an int iovcnt). If Cornflakes
were an independent layer on top of of such a stack, it would
have to transform its application object into a scatter-gather
array. This transformation has a performance cost, in terms
of computational cycles, memory accesses (potential cache
misses), and an extra vector allocation. Cornflakes avoids this
translation. The networking stack accepts generated serializa-
tionobjects for transmission (impl CornflakesObj inListing1),
a functionality similar to system upcalls [7]. While many Pro-
tobuf implementations expose ways to write objects directly
into a socket (e.g., SerializeToOstream in C++), Cornflakes
provides such anAPIwithout having to copy the data. This op-
timization is only possible in a co-designed networking stack;
it is possible to implement the other aspects of the Cornflakes
design (hybrid zero-copy) in a stack where serialization and
networking are independent, by using scatter-gather arrays.

To implement this functionality, the networking stack uses
the iterator functions in Listing 1. The networking stack first
calculates the object size and number of copy and zero-copy
entries, to decide how many scatter-gather entries are re-
quired. The stack calculates and writes the packet header and
object header (write_object_header), followed by the copy
entries (iterate_over_copy_entries). Cornflakes then calls
iterate_over_zero_copy_entrieswith a callback that posts
each pointer and length directly on the ring buffer. The stack
concludes by marking the packet as queued onto the ring
buffer. To support objects larger than a single jumbo frame,
the copy and zero-copy iterators could take in start and end
offsets so they only operate on entries within the specified
range; the networking stack could call the iterators for each
message frame until the entire object has been written.

3.3 CornflakesWire Format
Cornflakes’s wire format is modeled off of the wire formats
of Cap’n Proto and FlatBuffers, with pointers that encode the
location and size of arbitrarily-sized data fields and nested ob-
jects. Overall, the Cornflakes wire format consists of a header
that indexes information about the fields, followed by the
actual field data. Figure 4 shows the format for a simple data
structure with an integer field and a repeated bytes field. The
header contains a u32 indicating how large the bitmap is, a
bitmap that indicates which schema fields are present, and
then information for each present field (in the order specified
by the schema).4 Like Protobuf, Cornflakes assumes schema

4Given au32 represents the size of the bitmap, Cornflakes can only represent
data structures with at most 232∗8 fields.
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Figure 4:Cornflakeswire format for a data structurewith an integer
and a repeated bytes field. The object header has a u32 indicating
the size of the bitmap in u32s (1), a bitmap indicating both fields are
present (0003), the id field itself, and pointers to each list element.
The final packet is constructed from two scatter-gather entries: one
for the headers and copied data (val2 and val3), and one for val1.

fields are only added and never removed or modified (so dese-
rializers are automatically backwards compatible). For integer
fields, the data is copied directly into the header (e.g., the field
labeled “id” in Figure 4). For bytes or string fields, the header
contains an offset (a forward pointer) and a size. For lists, the
header contains a size (number of list elements), and an offset
to where information about each list element is present. For
nested objects, the header contains an offset to the sub-header
(which contains its own bitmap and so on).
Zero-copy and copy entries. The data for the all top-level
and nested (“leaf”) bytes and string fields within the object
follows the header; copied entries precede zero-copy entries.
When transmitting a sub-MTU sized object, the PCIe request
sent to the NIC will haveZ +1 PCIe entries:Z is the number
of zero-copy fields; the extra entry contains the networking
header, object header, and any copied data. Figure 4 shows
this in the context of a data structurewith 3 list elements.Note
that the order of the object pointers in the header does not
necessarily match the resulting order of data fields or the or-
der in which these fields were appended. In Figure 4, because
val2 and val3 are smaller than the size threshold, they end
up coming before val1 in the wire format even though val1
was appended first, because the copied data precedes the zero-
copy entries. This does not preclude interoperability by two
servers using different heuristic thresholds: the references to
all leaf fields in the header are in a deterministic order based
on the data structure schema. However, servers with different
thresholdsmay serialize repeated elements in different orders.
Tradeoffs. The key difference from Protobuf is that all mes-
sage framing (e.g., field size) is in a header at the front of the
message, rather than embedded between fields. Cornflakes
has similar space overheads to FlatBuffers and Cap’n Proto,
which are larger than space overheads in Protobuf. Placing
framing in the front requires storing a pointer and size for
each field, rather than just the size. This interfaces well with
the constraints of scatter-gather and PCIe. If Cornflakes em-
bedded framing information between fields, each field would

require 2 scatter-gather entries: an entry for the framing be-
fore a field, and one for the field itself. This takes up space on
the ring buffer, and, depending on theNIC, could even require
an extra PCIe request. By placing all of the framing upfront,
there only needs to be one extra scatter-gather entry for each
zero-copy field.

4 Implementation
Our prototype implementation of Cornflakes includes a code
generationmodule that generates Rust serialization code (and
C bindings) from data structure schemas (11272 LOC), a net-
working stack interface and base serialization primitive li-
brary inRust (1829LOC), and aUDPnetworking stackwritten
in Rust over bindings to a customMellanox OFED datapath
and a custom Intel ICE drivers datapath (13218 LOC com-
bined). We additionally include a limited integration with
the Demikernel [58] TCP stack (≈4300 LOC). The prototype
supports serialization of base integer types, strings, bytes,
nested objects, and lists of strings, bytes or nested objects;
we confirmed this support with a replicated key value store
application that serializes nested Protobuf objects. Our im-
plementation uses a custom datapath for Mellanox and Intel
NICs because DPDK’s APIs require initializing linked lists
of mbufs (too costly) and Cornflakes requires fast recovery of
zero-copy metadata, which we found difficult to implement
with the memory layout provided by DPDK’s allocator. The
implementation includes apinnedmemoryallocator aspart of
the Cornflakes networking stack API that allocate power-of-
two-sized objects. Themain UDP implementation is available
at https://github.com/deeptir18/cornflakes.

4.1 Porting Existing Applications to Cornflakes
To port existing applications to Cornflakes, developers must
ensure I/O data is allocated inside pinnedmemory,modify the
serialization and I/O code to use the Cornflakes API andmem-
ory safety model, and determine an appropriate zero-copy
threshold to configure Cornflakes with.
Allocation. Cornflakes expects developers to modify I/O
allocation sites to explicitly allocate from pinned memory; if
the data is not already directly accessible by theNICwhen it is
serialized, it must be copied into a DMA-safe buffer. However,
the serialization library API is agnostic to the memory loca-
tion and handles both cases (DMA-safe and non-DMA-safe).
Serialization. Applications must generate Cornflakes seri-
alization code as a part of compilation. The application code
must invoke the Cornflakes generated code for getting and
setting fields within Cornflakes data structures, which is sim-
ilar to the Protobuf API for getters and setters (other than the
memory safety semantics). Finally, the codemust use the asyn-
chronous Cornflakes I/O datapath API to send objects and re-
ceive packets that can be deserialized into Cornflakes objects.
Memory safetymodel. Cornflakes’s memory safety guar-
antees only support applications that avoid updating data in
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place during outgoing I/Os, such as Redis. Therefore, to be
compatible with Cornflakes, applications must ensure that
data within Cornflakes objects are not modified in-place, if
theyare ever sent.Todoso, applications could replace in-place
updateswith allocations and pointer swaps (e.g., in the case of
an object-store put), reducing write protection to the case of
free protection. Applications that use asynchronous network-
ing APIs like Linux zero-copy send [8] or Demikernel [58] are
already compatible with this memory safety model.
Configuring Cornflakes. Finally, practitioners must con-
figure Cornflakes with a zero-copy threshold for their hard-
ware platform. Section 5 presents an empirical method to
determine the threshold that practitioners can re-run on their
own hardware to determine an appropriate threshold.

5 To Copy or Not to Copy?
This section presents a measurement study that explores the
tradeoff between scatter-gather and copy in a serialization
library and shows when the software overheads associated
with scatter-gather outweigh the benefits. The measurement
study compares two configurations of Cornflakes: one with
the threshold configured to 0 (scatter-gather every bytes or
string field) and onewith the threshold configured to infinity
(copy every bytes or string field).5 The results indicate that
scatter-gather has performance benefits when buffers are at
least 512 bytes; we configure Cornflakes’s zero-copy thresh-
old to 512. Section 6.3 validates this threshold across other
NICs; the current experiments only explore AMDCPUs, but
future work could include more CPUs.

5.1 Experimental Setup
We conduct this measurement study using the c6525-100g
CloudLab servers [10] described in §6.1.1.
Application. Themeasurement study uses a single-core cus-
tom key-value store implemented in Rust, where keys are
strings and values are linked lists of DMA-safe buffers. Indi-
vidual values are allocated non-contiguously and each client
get query fetches an entire linked list. See §6.1.2 for details.
Workload.We run aworkload based on the YCSB-C trace [4]
(Zipf coefficient 0.99) (§6.1.4). This workload serves constant-
size values, so it supports modifying the number of scatter-
gather entries and entry size; any constant-size workload
would work. To study how data structure shape affects the
tradeoff between scatter-gather and copy, we vary the size of
the buffers in the list and the length of the linked list.
Metrics.We use highest achieved throughput across all of-
fered loads to compare scatter-gather and copy; we found this
to be a good proxy to summarize trends in the corresponding
throughput-latency curves.

Figure 5: Throughput percent difference between only scatter-
gather and only copy serialization (difference divided by copy) for
a sweep of number of buffers queried and total payload size, on the
YCSB key-value store workload, where client threads query linked
lists from the server. On this hardware, scatter-gather only provides
benefitswhen the individual field size is at least 512 bytes,motivating
that Cornflakes should use 512 as its per-field size threshold.

5.2 Results and Implications for Cornflakes
Figure 5 shows the percent difference in maximum through-
put between an all scatter-gather approach to serialization
and an all copy approach, for different total response pay-
load sizes and numbers of scatter-gather entries, on the YCSB
workload. We observe that scatter-gather becomes more ad-
vantageous with larger payload sizes (x-axis) and when those
payloads are comprised of fewer elements (y-axis). The green
line indicates the crossover point where scatter gather starts
to outperform copying. This occurs when individual fields
are about 512 bytes or larger. Intuitively, this is the point at
which the CPU time for a zero-copy transmission equals the
CPU time for a copy transmission for a particular data size,
in this implementation of Cornflakes. This does not include
any time spent in the NIC, because none of the experiments
so far hit the throughput or rate limitations of the NIC.6

Based on these results, the version of Cornflakes evaluated
in Section 6 only uses scatter-gather for a field when it is
at least 512 bytes large. Note that this is a lower threshold
than the 1 KB, 10 KB, or 16 KB thresholds used by existing
systems [8, 48, 58].

5.3 Factors Affecting the Threshold
The threshold is affected by the following factors: the cycles
needed for the memory safety codepath in Cornflakes (which
all zero-copy transmissions must take), the ring buffer API
(the cycles needed to add an extra scatter-gather entry), and
the speed of copying a certain data chunk (including any
5Cornflakes automatically copies integer fields directly into the object
header, regardless of the copy threshold.
6Prior work [26] has shown that NIC characteristics can significantly
impact the performance of RDMA systems; here, scatter-gather is much less
resource intensive than RDMA.
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prefetching that may occur). The threshold would increase if
copying became cheaper (e.g., via a custom offload), or adding
an extra scatter-gather entry became significantly more ex-
pensive. If thememory safety codepath became less expensive
somehow, the threshold would decrease. Another factor that
could affect the tradeoff is if more offloads were used in the
NIC (e.g., encryption or RDMA). Given the difficulty in iso-
lating the effects of some of these factors (e.g., the codepaths)
and our lack of access to a wide variety of hardware plat-
forms to validate with, we chose to empirically measure the
threshold rather than analytically derive it. If any of the fac-
tors change, we recommend rerunning the microbenchmark
(varying the number of scatter-gather entries and element
size) to re-measure the threshold.

6 Evaluation
We evaluate Cornflakes to answer five questions:

1. Compared to software serialization approaches, what
per-core maximum throughput and throughput for a
particular p99 latency can Cornflakes sustain?

2. How doCornflakes and other approaches performwith
different distributions of field sizes in serialized mes-
sages?

3. Can Cornflakes be integrated into existing systems and
what performance benefits does it provide?

4. Can Cornflakes be implemented for multiple NICs and
how sensitive is its heuristic to NIC hardware?

5. How do design decisions within Cornflakes contribute
to its performance?

6.1 Methodology
This section describes our hardware, applications, baselines,
and metrics.

6.1.1 Setup.
Hardware. The measurement study in Section 5 and all
other end-to-end experiments (Section 6) use 2 24-core AMD
EPYC ROME 7402P 2.80GHz servers (Cloudlab c6525-100g
servers [10]), with C-States turned off, running Linux 5.04
with Ubuntu 20.04; they have about 134 MB of L1, L2 and L3
cache. These servers are connected by Dual-port Mellanox
ConnectX-5Ex 100 Gb NICs and a 100 Gb Dell Z9264 switch
with jumbo frames turned on (MTU = 9000 bytes). The cycles
breakdown microbenchmark in Section 6.4 uses 2 32-core
AMD EPYC ROME 7452 2.35Ghz servers (Cloudlab d6515
servers) connected by Dual-port Mellanox ConnectX-5 100
GbNICs and a 2 x 100 GbsDell Z9264F-ON switch. Section 6.3
compares Intel e810-CQDA2NICs andMellanox Connect X-6
NICs on AMD EPYCMilan 7313P 3.0Ghz servers. Section 6.3
uses a client (with aMellanox or Intel NIC) connected back-to-
back to one server (with aMellanox or IntelNIC, respectively),
without a switch.7

7There were compatibility issues with the DAC cables used to connect the
NICs to the switch, hence, we connected the servers back to back.

Loadgenerator. Unlessotherwisenoted, all experimentsuse
a 16-threaded client load generator running on top of DPDK,
which generate requests for various offered loads for up to 25
or 30 seconds, with Poisson arrivals.8 Unless otherwise noted,
experiments report latency (at various quantiles) from a his-
togram that records round trip times at 1000-microsecond
precision, and throughputusing the total numberof responses
received over the total time. The client supports each serial-
ization format compared to Cornflakes.
Metrics. We study both 99th percentile latency and achieved
throughput. We show throughput-latency curves with points
where achieved load is within 95% of the offered load. Not all
systems achieve the same latency targets (only offered load
is controlled); to compare systems (e.g., Cornflakes has X%
higher throughput) we use data points where Cornflakes’s
tail latency is lower than that of the baselines.We additionally
compare highest achieved load across all offered loads. We di-
rectlymeasure latency and throughput on a single core rather
than measuring cycles used by each baseline as measuring
cycles requires subtracting out the cycles spent busy spinning.

6.1.2 Applications.
Customkey-valuestore. TocompareCornflakes togeneral-
purpose serialization, we use a custom key-value store imple-
mented in Rust designed to be able to easily change the serial-
ization approach, as systems such asRedis have their own seri-
alization.Keysarestringsandvaluesare singlebuffers, linked
lists of DMA-safe buffers, or vectors of DMA-safe buffers.
Client get queries fetch values, list queries request the en-
tire linked list, and get_from_list queries request a specific
index within a particular vector.
Redis. We integrate Cornflakes into Redis [44] to compare
Cornflakes to application-specific serialization. We modify
three Redis commands: get (one value), mget (multiple values)
and lrange (query from a linked list) to use Cornflakes. Given
Redis by default uses Linux TCP, we modified Redis to use
the Cornflakes UDP networking stack built on the Mellanox
drivers, in order to fairly compare Redis and Cornflakes over
the same UDP networking stack.
Echo server. The final application is an echo server, with al-
most no application-level processing. Clients send a serialized
data structure and the server echoes it back after deserializing
and reserializing it: the server has no working set and so data
is always in cache.

6.1.3 Evaluated Systems. We compare Cornflakes with
three libraries: Protobuf [53], FlatBuffers [52], and Cap’n
Proto [54]. We use the “protobuf” [41], “flatbuffers” [12], and
“capnp” [5] Rust crates to interface with each library’s in-
memory objects. We also compare Cornflakes to Redis serial-
izationwithin Redis [44]. All systems run over the Cornflakes
UDP networking stack (using the Mellanox drivers), unless

8For some workloads, we have a limited number of queries so we run for
a fixed time or until the trace runs out.
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otherwise specified. Within the Cornflakes networking stack,
we implement a specialized network API for each library, de-
pending onwhat each library produces as output, tominimize
unnecessary copies in the baselines: FlatBuffers and Redis use
a contiguous buffer, Cap’n Proto provides a non-contiguous
list of buffers that represent the object, and Protobuf serializes
from Protobuf structs into DMA-safe memory directly.

6.1.4 Workloads.
Google protobuf bytes size distribution (read-only). To
evaluate a workload with mostly small objects, we build a
synthetic trace generator using object sizes taken from Figure
4c of Google’s fleetwide study on Protobufs [23]. Because the
paper does not specify howmany bytes fields there are per
serialized object, we generate objects with a linked list of 1,
1-4, 1-8, or 1-16 fields, associatedwith 64-byte keys. Each field
size is sampled from the distribution (and resampled if the
total size exceeds anMTU). Most of the objects are small (34%
of the sampled field sizes are 8 bytes or less and 94.9% are
512 or less); we expect Cornflakes should have equivalent
performance to the baselines, given the hybrid solution.
Twitter cache traces (read-write). To evaluate a workload
with a mixture of small and large buffers, we use the Twitter
cache trace #4 [56]. The store pre-loads values for the first 4
million unique keys queried in the trace. About 32% of the
requests query objects larger than 512, and about 8% of re-
quests are put requests. Because Cornflakes’s prototype UDP
networking stack does not support segmentation, we break
objects larger than anMTU into separateMTU and remainder
sized keys and values. The requests come with timestamps at
second granularity; we vary offered load by running the same
distribution within smaller and smaller fractions of a second.
CDNobject sizedistribution (read-only).Toevaluate per-
formancebenefitswith largerobjects,weuse theTragencache
trace generator [45] to create a trace of 1 million object sizes,
using the “image” trace class. The object sizes are between
1000 bytes and approximately 116 MB; the mean object size
is approximately 20K bytes. We use 64-byte keys. Given the
Cornflakes prototype only supports sending single-frame
messages (up to a jumbo frame), our trace associates each key
with a vector of sub-objects (large objects are broken up into
jumbo-frame-sized segments). An individual client request
queries a single sub-object, but all sub-objectswithin anobject
are requested sequentially, so we report throughput in terms
of full objects received. The trace only contains 1 million re-
quests, so we loop over the trace at various offered loads until
10 seconds has passed; though queries are repeated, we ex-
pect the key-value store to serve more requests frommemory
rather than cache as the objects take up approximately 10000
MB. For each offered load, we measure the achieved load and
report the highest achieved load for each baseline.
YCSB (read-only). For the measurement study (§5) and to
test Redis commands that necessitate more than one scatter-
gather entry (mget and lrange), we run a workload based on

System 1 val 1-4 vals 1-8 vals 1-16 vals

Cornflakes 844.7 727.2 584.5 441.2
Protobuf 852.5 741.9 583.8 402.0
Cap’n Proto 678.9 612.9 507.1 412.0
FlatBuffers 778.1 646.4 516.8 388.9

Table 1: Throughput achieved in thousands of requests per second
when querying linked lists with element sizes drawn from the
Google bytes size distribution (≈94% are smaller than 512 bytes,
so Cornflakes rarely uses scatter-gather). The length of each list
is uniformly distributed across the range specified. For 1 or 1-4
values per list, Cornflakes is within 98% of the dominant baseline
(Protobuf),while for 1-8 and 1-16 it outperforms all existing libraries.

Figure 6: Throughput-tail latency tradeoff for the custom key-value
store serving linked lists of 1-8 elements, with object sizes queried
from the Google bytes size distribution. In workloads dominated
by small values, Cornflakes relies on copying and performs as well
as Protobuf.

the YCSB-C trace [4] . We generate the trace with 1 million
30-31 byte keys and 40 million Zipf distributed queries (Zipf
coefficient 0.99). For Redis, the queried object has 2 2048-byte
or 1 4096-byte buffers, depending on the command.

6.2 Comparison to Software-Only Serialization
Wefirst evaluatewhetherCornflakes achieves itsmain perfor-
mance goal: to achieve better throughput than software-only
serialization libraries for similar p99 latencies.

6.2.1 Rust Key-Value Store. Cornflakes can achieve sim-
ilar performance to existing approaches when most of the
values are small (and zero-copy won’t provide any benefits)
and better performance than existing approaches as the me-
dian value size of the trace increases.
Google bytes size distribution trace. Figure 6 and Table 1
show Cornflakes in comparison to the serialization baselines
for the Google bytes distribution trace. Cornflakes does not
outperform the baselines as zero-copy does not help for small
objects other than the case of 1-16 values per list, but it is
competitive with Protobuf, FlatBuffers and Cap’n Proto. For
16 elements, Cornflakes may beat Protobuf because the Corn-
flakes implementation uses arena allocation for vectors inside
generated data structures, which this Protobuf implementa-
tion does not provide.
Twitter cache trace. Figure 7 shows the latency-throughput
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Figure 7: Throughput-tail latency tradeoff for the custom key-value
store serving elements from the Twitter cache trace, where about
32% of the objects queried are 512 bytes or larger. Cornflakes out-
performs all other serialization approaches: at a tail latency of about
53 µs, Cornflakes achieves 15.4% higher throughput than Protobuf.

Cap’n Proto FlatBuffers Protobuf Cornflakes

161.0 181.2 186.1 366.5

Table 2: Throughput achieved in thousands of objects per
second for the key-value store serving the CDN image trace.
Cornflakes achieves between 97-128% higher throughput than
current approaches. When large fields dominate, zero-copy greatly
outperforms copying.

Figure 8: Throughput-tail latency tradeoff for standard Redis hand-
written serialization and Redis using Cornflakes for serialization,
serving requests drawn from the Twitter trace. For the tail latency
SLO of 59 µs, Cornflakes achieves 8.8% higher throughput than
Redis. Cornflakes can be integrated into existing systems to improve
performance.

curve for the single get put requests on the Twitter cache
traceworkload. Cornflakes achieves between 15.4% and 45.9%
higher throughput than the baselines (these percentages are
based on a p99 latency of 52 µs for Cornflakes and 53 µs (Flat-
Buffers, Protobuf) and 61 µs (Cap’n Proto) for the baselines).
Eliminating copies for larger values can allow the key-value
store tomore effectively use the CPU cache for smaller values.
CDNtrace. Table2compares thehighest throughputachieved
on the CDN trace across Cornflakes and the software base-
lines. Given the minimum object size is 1 KB, which is above
the threshold of 512 bytes, Cornflakes uses zero-copy exclu-
sively. Eliminating copies not only saves CPU cycles but also
leaves space in the cache for application data (e.g., keys).

6.2.2 Redis Integration. Figure 8 shows that Cornflakes
serialization improves Redis throughput by 8.8% when serv-
ing the Twitter trace. Table 3 shows a 15-40.1% improvement

System get mget-2 lrange-2

Redis w/Cornflakes 23.37 Gbps 14.12 Gbps 15.07 Gbps
Redis 18.49 Gbps 12.27 Gbps 10.75 Gbps

Table 3: Highest throughput achieved for three commands within
Redis, get, mget (2 values) and lrange (2 values), comparing
Redis with Cornflakes serialization and Redis’s own handwritten
serialization, transferring payloads totaling to 4096 bytes, serving
the YCSB workload. Cornflakes provides between 15 and 40.1%
higher throughput. lrange-2 sees a larger improvement than
mget-2 because details in the experimental setup cause mget-2 to
have more cache misses on keys.

Figure 9: Latency of a TCP echo application on top of Demikernel
at a load of 175,000 1024-byte requests per second, comparing
serialization with FlatBuffers, serialization with Cornflakes, and
a raw packet echo (an L3 forwarder without serialization). Box
boundaries show p25 to p75 latencies, while whiskers show p5
and p99 latencies; p50 and p99 are labeled. Cornflakes provides
between 18 µs and 27.8 µs lower tail latenies than FlatBuffers,
while imposing only 4.9−10.8 µs more overhead than a plain
packet echo. Cornflakes can support TCP and provide performance
improvements compared to existing libraries.

for a range of commands on the YCSBworkload for objects
with a total size of 4096 bytes; mget-2 and lrange-2 involve
retrieving 2 non-contiguous 2048-byte buffers. Cornflakes
uses zero-copy exclusively, leaving space in the cache for
other Redis data such as keys. Note that the Redis baseline
was modified to use the Cornflakes networking stack.

6.2.3 TCP Integration. Figure 9 shows latency results for
integrating Cornflakes with the Demikernel [58] TCP stack
for the echo server application. Raw packet echo is an L3
forwarder using Demikernel: Demikernel pops and pushes
the same packet back. Here, all baselines include a separate
scatter-gather entry for the packet header (which Cornflakes
writes the object header into). We use a TCP load generator
on top ofDPDKand record the latencies for 10 seconds, after a
warm-up period of 10 seconds, at a rate of 175,000 packets per
second.9 At this offered load, for a 1024-byte payload, Corn-
flakes provides between 18 µs and 27.8 µs lower tail latency
than FlatBuffers. This is because this load approaches the

9We show latency here as we encountered an issue with sending at high
packet rates.
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(a) Intel ECQDA2 NIC

(b) Mellanox CX-6 NIC
Figure 10: Highest achieved throughput for ≈1024-byte messages
on Intel and Mellanox NICs as messages are split into fewer
elements, comparing only scatter-gather and only copy, on the
YCSB workload. The Intel NIC supports only up to 8 scatter-gather
entries; as one is needed for the message header, the final bars are
for messages with 6 170-byte values. On both NICs, scatter-gather
outperforms copy when values are 512-bytes or larger, showing
the 512-byte threshold is consistent for two different NICs.

maximum load that FlatBuffers can sustain, but Cornflakes
is able to sustain higher load.

6.3 Generality Across NICs
The heatmap in Figure 5 that informed a 512 byte copy thresh-
oldwasgeneratedwith theMellanoxCX-5ExNIConCloudlab.
Figure 10 shows how highest achieved throughput varies be-
tweencopyingandscatter-gather forpayloads totaling to1024
bytes across an Intel e810 CQDA2 NIC and a Mellanox CX-6
NIC, on the YCSBworkload. The Intel e810NIC series support
only up to 8 scatter-gather entries; given one is needed for
the packet header, we only compare up to 6 scatter-gather
elements. For both NICs, scatter-gather outperforms copying
with 1 1024-byte value and 2 512-byte values; the threshold
of 512 bytes holds across both NICs.

6.4 Cornflakes Overheads
This section shows where Cornflakes spends CPU cycles. Fig-
ure 11 breaks down the average cycles for different parts of
request handling within the CDN trace, for Cornflakes, Flat-
Buffers and Protobuf, for the achieved load of about 100K
objects per second.10 Given the minimum object size is 1K
bytes, Cornflakes always uses zero-copy. Applying zero-copy
leaves more cache space for application keys, also causing
get operations to complete faster. Cornflakes deserialization
is shorter because Cornflakes defers utf-8 verification for
the string key field until the key field is accessed; the other
baselines perform utf-8 verification at deserialization time.

10Note this experiment uses a different machine type, Cloudlab d6515, from
Table 2, which uses the Cloudlab c6525-100g type.

Figure 11: Average cycles taken for various steps within the
key-value store, serving the CDN workload, averaged over 2
executions, at a rate of about 100K objects per second, where all
systems meet the offered load. Cornflakes avoids a copy into the
serialization data structure during “Set Value” and only needs
to access a reference count, while FlatBuffers and Protobuf copy
once into the serialization structure (“Set Value”) and once into a
networking buffer (within “Networking Stack”)

.

Figure 12: Throughput-tail latency tradeoff on the Rust key-value
store, serving the Twitter cache trace. Cornflakes’s hybrid approach
achieves 2.3-3.9% higher throughput than the only scatter-gather ap-
proach at about 50 µs and 3.1% improvement for the highest achieved
throughput overall (not visible). For workloads containing a mix of
sizes, Cornflakes’s hybrid approach provides performance benefits.

System 1 val 1-4 vals 1-8 vals 1-16 vals

Hybrid 844.7 727.2 584.5 441.2
Only SG 846.9 717.2 557.4 387.1
Only Copy 819.0 693.2 547.4 411.8

Table 4: Highest throughput achieved in thousands of requests per
secondon theRustkey-value store, serving theGooglebytes sizedis-
tributionworkload. The hybrid approach imposes a 0.3% overhead in
thecaseof 1 scatter-gather entry,whileoutperformingscatter-gather
by 1.4-14.0% when response have more values. Cornflakes allows
applications to leverage one library, regardless of the workload.

6.5 Cornflakes’s Design Decisions
This section exploresCornflakes’s size basedhybrid threshold
and its send and serialize API.

6.5.1 CornflakesHybridSizeThreshold. Figure12com-
pares the throughput-latency curves for hybrid, only scatter-
gather, and only copy on the Twitter workload; the hybrid
approach performs about 2.3-3.9% better than only scatter-
gather in terms of throughput at the latency SLO of approx-
imately 50 µs. On the Google workload, Table 4 shows that
hybrid outperforms only scatter-gather by between 1.4% and
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Google Twitter YCSB
1-4 vals 1024x4

With serialize-and-send 727 krps 899 krps 18.9 Gbps
W/o serialize-and-send 675 krps 814 krps 16.1 Gbps

Table 5: Highest throughput achieved by Cornflakes with and
without the combined serialize-and-send optimization. The
optimization increases throughput by between 7.7-17.4% on
different workloads, suggesting it is crucial to squeeze the best
performance out of the scatter-gather hardware.

Figure 13: Highest achieved throughput on a scatter-gather
microbenchmark comparing copy raw scatter-gather as the number
of cores increase. Clients send requests querying 2 non-contiguous
512-byte segments from an array that is about 10 × larger than the
size of L3 cache. The array is sharded across the number of cores
specified. The behavior indicates that scatter-gather performance
scales linearly as the number of cores increase.

14.0% when responses have more than 1 scatter-gather en-
try. These results demonstrate two benefits that Cornflakes’s
hybrid approach provides. First, users can leverage one se-
rialization library regardless of the workload, rather than
needing to switch between a copy-only library and a scatter-
gather-only library, depending on the object size. Second,
for workloads that mix buffers of different sizes, Cornflakes
provides better performance overall.

6.5.2 Combined Serialize-And-Send. Cornflakes’s com-
bined serialize-and-send API allows it to achieve between
7.7% and 17.4% better throughput on various workloads, as
shown inTable 5.Without serialize-and-send,Cornflakes allo-
catesa scatter-gatherarray that contains theobjectheaderand
copieddata into aDMA-safebuffer thefirst entry, and the zero-
copy data in further entries. The networking stack transmits
the array, placing an extra scatter-gather entry at the front for
the packet header. Combined serialize-and-send allows Corn-
flakes to avoid materializing an intermediate scatter-gather
array and avoid one less scatter-gather entry (with the opti-
mization, Cornflakes can place the object header and copied
data in the scatter-gather entry with the network header).

6.6 Discussion on Scalability
Realistic applications benefit from parallelizing work across
cores. To understand Cornflakes’s potential to scale, we ran
the microbenchmark from Section 2.4, comparing copy and

raw scatter-gather, on a server that shards the full application
memory across cores, with a working set that is about 10×
larger than the L3 cache, and amessage shape of two 512-byte
buffers. Figure 13 shows that scatter-gather throughput starts
at 16.8 Gbps and scales linearly with the number of cores for
1, 2, and 4 cores, before plateauing at about 73.5 Gbps. Copy
throughput starts at 10.5 Gbps and similarly scales linearly
with the number of cores; the corresponding throughput at
higher number of cores is about 33% lower than scatter-gather
throughput, until both systems plateau. The fact that both
systems scale linearly with the number of cores suggests that
our end-to-end results should extrapolate to multiple cores.
However, given the complexity of carefully optimizing even
a single-core implementation, we leave a full multicore im-
plementation to future work.

7 Limitations and FutureWork
Memory safety. There is a tradeoff between different levels
of memory protection, transparency and efficiency; Corn-
flakes optimizes for transparency and efficiency, at the cost of
less protection than other methods. Cornflakes does not pre-
vent the application frommodifying memory during sends.
Previous work such as zIO [48] provides transparent write
protection by calling mprotect on data that is sent; adding the
overhead of a system call to each Cornflakes transmission
would likely make zero-copy more expensive and push the
zero-copy threshold higher than 512 bytes. Userspace control
of page permissions (via Intel memory protection keys) could
help controlwrite access as data is sent [35], butwould require
careful consideration to integrate safely and efficiently. Corn-
flakes could provide a library of smart pointers for developers
where writes to the smart pointer automatically trigger new
allocations and raw pointer swaps, but this would require
more developer effort.
Static zero-copy threshold. Cornflakes relies on a per-
system threshold to determine the field size at which Corn-
flakes adds an extra zero-copy entry to the transmission.How-
ever, the threshold could changedynamicallybasedon the cur-
rentmemory bandwidth pressure (e.g., due to additional appli-
cations running). With higher memory bandwidth pressure,
adding extra PCIe requests could become more expensive. If
Cornflakes automatically monitored the cache and memory
bandwidth pressure and adjusted the threshold dynamically
the threshold could both becomemore application-specific
and work in multitenant environments.
Allocationof pinnedmemory. Typically, to use zero-copy
datapaths, applications must modify all I/O allocation sites to
use a specific pinned memory allocator that allocates DMA-
safe memory, so zero-copy is possible. Making memory al-
locators aware of DMA-safe memory would make it easier
for developers to port existing applications or write new data
structures that are automatically allocated within DMA-safe
memory (e.g., allocatingRustorC++collectiondata structures
in pinned memory directly).
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8 RelatedWork
Zero-copy. Cornflakes builds onpriorwork that applies zero-
copy to applications and studies the tradeoffs between copy
and zero-copy. zIO [48] transparently removes application
copies by interposing on memmove and memcpy and handling
memory safety via page faults. However, zIO mostly stud-
ies packet sizes larger than 8000 bytes; Cornflakes shows
zero-copy gains for transmitting sub-MTU packets. Linux
proposes a zero-copy API [8, 9], but this implementation is
not optimized for microsecond-scale applications [8]. Gold-
enberg et al. [16] use the Sockets Direct API, which has zero-
copy and copy modes, to study when zero-copy is benefi-
cial. Chu studies the performance benefits from zero-copy
within Solaris [6] andfinds it depends on application behavior.
Cornflakesmakes similar observations aboutwhen zero-copy
achieves better performance, in the context of modern hard-
ware and serializationworkloads specifically. Cornflakesmea-
sures a lower zero-copy threshold on the hardware platforms
evaluated so far than previous systems (zIO suggests 16kB
and the Linux kernel suggests 10kB) because the tradeoffs for
zero-copy in these systems differ (e.g., the Linux kernel pins
memory on demand and zIO provides write protection with
mprotect). Demikernel [58] suggests a slightly higher thresh-
old of 1024 bytes but did not show an in-depth measurement
study to determine this value.
Serialization acceleration. Many serialization libraries re-
duce overhead by optimizing the wire format [52, 54], em-
ploying SIMD parallelism for decoding [28], or minimizing
the cost of type inference in dynamic serialization [27, 31].
These approaches do not remove the fundamental cost of
in-memory copies. As a result, recent research offloads serial-
ization or RPC to custom accelerators [19, 23, 29, 38, 39, 55] or
directly within SSDs [51]. Unlike these custom accelerators,
Cornflakes uses existing functionality in widely used NICs.
Reducing datamovement in serialization. A recent pro-
posal for a custom Protobuf hardware [23] accelerates the
transformation between the Protobuf in-memory format and
the Protobuf wire format for C++ Protobuf applications. How-
ever, applications still move data from in-memory data struc-
tures to Protobuf objects unless Protobuf objects are used as
mutable application state and manually provide DMA-safe
output buffers to the accelerator. Zerializer [55] proposes a
custom NIC offload to accelerate serialization. Cornflakes
only requires commodity NICs and does not require any data
conversions, because its chosen wire format does not require
encoding integers. Naos [49] is a recent “serialization-free”
runtime that uses one-sided RDMA writes to individually
write data fields of large Java objects directly into the re-
ceiver’s memory. In contrast, Cornflakes works across pro-
gramming languages and does not require RDMA support.
Kernel bypass systems. Cornflakes requires kernel by-
pass APIs that expose NIC interfaces directly to applications

in userspace [18, 43, 50] to eliminate OS level packet pro-
cessing overheads. Many recent kernel bypass networking
stacks [13, 34, 36, 40, 57] build on top of these interfaces to
provide APIs to applications while offering low latency, op-
timized thread scheduling, or zero-copy I/O. eRPC [21] offers
general-purpose RPC for commodity networking hardware,
and zero-copy networking. Demikernel and Arrakis [36, 58]
are ideal for use with Cornflakes because they expose scatter-
gather APIs directly to applications; however, none of these
systems have support for serialization.
Scatter-gather capabilities. High-performance computing
applications have used scatter-gather to optimize MPI all-
to-all communication primitives [14], or provide zero-copy
communication over MPI derived datatypes [46]. Kesavan et
al. [25] use scatter-gather to measure when zero-copy helps
an in-memory database, but does not consider serialization
of arbitrary data structures. Derecho [20], a recent SMR sys-
tem, uses scatter-gather to provide zero-copy I/O for scattered
data structures, but relies on specific layouts of data structures
provided by their memory allocator. We propose designing
general-purpose serialization library for application data in
arbitrary memory layouts.

9 Conclusion
This paper describes Cornflakes, a microsecond-scale seri-
alization library that uses NIC scatter-gather to eliminate
in-memory copieswhen it improves performance. Evaluation
results showthatCornflakesaccelerates serialization,with the
greatest benefits for applications that send large application
data objects. At the timescales of hundreds of nanoseconds
per packet, achieving these results while safely accessing ap-
plication memory required carefully optimizing Cornflakes’s
entire stack and data structures: a single cachemiss can be the
difference between small and significant performance gains.
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