
OS Pre-trained Transformer: PredictingQuery Latencies across
Changing System Contexts

Parimarjan Negi1, Ziniu Wu1, Arash Nasr-Esfahany1, Harsha Sharma1
Mohammad Alizadeh1, Tim Kraska1, Sam Madden1

1MIT CSAIL
{pnegi,ziniuw,arashne}@mit.edu

{harsha,alizadeh,kraska,madden}@csail.mit.edu

ABSTRACT
Current approaches to instant specialized ML models can learn
strong query latency predictors for a database in one system con-
text (e.g., AWS instance type with a particular load). However, such
models fail catastrophically when tested on a new system context.
This generalization gap requires training data of each database
workload for every new system context. We propose learning in-
dependent models for how the database and the system context
affect performance. We introduce OS Pre-trained Transformer (Os-
prey) that takes recent time-series of OS metrics, such as CPU
and memory usage, and produces an embedding vector that repre-
sents useful performance properties of the dynamic system state.
Osprey is pre-trained on a large set of workloads to learn a uni-
versal model of the OS log measurements. This is used by us in
a novel factorized model architecture to predict DBMS query la-
tencies. This allows us to train a query plan model specialized to
a particular database on just one system, and get generalization
to several different class of systems, and system loads. On new
system contexts, our model is up to 3× better at the median and
mean latency errors than a predictor trained on the same system
as us. In fact, our model is as accurate on new systems or loads
as if we had trained the instant specialized model just for that
system. This can be done because (1) we cleanly separate out the
effects of the system context v/s the query specific effects, and (2)
we pre-train the Osprey model on many other databases across
various system contexts in order to learn how query latencies vary
as system resources vary. The datasets and code are available at:
https://github.com/parimarjan/LatencyPredictor.

1 INTRODUCTION
Modern DBMSes are moving from local servers to cloud native
architectures [42, 43, 46, 49, 52, 57]. This has several benefits, but
also leads to complexity which makes it harder to adapt traditional
analytical cost models for query performance prediction (QPP) [43,
49, 52]. There are hundreds of available hardware configurations
which vary resources such as I/O backends, CPUs, memory, network
speeds. Moreover, due to virtualized (shared) hardware or multi
tenancy, performance can vary over time on the same hardware.

As an example, we execute an IMDb workload [44] on ten differ-
ent AWS instance types (Figure 1). The workload’s average runtime
goes from 7 seconds to over 200. Several instance types also show
variance in execution of the same query — this shows typical vari-
ability in the cloud. In response to this complexity, machine learning
methods have been proposed that learn QPPmodels in a data driven
way. This is attractive because the transition to cloud architectures

Instance Type Mean Per Query Std

a1_large_gp3_4g 78.2 13.9
c5a_large_mag_4g 204.8 11.7
c7g_large_mag_4g 195.6 4.8
m6a_large_mag_8g 70.5 15.9
r6a_large_mag_16g 7.3 1.7
r7g_large_gp2_16g 9.13 0.59
t3_large_gp2_8g 34.9 43.1
t3_xlarge_gp2_16g 11.8 2.1
t3a_medium_gp3_4g 69.4 17.3
t4g_large_mag_8g 72.3 13.5

Figure 1: Average query latencies, and std, for 6 repetitions of
320 queries from an IMDb workload on AWS. Instance Type
is ‘aws instance name’_‘I/O-backend’_‘RAM’.

has allowed DBMS providers to collect logs and telemetry at an un-
precedented scale, with analysis on millions of daily jobs reported
by Snowflake [60], AWS [49], and Microsoft [43, 52].

Instance optimized models are a widely adopted approach for
such models in both academia [15, 33, 39, 40] and industry [49, 61].
These are optimized for a specific scenario, e.g., latency prediction
on a database in a fixed execution environment. For the example
in Figure 1, following the approach in [39, 49] would require ten
separate models for the IMDb workload on each instance. Instead,
we propose a factorized model architecture that requires a single
instance specialized model that can learn about the current work-
load in one system, and have a pre-trained universal model of how
system state affects query performance, which adapts the instance
optimized model to changes in the system context.

Our system model is OS Pre-trained Transformer (Osprey). Os-
prey takes as input time-series measurements of recent history
of system metrics, and produces an embedding vector to capture
various system factors influencing performance in a common em-
bedding space (Figure 2). Osprey is pre-trained on system logs from
a large set of past workloads to learn the factors most relevant to
predicting query performance. Finally, we use a latency prediction
module which learns how query performance varies with changing
system contexts represented in this embedding space.

The key benefit of our approach is that it separates out two
independent factors affecting query performance: (1) estimating
workload specific properties (query complexity), (2) system spe-
cific properties (hardware and system load). Instance specialized
models [39, 40, 49, 67] learn both these aspects together, making



Parimarjan Negi1 , Ziniu Wu1 , Arash Nasr-Esfahany1 , Harsha Sharma1

Mohammad Alizadeh1 , Tim Kraska1 , Sam Madden1

Figure 2: OS Pre-trainedTransformer takes recent time-series
data of system log measurements and produces an embed-
ding vector which is useful for downstream tasks that depend
on the system state.

them very brittle to any change in execution conditions. We find
that instance optimized models are needed in understanding the
first aspect, as workload patterns can vary arbitrarily from one
workload to the next. This is not true when considering the system
context’s impact on performance. Unlike query plan estimates, sys-
tem state (e.g., memory utilization or I/O speeds) can be precisely
measured and meaningfully compared across different hardware
and workloads.

Osprey has the benefit that it treats both hardware changes, and
other changes that affect system load such as multi-tenancy, or
virtualized hardware, in the same unified manner. More crucially,
it allows us to leverage data from any workload to learn patterns
showing how these metrics evolve over time. It is inspired by how
large scale pre-trained transformer models have revolutionized all
tasks in Natural Language Processing [14, 47] and Vision [48]. The
core idea behind these techniques are not restricted to text or visual
data, and similar efforts are being made in several fields. We believe
the following key properties suggest that OS level logs would be a
great candidate for large pre-trained models that can be useful for
many downstream tasks.

(1) Presence of large scale datasets. Most of the benefits
of pre-trained models became apparent when trained on
internet scale data. For OS’s, system logs are constantly
being generated by all applications. For query processing,
the existence of large scale datasets is shown in surveys by
cloud providers [49, 60], however, we are not aware of any
work that trains a universally useful model at a large scale
on OS logs.

(2) Right level of abstraction. OS state is central to any
systems application, therefore, we believe representing its
properties in a unified vector space can be useful for many
downstream tasks from scheduling systems, to workload
classification, to performance prediction.

(3) Well defined downstream tasks. While its intuitive that
OS state is applicable to many downstream tasks, there are
not many standard ML for systems benchmarks. Therefore,
one of our goals was to explore one such downstream task
in depth in order to create a well defined benchmark and
pave the way for other such efforts.

We show Osprey pre-trained on a large set of workloads learn
embeddings that are very useful for latency prediction on com-
pletely new workloads. For a new workload, we train an instance
specialized query model on just one system; then using our pre-
trained models, we can get accurate predictions on any other sys-
tems known to Osprey without retraining the query model. These
predictions are as good as if we had trained an instant specialized
model on that particular workload, system pair, and up to 3× more
accurate than instance specialized models which were trained in
different systems. Further, we find additional benefits of Osprey:
(1) it’s OS state embeddings can cluster different workloads by
their performance properties, which can be used to find similar
workloads or analyze workload distributions (2) Osprey’s internal
mechanisms can be used to highlight which system metrics from
almost a hundred are most relevant for performance prediction in
the current OS state.

Our main contributions are:
(1) OS Pre-trained Transformer. We propose a pre-training

approach that lets us learn the dynamics of a system envi-
ronment from several workloads. Our results are a proof
of concept at a small scale — but the same approach could
be extended to significantly larger set of commercial work-
loads.

(2) Factorized model.We combine the query plans, and the
system logs, into a single model architecture that uses a
Graph Convolution Network (GCN) [30] for query plans,
and a pre-trained Transformer [58] network, Osprey, for
processing the system logs.

(3) Dataset. We construct a dataset by executing the same
queries in various system contexts to highlight the vari-
ance, and develop new techniques that take the query’s
environment into account.

(4) Parametrizing the system state. We believe that most
system state effects are explicitly, or implicitly, captured by
OS system metrics. Therefore, we propose that ML systems
performance prediction work should consider such metrics
as an important feature.

2 RELATEDWORK
Our work seeks to learn how the system state affects query per-
formance in order to use a learned predictor model across various
hardware and system states. There has been a lot of work on related
topics, so we will use this section in order to give a broad overview
of the field, and highlight differences with our approach.
Query Performance Prediction (QPP). Predicting execution
times of queries has a long history in research for DBMSes. Classical
approaches carefully model query plans, and use hand tuned cost
models for different hardware [7, 8, 16, 21, 26, 31, 37, 51, 55, 63],
which were optimized for the on-prem DBMS server settings. Sev-
eral studies from cloud providers have shown that such cost models
don’t easily translate to the cloud DBMSes: such as DBMS costs
not correlating to observed runtimes in Microsoft’s SCOPE [43, 52],
or learned models clearly outperforming DBMS costs in AWS Red-
shift [49].
ML based QPP. In order to address such challenges, a lot of recent
research has considered learning query performance directly from



OS Pre-trained Transformer: PredictingQuery Latencies across Changing System Contexts

past workloads usingML approaches [3, 5, 9, 10, 23, 23, 24, 40, 41, 43,
49, 54, 59, 64, 65, 67, 69]. These include several kind of models: per
operator models [3, 52], query plan models [10, 23, 24, 39, 40, 54, 67],
or models that flatten query plans to key features [43, 49, 66]. All
these papers focus on representing a query plan to make latency
predictions. None of these consider the effect of the system state
explicitly. Instead, they assume the system state remains consistent
between the training and test phases — thus, a new model would
need to be trained for every <database,system> pair. Such a system
was implemented in Redshift [49], but they also describe its chal-
lenges: (1) nothing globally useful is learned despite having millions
of queries (2) a learned model is only able to start predicting after
seeing hundreds of queries on a new instance. Moreover, such a
model does not help in answering ‘what if’ questions, for e.g., what
if we increased the memory capacity of a server?
QPP across different hardware and multi-tenancy. Classical
DBMS approaches systematically analyze the effect of hardware on
operator costs [50], and develop analytical cost models to account
for such changes. There has also been a lot of research on how
changing specific hardware components affect DBMS performance,
e.g., Amdahl’s law for multi-processors [4], effect of different I/O
compnents [25], memory allocators [18], and so on. However, these
are not easily combined to develop analytical models for how per-
formance changes across different hardware or system states. In
one recent paper, Ji et al. [27] create a causal graph between multi-
ple system resources, like Memory, I/O etc., and the DBMS query
performance, and use this to identify root causes for anomalously
bad query performance. However, there isn’t much work on data
driven methods that learn the interaction of different resources
in order to accurately predict query performance. Moreover, this
problem becomes even more relevant in cloud architectures that use
multi-tenant architectures [32, 60], since different tenant workloads
can arbitrarily change the system load. Our approach addresses
this gap in research, and we show that we can deal with both these
scenarios in a unified manner via measuring the key metrics that
relate to system state.

Delimitrou et al. [12, 13] study datacenter job completion times,
using matrix completion methods to estimate latencies on new
hardware, which is conceptually similar to our work in disentan-
gling query and system state effects on latency. However, there are
several practical differences, e.g., they rely heavily on sampling of
homogenous subparts of the job, similar jobs, and do not explicitly
model the OS system state.
Concurrent QPP. Another related research area is predicting per-
formance of concurrent queries [17, 62, 68], i.e., a set of queries
that would execute simultaneously on the same database. This
involves accounting for both the strain on system resources and
potential efficiencies from shared scans in memory. Our work, how-
ever, primarily aims to differentiate the effects of system state from
database-specific impacts. Concurrent QPP adds the complexity
of query interactions on the same database, and addressing this is
beyond our current scope.
Pretraining universal models. Since there is so much workload
data available in the cloud [43, 49, 52, 60], it is natural to ask if we
can train universal models that learn using the whole dataset. Lu et
al. learn pretrained summarization models across many database

10 1

100

101

102

qu
er

y 
la

te
nc

y 
(s

) 7c.sql 8b.sql

0

10

aw
ai

t
(I/

O)
0.00 0.56 1.11 1.67 2.22 2.78

experiment time (hours)

0

50

%
us

r
 (C

PU
)

Figure 3: Running IMDb workload, one query at a time, on
r7xlarge (gp2 I/O backend). The variance in runtime is only
due to varying I/O speeds of the gp2 backend.

workloads that can be quickly adapted to cardinality estimators
per database [36]. This is similar conceptually to how we learn pre-
trained OS system dynamics model for latency prediction, which
is then adapted to instance specialized per database models. We
are not aware of other work in this direction for latency predic-
tion. There have been some approaches to learn universal query
plan models for latency prediction [24, 28, 64], but this remains
an active area of research, and as argued in a study of a Redshift
deployment [49], in practice, there are several challenges to have a
query plan model that generalizes to any database. Therefore a lot
of research focuses on instant specialized systems that are trained
for just one workload [15, 39, 49].

In a recent vision paper [49], Saxena et al. lay out a description
of foundation models for operating systems, and discuss several
different downstream applications such as caching or query per-
formance. Conceptually, our work is in the same direction, and we
go deep into one such application (QPP) of pre-training models on
large amounts of operating systems data.

3 QUERY LATENCIES WITH CHANGING
SYSTEM CONTEXTS

Consider the query latency scatterplot in Figure 3 which execute
queries from IMDb workloads [2, 35] on a r7xlarge instance with
gp2 I/O backend. Only one query executes at a time, and we run
three repetitions of each query. We can see that the same query,
7c.sql, has up to 10× difference in execution times on the same



Parimarjan Negi1 , Ziniu Wu1 , Arash Nasr-Esfahany1 , Harsha Sharma1

Mohammad Alizadeh1 , Tim Kraska1 , Sam Madden1

Figure 4: Factorized model architecture.

system after about two hours. This is due to the system state. The
AWS gp2 I/O backend varies I/O speeds over time, sometimes giving
faster speeds called I/O bursts. In such cases, ML models which
only consider query plans [24, 39, 40, 67] can not do better than
predict the average latency of the three executions. This implies
they can have large errors when either the training or test data is
from dynamic scenarios.

How would a performance engineer predict query performance
in such settings? They may benchmark the query, or look at the
query plan and statistics to get an idea of how much work needs
to be done, and what are the critical operations. Next, they may
consider the new system — I/O speeds, CPUs, available memory.
Maybe run ‘top’ or other utilities to look at the load on the system.
Finally, combining these sources of information, the engineer would
have a sense of the expected execution time of the query. We want
to do this automatically. We design our model to make a prediction
integrating these different sources of information. They can handle
such dynamic cases well by also considering the system state, in
the form of time-series data for recent system logs.

Let us consider the examples in Figure 3 again to see how this
may work concretely. The varying I/O speed of the system is re-
flected in the logs for ‘await’ (the average time an I/O operation
takes from the moment it’s issued until it’s completed). The effect
of the lower I/O speed is also seen indirectly on the lower cpu
utilization shown in the plot for ‘%usr’. At the same time, not every
query would be affected as severely by the slower disk I/O — 8b.sql
still runs quite fast, because it was not doing as much I/O in any
case, which shows the importance of modeling the query plan as
well as the system logs.

This was a simple example. In reality, we provide time series
data on 92 such system log measurements1 to our model, which
should allow it to learn the effect of more complicated patterns.
As an example: few page faults, high memory usage, and high cpu
usage might mean that the accessed database is

4 OUR MODEL
Problem statement.Our system takes in a query plan, and OS logs
representing its recent state, and predicts the query latency. The
latency can be affected by various factors, like query complexity,
or the system load, or the hardware.
We assume a steady system state. An important assumption is
that the system state does not change drastically just before and
during query execution, i.e., we aim to make the best potential
prediction using information at query compile time. Our prediction
would be completely wrong if the system becomes overloaded after
the query starts. This is reasonable for queries taking seconds to
minutes, as system load is typically stable in such intervals.

4.1 Factorized Model Architecture.
Several past works have focused on the architecture and featuriza-
tion of query planmodels for latency prediction [3, 24, 40, 49, 59, 64].
Our contribution is in proposing a factorized model architecture
which expands on the query plan model to be adaptable to different
hardware and system states. It includes three distinct models as
shown in Figure 4.

(1) Database specialized query plan model. This can be
any neural network based query plan model (Graph Net-
works [9, 23, 24, 24, 53], Tree Convolutional Networks [39,
40], or others [67]) which takes as input a query plan and
is trained from scratch on every new database workload.
Past work typically used such models to predict latencies di-
rectly, but we want the output of this model to be usable for
predicting latency across many system contexts. Therefore,
our model produces an embedding vector which should
contain all query specific properties required to predict
latencies.

(2) OS Pre-trained Transformer (Osprey). A universal (i.e.,
applicable to any workload) transformer model which takes
as input recent OS logs, and produces an embedding vector
that captures the system state. It is pre-trained on a large set
of old workloads that cover the space of system states, and
after pre-training, its weights are fixed. On a new database,
we will only train the DB specialized model, and Osprey
will act as a fixed function.

(3) Latency prediction head. The information from the query
and environment embedding vectors are used as input to a
universal Multi Layer Perceptron (MLP) module to produce
the latency prediction. This approach parallels the training
of task-specific heads atop a commonly learned representa-
tion in natural language processing (NLP), exemplified by
models like BERT [14] and GPT [47], which are fine-tuned
for specific tasks, such as sentiment classification [20].

Database features use estimates, therefore, we use database
specific models. Various studies have proposed instance special-
ized models for specific databases [39, 40, 49]. A key reason for
this specialization is that query plan features rely on DBMS esti-
mates, such as cardinalities and costs. However, these estimates are
inaccurate, sometimes by orders of magnitude. Database-specific
1Examples can be explored at: https://parimarjan.github.io/latency_collector/Query-
System-Logs-a1_large_gp3_4g-imdb.html

https://parimarjan.github.io/latency_collector/Query-System-Logs-a1_large_gp3_4g-imdb.html
https://parimarjan.github.io/latency_collector/Query-System-Logs-a1_large_gp3_4g-imdb.html


OS Pre-trained Transformer: PredictingQuery Latencies across Changing System Contexts

models can learn to fix the cost model errors introduced by these
estimates by identifying patterns, such as correlations between spe-
cific columns in the workload. Training a model across thousands
of databases, however, will prevent it from leveraging such unique
workload patterns.
Universal pre-training with environment features is based
on precise measurements. System logs provide precise measure-
ments of relevant metrics, enabling the comparability of their time-
series evolution across various workloads. This generality of metric
evolution makes a compelling case for using a universally pre-
trained model. The rationale is that the influence of environmental
factors, such as the number of CPUs or the amount of memory, can
be understood in a generalized context. For instance, workloads
that demand extensive processing could benefit from additional
CPU resources. Similarly, memory or I/O intensive workloads might
show improved performance with enhanced respective resources.
This principle of environmental impact is not workload-specific but
rather a universal aspect that can be learned and applied broadly.
Generalization properties.There are two dimensions alongwhich
our predictions would need to be robust: (1) query properties (2)
system states. A lot of past work studies robustness of deep learn-
ing based query-driven models to new kinds of queries [29, 39,
44, 45, 64]. Our model should work well in such cases where the
new queries are from a similar workload as the training set. The
pre-trained model adds robustness to changing system contexts,
which is our key new contribution.
Independence of query and environment models. One im-
portant aspect of our model is that the query and environment
model learn independent representations. In particular, for a given
query, the query model will learn the same representation across
any environment; similarly, the environment model will learn a
representation that is useful for predicting latencies of all queries
in similar system states.

4.2 OS Pre-trained Transformer
Here, we describe our approach to tokenizing the system state, and
the architecture and training of the OS Pre-trained Transformer
model used for generating the environment embedding vector.
OS logs as system state.We use the linux sysstat [1] package to
collect periodic system measurements throughout the experiments.
The package provides several log files, and the ones used by us
are listed in Table 1. We do not use an additional 20 log files that
are specific to various networking sub components, that are not
relevant to our specific workloads.We choose these log files because
these measurements capture the dynamically evolving state of the
system in a way that is comparable across different linux based
systems. Moreover, there are several robust and efficient packages
tailored for capturing such measurements, which streamlines the
data collection process and ensures consistency. In general, we can
have an arbitrary number of log files (e.g., if we wanted a log file
for each I/O device or CPU), since the transformer architecture
supports arbitrary length sequences.
Tokenization. The time-series data of each log sub-field is turned
into one token for our model. Each token is the previous 𝑁 mea-
surements, and an identification vector indicating the metric. In

Log File Name (Flag) Included Fields

Paging Stats (-B) pgpgin/s, pgpgout/s, fault/s. . .
I/O Rate (-b) tps, rtps, wtps. . .
Block Device (-d) tps, rkB/s, wkB/s. . .
Filesystem Usage (-F) MBfsfree, MBfsused, %fsused. . .
File Table Status (-v) dentunusd, file-nr, inode-nr. . .
Hugepages (-H) kbhugfree, kbhugused, %hugused. . .
Interrupts (-I) intr/s
Power Mgmt (-m) MHz, rpm, DEVICE. . .
Memory Usage (-r) kbmemfree, kbavail, %memused. . .
Swap Space (-S) kbswpfree, %swpused. . .
Task/Switching (-w) proc/s, cswch/s. . .
CPU Utilization (-u) %user, %nice, %system. . .
System Load and
Pressure-Stall (-q)

%scpu-10, %sio-10, runq-sz. . .

Table 1: Summary of SAR log files and example subfields.

our experiments, we choose 𝑁 = 30 with measurements collected
at 20 second intervals.
Transformermodel.The transformer architecture [58] has emerged
as the most popular general purpose ML architecture for sequence
to sequence modeling. We use a decoder only transformer architec-
ture as described and implemented in [6].

Let 𝐿𝑖 be the 𝑖𝑡ℎ token characterizing the recent time-series
evolution of a metric. The function signature of one block of the
transformer architecture will look like:

𝑇 (𝐿0, 𝐿1, ..., 𝐿𝑛) = 𝐸𝑚𝑏0, 𝐸𝑚𝑏1, ..., 𝐸𝑚𝑏𝑛 (1)

i.e., takes in a sequence of log measurements and transforms them
into a new sequence with the same shape, which goes into the next
transformer layer. After the transformer blocks, we average these
sequences to get an environment embedding, as shown in Figure
4. Each transformer block consists of multi-head attention, feed-
forward MLPs, residual connections, and layernorm — see Bloem
[6], Vaswani et al. [58] for detailed descriptions of the architecture.
Here, we will focus on the attention mechanism, which is a key com-
ponent of the transformer architecture in order to develop intuition
about what the model may be learning. Each block uses several self
attention modules (multi-head attention), but for simplicity, we’ll
describe the computation for a single self attention module:

𝐸𝑚𝑏𝑖 =
∑︂
𝑗

𝑎𝑖 𝑗 · 𝑓 (𝐿𝑗 ) (2)

i.e., 𝐸𝑚𝑏𝑖 is a weighted sum over a (learned) function of each the
input logs (𝑓 (𝐿𝑗 )). The weights, 𝑎𝑖 𝑗 , or the ‘attention scores’ sum to
1 over all 𝑗 . The key aspect of self attention is that 𝑎𝑖 𝑗 is a function
of the input logs 𝐿𝑖 and 𝐿𝑗 .

Thus, each 𝐿𝑖 is transformed depending on its relationship to the
system context; in this case, the rest of the system log metrics. This
is a key aspect of Osprey: it considers the full input sequence (all the
system logs), and reweighs the importance of different sub-parts.



Parimarjan Negi1 , Ziniu Wu1 , Arash Nasr-Esfahany1 , Harsha Sharma1

Mohammad Alizadeh1 , Tim Kraska1 , Sam Madden1

For instance, given 𝐿𝑖 , if all 𝑎𝑖 𝑗 are equal, then 𝐸𝑚𝑏𝑖 would just be an
average of all input logs; On the other hand, if the model considers
some 𝐿𝑗 (e.g., CPU utilization) to be most critical, then the output
𝐸𝑚𝑏′

𝑖
𝑠 can depend more on that if 𝑎𝑖 𝑗 is larger. Or, if the model

considers the interplay between memory usage and page-faults to
be the most relevant, it would extract embeddings that depend most
on these two log measurements. Therefore, the attention matrix
containing these 𝑎𝑖 𝑗 scores is often used for interpretability as
it shows the input relationships most relevant from the model’s
perspective.
Pre-training task. In order to train the Osprey and the final latency
prediction head, we would use query latency and system logs from a
large collection of databases and system contexts. All three modules
— query model, Osprey, and prediction heads — will be trained
together to minimize the prediction error over the full dataset.
Since the query prediction model was specialized to this particular
set of databases, it will not be useful for a new database; therefore,
we will discard it. The Osprey and prediction head will be fixed after
pre-training; their input does not depend on a specific database,
and can be used as a fixed function.
Training on new databases. For a new database, we will initialize
a new database specialized model with appropriate featurization.
This will be trained from scratch using the same architecture as
Figure 4 — with the Osprey and prediction head acting as fixed
functions. The new training workload may only be from one system
context, but the new DB model will need to learn to produce query
embeddings that are compatible with the universal models pre-
trained earlier, which increases robustness of latency predictions
to the many other system contexts seen during pre-training.

4.3 Discussion
Here, we would like to discuss various benefits and challenges of
our approach, and its potential for real world scenarios.
Model size and scalability. In all our experiments we use 4 trans-
former layers, and 16 heads per layer, an embedding size of 32.
Also, we used system history of 30 time steps at 20 second intervals.
We chose these settings as we found them to perform well on our
workloads. This creates a model with 3𝑀 parameters, which is a
very small model compared to modern pre-trained transformer ar-
chitectures [47]. But these are proof of concept experiments, which
would only work in the system contexts in our dataset — i.e., 10
AWS hardware types, with particular kind of loads. If we scale
up such architectures to larger scale datasets, we will likely need
to significantly scale up the model sizes as well. As trends from
the broader ML communities suggest, the transformer architecture
is particularly good at scaling to large scale datasets, which sug-
gest that such an approach should scale well to massive real world
workloads as well.

There are several benefits of processing OS logs using a trans-
former based architecture to capture the system state:

(1) Lightweight. There are several well tested measurement
libraries for system logs which are lightweight; in par-
ticular, using special hardware primitives such as perf-
counters [11] adds even more efficiency to these measure-
ments.

(2) Relevant scale. In our experiments, and also in published
papers from cloud DBMS provides [43, 49], query latencies
last from a few seconds, to over several hundred seconds.
These OS measurements typically do not change drastically
in the scale of seconds, which is relevant to predicting query
latencies.

(3) Amortized inference. In general, the transformer archi-
tecture is about 5𝑥 slower than the query part of our archi-
tecture (on CPUs) — adding tens of milliseconds to each
inference. However, the transformer model is independent
of the query — thus the environment embedding does not
change over our sampling frequency. Thus, the inference
costs of the model can be amortized over several queries.

However, there are also several drawbacks that need to be over-
come to make such an approach practical.

(1) Logging overhead.Many system metrics are not logged
within query plans, requiring separate logging solutions.
Also, the increased volume of logging data may pose data
management challenges at scale.

(2) Variability. Different systems and cloud providers may
care about different metrics.

(3) Distributed DBMS. In distributed systems, its more com-
plicated to collect logging data from all system sources that
can affect performance.

5 DATASET
In this section, we describe the dataset we collected, which includes
over 150𝐾 PostgreSQL query execution plans and corresponding
linux system logs for over 2500 unique queries from 14 database
workloads executed on 10 AWS instance types, and under various
system loads. The dataset is designed to study how the changing
system environment affects query performance. This problem has
been studied since 1980s [50]. However, earlier researchwas focused
on designing DBMS cost models, and targeting smaller scale setups,
more typical of on-prem settings. In contrast, cloud providers collect
and analyze logs from massive workloads [43, 49, 52, 60]. While it
is impractical to collect a dataset comparable to commercial scale,
we collect a non-trivial-sized dataset that shows execution time
variance in modern cloud scenarios.

Table 2 summarizes some of its key properties. The workloads
are all based on publicly available benchmarks used in past work
on ML-based latency prediction [24, 39]. The database sizes range
from < 1𝐺𝐵 to 100𝐺𝐵. One key property of our dataset is that each
query is executed on ten different AWS instances, with varying
system loads — which allows us to analyze the effect of the system
environment on the query. Each query is repeated up to three times
in each system context — which gives up to 100 repetitions of each
unique query.

We show the average standard deviation of query latencies (in
seconds) in a workload across the 10 AWS instances with one query
running at a time, denoted as “Latency Std (Hardware)” in Table 2.
We observe that some of the workloads, e.g., IMDb, Stack, and
TPCH, are greatly affected AWS instance type change while other
workloads, such as the smaller 1𝐺𝐵 RelationFit workloads are not
affected as much. This is because the smaller DBs can fit in the RAM



OS Pre-trained Transformer: PredictingQuery Latencies across Changing System Contexts

Workload DB #Unique Latency Std
Size Queries (Hardware)

CEB [39, 44]
Stack-CEB 100GB 240 8.9
IMDb-CEB 7GB 320 12.6
RelationFit [24]
ssb 1GB 150 1.6
ccs 1GB 150 0.4
accidents 1GB 150 0.7
...and 7 other database workloads with very similar statistics
Others
TPC-H (S=10) 10GB 22 24.6
Stats (Alibaba) [22] 10MB 140 0.1

Table 2: Workload details. Queries are executed under differ-
ent conditions on 10 AWS instance types.

of all instance types, thus eliminating amajor source of performance
fluctuation.

(1) I/O: We use magnetic disk, gp2 (networked ssd, but with
variable speeds), and gp3 (more stable networked ssd) back-
ends. Magnetic disks are generally the slowest.

(2) Memory: We use 4 GB, 8 GB, or 16 GB memory.
(3) CPUs: We use 2, and 4 cpu instance types.
Finally, we also include AWS Graviton, ARM and Intel based

instance types. Using a combination of these properties, we select
10 instance types to run all the experiments. These are all among the
smaller instance types. This is because our workloads are relatively
small compared to modern cloud workload sizes as well — and it is
only interesting to analyze cases where changes in the hardware
cause distinct changes in performance. On large enough instances,
all the workloads would exhibit almost no variance (similar to how
there is little variance on the smaller workloads with the current
systems in Table 2).
System loads.We consider either a single database queries running
in isolation, or multiple database workloads running in different
combinations of 2 − 6 at one time. The second scenario is based on
multi-tenant systems such as Snowflake [60], or Salesforce [32].

6 EXPERIMENTS
We aim to train query prediction models which are specialized to
particular database workloads, but robust to changes in hardware
or system loads. In order to achieve this robustness, we use OS Pre-
trained Transformer (Osprey), which learns how system states affect
query runtime independent of the database workloads. We describe
the experimental setup in Section 6.1, and show the key results in
Section 6.2. We analyze why our model works in Section 6.3, and
explore the effect of various design decisions for pre-training the
Osprey model in Section 6.4.

6.1 Experimental Setup
The experimental setup is based on the scenario where a workload
is executed in one environmental context (hardware, system load),
and we test it in a new environment. There are two factors to
consider when defining a learned estimator: the model architecture,

Figure 5: Experiment data setup.

and the training data. In fact the data is even more important than
the model architecture when considering generalization to new
environments.
Training / test data setup. Our dataset can be viewed as a matrix
where the rows are queries, and columns are different environments.
An environment, 𝐸𝑛𝑣𝑖 , is defined by a <hardware, system load> pair,
i.e., 10 AWS instance types, with system load being either single
tenant (e.g., only IMDb queries) or specific multi-tenant scenarios
(e.g., IMDb-TPCh-Stack queries). Figure 5 shows how we construct
the training and test sets. For every experiment, there is a ‘TestDB’.
The ‘environment training data’ (gray) will include non TestDB
samples on all environments. The ‘query training data’ (green) will
include samples of TestDB queries on one environment — since it is
unreasonable to expect having query training data of a new database
on several different environments. The ‘evaluation data’ (red) will
include new TestB queries on new environments. Finally, the ‘test
instance training data’ is an idealized training set: it contains the
training queries from TestDB, on all the test environments.

In our experiments, we fix all samples of 20% of the query
workload from six AWS types (a1_large_gp3, r7g_large_gp2,
t3a_medium_gp3, m6a_large_mag, c7g_large_mag, t3_large_gp2)
as the evaluation data. For e.g., with 320 IMDb queries, we will ex-
clude 64 test queries from the training set. The 6 instance types
are chosen such that the workload execution times were distinctly
different on each; thus it represents a challenging test set for gen-
eralization. All models are evaluated on the same samples, but are
different in terms of the architecture and the training data. Fix-
ing the test set allows us to more easily compare performance of
learned models on different training data sources. As a running
example to describe the training set, consider the test set: ‘IMDb
test queries, r7g_large_gp2 instance type, single tenant load’.
DBMS Baseline. Linear model (slope and coefficient) that takes
as input the total DBMS query cost, and estimates latency, as used
in several other papers [24, 49, 63]. We fit a separate line for each
hardware type as in [63] — in our experiments, this does strictly
better than one single linear model over all samples.
GCNmodels. There have been several proposed latency prediction
neural net architectures that take as input query plan trees, such as



Parimarjan Negi1 , Ziniu Wu1 , Arash Nasr-Esfahany1 , Harsha Sharma1

Mohammad Alizadeh1 , Tim Kraska1 , Sam Madden1

0

2

4

6

8

M
ed

ia
n 

QE
rro

r

GCN (Transferable)
GCN (DB, New Env)
GCN (DB, Same Env)
Factorized (Osprey)
DBMS

0

10

20

30

40

M
ea

n 
QE

rro
r

GCN (Transferable)
GCN (DB, New Env)
GCN (DB, Same Env)
Factorized (Osprey)
DBMS

(a) IMDb.

0

2

4

6

8

M
ed

ia
n 

QE
rro

r

GCN (Transferable)
GCN (DB, New Env)
GCN (DB, Same Env)
Factorized (Osprey)
DBMS

0

5

10

15

20

25

M
ea

n 
QE

rro
r

GCN (Transferable)
GCN (DB, New Env)
GCN (DB, Same Env)
Factorized (Osprey)
DBMS

(b) Stack.

0

2

4

6

8

M
ed

ia
n 

QE
rro

r

GCN (Transferable)
GCN (DB, New Env)
GCN (DB, Same Env)
Factorized (Osprey)
DBMS

0

10

20

30

40

50

M
ea

n 
QE

rro
r

GCN (Transferable)
GCN (DB, New Env)
GCN (DB, Same Env)
Factorized (Osprey)
DBMS

(c) IMDb (Multi-tenant).

0

2

4

6

8

10

M
ed

ia
n 

QE
rro

r

GCN (Transferable)
GCN (DB, New Env)
GCN (DB, Same Env)
Factorized (Osprey)
DBMS

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n 
QE

rro
r

GCN (Transferable)
GCN (DB, New Env)
GCN (DB, Same Env)
Factorized (Osprey)
DBMS

(d) Stack (Multi-Tenant).

Figure 6: IMDb and Stack workload results.

Tree Convolution Neural Networks (TCNN) [39, 40], or Graphical
Convolutional Networks (GCN) [9, 23, 24, 53]. When evaluating
on generalization to new system environments, we find all these
architectures perform similarly, and we take GCN as the represen-
tative query plan model. There are two variants based on training
data proposed in the literature: (1) GCN (Transferable) [24], which
learns a single model over several database workloads. In particular,
this model would use statistics based features instead of database
specific features such as table names. In our example, GCN (Trans-
ferable) will be trained on all non-IMDb queries on ‘r7g_large_gp2’.
(2) GCN (DB), which is ‘instance specialized’ to a particular database
workload, as is typically the case in proposed latency prediction
models [9, 39, 40, 53, 54]. The benefit of such a model is that it can
utilize database specific features, and learn correlations and other
patterns particular to a workload; however, the drawback is that
it can’t use training data from other databases, and it may not be
possible to have training data on different environments. There-
fore, we consider two variants: (a) GCN (DB), Same Env: which is
trained and tested on the same environment (e.g., trained on IMDb
queries on ‘r7g_large_gp2’). This is the ideal testing setup for such
learned models, and (b) GCN (DB), New Env: which is trained on
an a different environment (e.g., trained on IMDb queries on one of
the non-test AWS instances).
Factorized (Osprey). Factorized model using Osprey as described
in (§4). The Ospreymodule is pre-trained on 10% of the environment
training data and fixed. This same pre-trained model is used in all
evaluations (single andmulti-tenant) of the test database. Then, only
the DB specialized GCN module is trained on the query training
data — this will have the same architecture and training data as
GCN(DB, New Env) described above, e.g., trained on IMDb queries
on one of the non-test AWS instances.

Evaluation workloads. To evaluate, we select the workloads
from our dataset that show high variance across environments (see
Table 2 in §5), and with sufficient number of queries so generaliza-
tion to similar new queries is possible. This includes the workloads
IMDb, Stack, and several of the workloads from RelationFit [24].
Evaluation function. Every sample has a latency, 𝑦, and each es-
timator predicts �̂�. There are several potential evaluation functions
to compare these. For simplicity, we use Q-Error, or multiplicative
error, as used by [24, 28]:

Q-Error(𝑦, �̂�) =𝑚𝑎𝑥 (𝑦
�̂�
,
�̂�

𝑦
) (3)

The benefit of Q-Error is that it is symmetric, and easy to in-
terpret. We also see very similar performance trends with relative
error as used by [52, 63], but since it isn’t symmetric, it leads to
cases where over-estimates are penalized more, thus environments
with lower runtimes tend to have higher errors.
Loss function. For training, we optimize for Q-Error as well. Since
it is non-differentiable, we predict 𝑙𝑜𝑔(latencies), and optimize for
the mean square error of these estimates, which is equivalent to
optimizing for Q-Error as shown in [19].

6.2 Generalizing to new environments
Figure 6 shows the median and mean Q-Error of all the models on
the test sets of IMDb and Stack in single or multi-tenant scenarios.
We will go over the key trends that are reflected across all these
results. The test set is fixed as described in Section 6.1, and the error
bars represent each experiment with a different training environ-
ment — e.g., for the Factorized and GCN(DB, New Env) models:
4 experiments with the non-test hardware types in single-tenant,
and 10 experiments with random environments in the multi-tenant
scenario.



OS Pre-trained Transformer: PredictingQuery Latencies across Changing System Contexts

0

2

4

6

8

10

12

M
ea

n 
QE

rro
r

ssb

GCN (Transferable)
GCN (DB, New Env)
GCN (DB, Same Env)
Factorized (Osprey)
DBMS

0

5

10

15

20

25

30

35

ccs

GCN (Transferable)
GCN (DB, New Env)
GCN (DB, Same Env)
Factorized (Osprey)
DBMS

0

5

10

15

20

25

30

35

airline

GCN (Transferable)
GCN (DB, New Env)
GCN (DB, Same Env)
Factorized (Osprey)
DBMS

Figure 7: Mean Q-Error across some of the smaller (1GB)
Relation Fit workloads.

GCN (Transferable). This model struggles to generalize effectively
to IMDb or Stack databases when trained on other databases in
the same environment, performing worse than a simple DBMS
baseline. Our evaluation scenario, compared to [24], presented
unique challenges: (1) we had less training data, (2) the queries were
more complex, and (3) crucially, the DB statistics varied greatly
across workloads due to significant differences in DB sizes.
Generalization gap between GCN (DB)’s. GCN (DB, Same Env)
shows the potential benefits of a DB specialized model — being up
to 4× better at mean Q-Error than the DBMS baseline (in IMDb).
However, this model needs training data of the Test DB on the
test environment; when this model was trained on a different envi-
ronment — GCN (DB, New Env), its performance is significantly
worse than the DBMS baseline. This makes sense — as we saw from
Table 2, there is significant variation among query latencies across
hardware on IMDb and Stack, and multi-tenant scenarios add even
more variance.
Factorized (Osprey)model tested onnewenvironmentsmatches
performance of DB and environment specialized GCN. Factor-
ized (Osprey) achieves similar performance as the GCN(DB, Same
Env) model by specializing to the TestDB with a GCN model, and
utilizing its knowledge about the new environments from the pre-
trained Osprey model. We saw that GCN models trained alone on
the TestDB or TestEnv were not enough to get good performance —
thus, the Osprey model plays a critical role here. It essentially lets
a GCN model trained on one environment to achieve the expected
training environment performance on all new test environments,
as if it had been trained specifically for the new environments. In
fact, it is more robust than GCN, and shows less variance than the
GCN(DB, Same Env) model. This is because even within the same
environment, there can be variation in the system state which can’t
be captured by the query plan features alone, while a well calibrate
system model can utilize these signals.
RelationFit DBs. Figure 7 shows the mean Q-Error across three of
the smaller DBs (single tenant scenario). The smaller size of these
DBs means there is less variance across environments since they
can fit in RAM. Thus, there is not much of a generalization gap
between the GCN(DB, New Env) and GCN(DB, Same Env) models.
The Factorized (Osprey) model gets the same performance, but does
slightly better on ‘ssb’, which is the RelationFit DB with highest
variance across instances (see Table 2).

(a) Linear model fit to DBMS costs. (b) Our model.

Figure 8: Scatterplot of estimated vs true latencies of the test
IMDb queries across the test instance types.

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50

M
ea

n 
La

te
nc

y 
Q

E
rr

or

Training Env

GCN
Factorized (Osprey)

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50
New Environments

GCN
Factorized (Osprey)

Figure 9: Learning curves of the GCN model and Factorized
(Osprey) model on the IMDb multi-tenant scenario. Each
model is trained on IMDb queries from one environment
(10 experiments with different training environments). Left
is Q-Error on training environment, and right is on new
environments.

Scatterplot. Figure 8 shows a scatterplot of estimated vs true laten-
cies of all IMDb test instances. Note the vertical lines of the DBMS
cost estimator: this shows situations where similar costs have very
different runtimes, thus a linear model using just these costs would
have large error. Meanwhile, the predictions from the Factorized
(Osprey) model roughly captures the true latency trend.
Resource Usage. Factorized model training consists of two parts.
Pre-training the Osprey and latency prediction head is a one time
cost; it takes around 5 hours on a V100 GPU, and roughly 5× longer
on CPUs. Our pre-training data was about 15−20𝐾 samples depend-
ing on which TestDB we exclude. Training the instance specialized
GCN model on the TestDB takes under 2 minutes, since its a light-
weight model and just contains training data on one database and
environment. CPUs are fast enough for inference on single sam-
ples. It takes 5𝑚𝑠 for the GCN and prediction head inference, and
about 25𝑚𝑠 for Osprey. However, as we discussed in Section 4.3,
the embeddings generated by Osprey can be amortized since they
do not depend on the query, thus they do not add to the compile
time costs.

6.3 Analysis and Other Use Cases
In this section, we dive deep into a single scenario — the IMDb
workload with the multi-tenant load — to analyze what Osprey is
learning and explore some qualitative use cases of Osprey. Specifi-
cally, we look at two system loads, with simultaneous execution of
the workloads: IMDb-TPCh-Stack and IMDb-TPCh-Ergast. Recall,



Parimarjan Negi1 , Ziniu Wu1 , Arash Nasr-Esfahany1 , Harsha Sharma1

Mohammad Alizadeh1 , Tim Kraska1 , Sam Madden1

Figure 10: t-SNE projection
of unprocessed system logs.

Figure 11: t-SNE projection of the system embedding generated by OS Pre-trained Transformer.
Each plot has the same points, colored to show different properties.

from Table 2, Stack is a very large database, while Ergast is one of
the 1𝐺𝐵 RelationFit DBs, thus we can expect considerably greater
load on the environment with Stack.
Learning curves. Figure 9 shows the learning curves of our model
and a GCN model on 10 experiments, each trained on one envi-
ronment. In the training environment, both the models do very
well. However, on new environments, the OS Pre-trained Trans-
former model consistently continues to improve predictions across
all environments despite only training on one environment.

Both the models train using the same GCN architecture and
training data. For a given query, our model will produce the same
query vector with the GCN model in each environment; this will
be combined with the embedding of the system state (generated by
the pre-trained Osprey model) into different latency predictions.
Therefore, we can look at these embeddings to see the signals the
model may utilize to adapt its predictions to different environments.
Visualizing system states.We will use t-SNE (t-distributed Sto-
chastic Neighbor Embedding) [56] to visualize the system states.
t-SNE is an algorithm for dimensionality reduction to visualize rela-
tionships in high-dimensional datasets. First, let us consider the 2𝑑
t-SNE projections of the unprocessed system logs. Figure 10 plots
all samples in these IMDb multi-tenant workloads colored by AWS
instance type. We see each hardware type get clustered together
into separate islands; this makes intuitive sense because the scale
of various measurements, such as kbmemfree, are probably most
similar in the same instance type.

Next, we look at the same system logs, but pass them through
Osprey to get an embedding for the system state. This is then
projected to 2 dimensions using t-SNE. In Figure 11, we take the
same set of 2𝑑 projections, and visualize each data point using
different criteria. First, we see the embeddings colored by instance
types. We no longer see distinct islands for each instance type,
instead, all the samples seem to be in a more continuous and mixed
space.
Clustering workloads. Next, we color the same t-SNE projections
using the type of systeam load: IMDb-TPCh-Stack v/s IMDB-TPCh-
Ergast. We see much clearer and distinct patterns here, in fact,
each load is cleanly separated into two distinct groups. From a OS
state embedding point of view, this is a very nice property, since
we know that these loads have very different effects on the final
performance. And it shows that on even very different hardware,

there is a similarity in the type of effects created by a workload on
the system.
Clustering by performance properties.Next, we color the points
using (normalized) values for one of the I/O log measurements
(%fio), resulting in a more continuous spectrum (based on the sys-
tem measurements) across the samples. This implies that Osprey
assimilates the system measurements and positions them in a new
embedding space where elements are arrayed along a continuum
of factors that influence performance.

The previous two clustering results suggest that Osprey em-
beddings could be useful in finding similar workload patterns, or
classifying workload patterns — similar to how natural language
embeddings enable searching for similar documents based on se-
mantic meaning [47], such approaches may make it possible to em-
bed workloads using Osprey and then search to find ones that have
similar performance properties across different hardware scales.
Single query example. Zooming in further, we analyze a sin-
gle example query, 5a104.sql, on the instance type r7g_large_gp2.
It takes 1 second with the IMDb-TPCh-Ergast load and over 400
seconds with the IMDb-TPCh-Stack system load. This is likely
due to the query running entirely from memory v/s requiring ex-
tensive disk access and stalling due to the pressure of the Stack
workload. From Osprey’s perspective, it encounters 92 tokens of re-
cent measurements, such as the four shown in Figure 12a. Notably,
for IMDb-TPCh-Ergast, we observe significantly higher values of
pgscand/s, which indicates pages scanned per second from page
tables. This suggests that the queries are being executed from mem-
ory, contributing to faster performance. The model then applies
the transformer layers to these inputs. To understand why Osprey
embeds these two samples very differently, we will need to look at
the internals of the transformer’s attention module.
Attention scores. In Figure 12, we examine the attention scores
assigned to various system log measurements for these inputs (refer
to §4.2 for a description of attention scores). In the first attention
matrix, we see that pgscand/s has very high attention scores for
several rows (i.e., the 𝑎𝑖 𝑗 values for 𝑗 corresponding to pgscand/s
are much higher for several different 𝑖’s). This means the 𝐸𝑚𝑏𝑖
embedding outputs from this layer would be disproportionately
influenced by the pgscand/s log measurements. This is very differ-
ent from the attention scores on the IMDb-TPCh-Stack workload,
which are fairly evenly spread out through different logs — thus



OS Pre-trained Transformer: PredictingQuery Latencies across Changing System Contexts

0 20 40 60

0

500

1000

1500

2000

pgscand/s

0 20 40 60

0.4

0.6

0.8

1.0

1.2
1e7 kbinact

0 20 40 60

50

75

100

125

150

175

200

intr/s

0 20 40 60

0.2

0.4

0.6

0.8

1.0

1.2

1.4
aqu-sz

IMDb-TPCh-Stack IMDb-TPCh-Ergast

(a) System logs in the last 10 mins.

pg
sc

an
d/s

fault/s
intr/s

kbslab

pgscand/s

tps

0.2

0.4

0.6

0.8

(b) IMDb-TPCh-Ergast.

kb
ina

ct

aqu-sz

dentunusd

intr/s
kbcached

kbinact

0.010

0.015

0.020

0.025

0.030

(c) IMDb-TPCh-Stack.

Figure 12: Query 5a850.sql (IMDb) on r7g_large_gp2_16g under two different system loads: (1) IMDb-TPCh-Ergast (taking 1
second) (2) IMDb-TPCh-Stack (taking 400 seconds). First row shows some of the system logs for previous 10 minutes (the input
to Osprey), and row 2 shows an attention matrix in the first layer of Osprey in both scenarios.

the embedding outputs would be more balanced. From the perspec-
tive of our prediction task, in the IMDb-TPCh-Ergast, the model
reweighs the inputs such that the pgscand/s log is much more
influential — and intuitively, this makes sense, as this log signifies
that the queries on that system are utilizing the page table system
memory very well.
Attention scores as proxies for most relevant metrics. These
attention scores essentially highlighted the 1 of 92 measurements
most critical to explain the better performance in the IMDb-TPCh-
Ergast scenario. In this case, we had strong intuition for this, be-
cause the workload patterns were constructed to be understood
easily by us, but in general, this could be a useful debugging tool
in more complex system environments with even more logging
measurements.

6.4 Pre-training Design
In this section, we will address various design decisions about the
Osprey model, and the pre-training data requirements.

6.4.1 Architecture choices. Figure 13a compares results of Factor-
ized (Osprey) with some other interesting design choices. We will
discuss each in turn.
Was a transformer necessary?With Factorized (Pretrained MLP),
we could approach the performance of Osprey by utilizing the same
factorized pre-training setup. The performance gap may be attrib-
uted to the benefits of attention analyzed in Section 6.3. Moreover,
MLPs are not flexible, for e.g., if we wanted to add per-cpu or per-
I/O logs, since MLPs require fixed dimensions. Nevertheless, in
some situations, using Pretrained MLPs could be useful because its
a simpler model, and faster for both training and inference.



Parimarjan Negi1 , Ziniu Wu1 , Arash Nasr-Esfahany1 , Harsha Sharma1

Mohammad Alizadeh1 , Tim Kraska1 , Sam Madden1

Estimator0

5

10

15

20

25

M
ea

n 
QE

rro
r

Factorized (Osprey)
Factorized (Pre-trained MLP)
Factorized
(No Pre-training)
Factorized
(Query History,
 No System Logs)

(a) Different versions of the fac-
torized architecture.

1.0 2.0 4.0 6.0 8.0 10.0
Number of Pre-training Instance Types

0

5

10

15

20

25

30

35

M
ea

n 
QE

rro
r

(b) Varying number of instance
types in pre-training data.

Figure 13: Experiments exploring pre-training design.

Was pre-training necessary? Factorized (No Pre-training) model
uses the same architecture as Factorized (Osprey) but the trans-
former is not pre-trained; instead, it trains from scratch on the
pre-training + IMDb’s queries on one environment. This isn’t prac-
tical because it doesn’t support adding new databases, and adds
hours to each training run (v/s a one time pre-training cost of Os-
prey), but here we analyze it to better understand why Osprey helps.
Osprey’s clearly better performance seems to be because without
pre-training, the GCN is fitting predictions to all the databases in
the workload, which is much harder than specializing to one data-
base. In comparison, the Osprey model first learns about how the
environment state affects latencies and then fixes this model (in
pre-training). Then, it adapts a lightweight GCN model to just one
database, separating the learning of the DB and environment.
Can we use query history instead of system logs? System logs
may not always be available, therefore, it is natural to ask if we can
use the recent query history as a proxy for system logs. If there
was only query in the workload, this would make perfect sense,
as the recent runtimes would exactly tell us how the system state
would affect the latency of the next runs. In order to test this, we
flatten the estimated and actual query plan features (cost and actual
runtime, estimated and actual cardinality etc.) into a vector, and
a sequence of recent vectors becomes an input to the transformer
model (instead of system logs). However, this does a lot worse
than Osprey. We believe this is because:(1) this approach mixes
the DB representation and system representation, and this leads to
information leakage between the system and query representation,
for e.g.„ the model may learn to do well in pre-training by learning
about queries instead of the system. (2) query latencies vary widely
— for e.g., small queries can run fast even in very overloaded systems.

6.4.2 Pre-training data. Figure 13b answers the question, do we
need to see every possible hardware instance type in pre-training?
There are hundreds of potential AWS instance types, so this is im-
portant. We pre-train Osprey with 1,2,4,6,8, or all the 10 instance
types and test the generalization performance on IMDb (single-
tenant) workloads. Pre-training data having 6 instance types, or
more, seems to do as good as having all instances; this is because a
lot of instance types have overlap, since different hardware config-
urations are usually a mix and match of a few basic blocks. There-
fore,it is natural to expect that we should not need to see every

0 10 20
Mean QError

All logs
Block Device (-d)
Paging Stats (-B)
System Load and

Pressure-Stall (I/O)
CPU Utilization (-u)

System Load and
Pressure-Stall (Load)

Task/Switching (-w)
I/O Rate (-b)

Memory Usage (-r)
File Table Status (-v)

Swap Space (-S)
System Load and

Pressure-Stall (CPU)
Interrupts (-I)

Filesystem Usage (-F)
System Load and

Pressure-Stall (Mem)

IMDb

0 20 40 60
Mean QError

Stack

Figure 14: Ablation study on using just one of the different
SAR Linux logs.

possible combination as long as we see enough coverage of individ-
ual components.

6.4.3 Log Files. We used several different log files from Linux’s
SAR utilities to define the environment state (see Table 1). In Figure
14, we use only one file at a time to define the environment, and
pre-train appropriate Osprey models for each log file, and evaluate
on single tenant IMDb and Stack workloads. This gives us a sense
of relative importance of log files to the final performance as well.
On IMDb, we find that ‘Block Device’, ‘Paging’, or ‘I/O Pressure
Stall’ logs all give almost optimal performance; this is probably
because the most important fact in IMDb workloads is the RAM
state, and how much I/O is being done in the system. However, on
the Stack workload, no single log file gives performance better than
a baseline — suggesting more complicated explanations, since the
Stack workload is larger and doesn’t fit into memory.

7 CONCLUSION
We introduced Osprey, which maps linux system logs to an em-
bedding space useful for downstream tasks like predicting query
latencies or clustering different workloads based on their perfor-
mance characteristics. Our evaluation is a proof of concept on a
restricted scenario with only 10 AWS instance types, but the overall
recipe of pre-training models that take into account OS states can
be extended to a much larger scale.

In the future, we plan to explore OS state embeddings as a build-
ing block for other downstream systems tasks where ML has shown
promise, such as compilers [34] or scheduling jobs [38]. These tasks
are also affected by OS states, which suggests a potential to apply
the techniques behind Osprey more broadly. For instance, we could
replace the query model with a model that takes as input featur-
ization of other arbitrary tasks, like compiler graphs, and predicts
their performance.



OS Pre-trained Transformer: PredictingQuery Latencies across Changing System Contexts

REFERENCES
[1] 2012. Systat Utilities. https://sysstat.github.io/ [Online;].
[2] 2021. Cardinality Estimation Benchmark. https://github.com/learnedsystems/

ceb [Online;].
[3] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B Zdonik.

2012. Learning-based query performance modeling and prediction. In 2012 IEEE
28th International Conference on Data Engineering. IEEE, 390–401.

[4] Gene M Amdahl. 1967. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference. 483–485.

[5] Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj
Pandian, Nikolay Laptev, and Ryan Marcus. 2023. AutoSteer: Learned Query
Optimization for Any SQL Database. Proceedings of the VLDB Endowment 16,
12 (2023), 3515–3527.

[6] Peter Bloem. 2019. Transformers from scratch. VU University: Amsterdam, The
Netherlands (2019).

[7] Christian Böhm. 2000. A cost model for query processing in high dimensional
data spaces. ACM Transactions on Database Systems (TODS) 25, 2 (2000), 129–
178.

[8] Surajit Chaudhuri and Kyuseok Shim. 1995. An overview of cost-based optimiza-
tion of queries with aggregates. IEEE Data Eng. Bull. 18, 3 (1995), 3–9.

[9] Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen, Rui
Zhou, and Kai Zheng. 2022. Efficient Join Order Selection Learning with Graph-
based Representation. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 97–107.

[10] Xu Chen, Haitian Chen, Zibo Liang, Shuncheng Liu, Jinghong Wang, Kai Zeng,
Han Su, and Kai Zheng. 2023. Leon: a new framework for ml-aided query
optimization. Proceedings of the VLDB Endowment 16, 9 (2023), 2261–2273.

[11] Arnaldo Carvalho De Melo. 2010. The new linux’perf’tools. In Slides from Linux
Kongress, Vol. 18. 1–42.

[12] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware schedul-
ing for heterogeneous datacenters. ACM SIGPLAN Notices 48, 4 (2013), 77–88.

[13] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-efficient
and qos-aware cluster management. ACM SIGPLAN Notices 49, 4 (2014), 127–
144.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[15] Jialin Ding, Ryan Marcus, Andreas Kipf, Vikram Nathan, Aniruddha Nrusimha,
Kapil Vaidya, Alexander van Renen, and Tim Kraska. 2022. SageDB: An Instance-
Optimized Data Analytics System. Proceedings of the VLDB Endowment 15, 13
(2022), 4062–4078.

[16] Weimin Du, Ravi Krishnamurthy, and Ming-Chien Shan. 1992. Query optimiza-
tion in a heterogeneous dbms. In VLDB, Vol. 92. 277–291.

[17] Jennie Duggan, Ugur Cetintemel, Olga Papaemmanouil, and Eli Upfal. 2011.
Performance prediction for concurrent database workloads. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of data. 337–
348.

[18] Dominik Durner, Viktor Leis, and Thomas Neumann. 2019. On the impact of
memory allocation on high-performance query processing. In Proceedings of
the 15th International Workshop on Data Management on New Hardware. 1–3.

[19] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using
Lightweight Models. Proc. VLDB Endow. 12, 9 (2019), 1044–1057. https://doi.
org/10.14778/3329772.3329780

[20] Zhengjie Gao, Ao Feng, Xinyu Song, and Xi Wu. 2019. Target-dependent senti-
ment classification with BERT. Ieee Access 7 (2019), 154290–154299.

[21] Goetz Graefe and William J McKenna. 1993. The volcano optimizer genera-
tor: Extensibility and efficient search. In Proceedings of IEEE 9th international
conference on data engineering. IEEE, 209–218.

[22] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan,
Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, et al. 2021. Cardinality
estimation in DBMS: A comprehensive benchmark evaluation. arXiv preprint
arXiv:2109.05877 (2021).

[23] Roman Heinrich, Manisha Luthra, Harald Kornmayer, and Carsten Binnig. 2022.
Zero-shot cost models for distributed stream processing. In Proceedings of the
16th ACM International Conference on Distributed and Event-Based Systems.
85–90.

[24] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-shot cost models for out-of-
the-box learned cost prediction. arXiv preprint arXiv:2201.00561 (2022).

[25] Windsor W Hsu and Alan Jay Smith. 2004. The performance impact of I/O opti-
mizations and disk improvements. IBM Journal of Research and Development
48, 2 (2004), 255–289.

[26] Yannis E Ioannidis. 1996. Query optimization. ACM Computing Surveys (CSUR)
28, 1 (1996), 121–123.

[27] Zhenlan Ji, Pingchuan Ma, and Shuai Wang. 2022. PerfCE: Performance debug-
ging on databases with chaos engineering-enhanced causality analysis. arXiv

preprint arXiv:2207.08369 (2022).
[28] Yuri Kim, Yewon Choi, Yujung Gil, Sanghee Lee, Heesik Shin, and Jaehyok Chong.

2023. BitE: Accelerating Learned Query Optimization in a Mixed-Workload
Environment. arXiv preprint arXiv:2306.00845 (2023).

[29] Andreas Kipf, Michael Freitag, Dimitri Vorona, Peter Boncz, Thomas Neumann,
and Alfons Kemper. 2019. Estimating filtered group-by queries is hard: Deep
learning to the rescue. In 1st InternationalWorkshop on Applied AI for Database
Systems and Applications.

[30] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[31] Virginia Klema and Alan Laub. 1980. The singular value decomposition: Its
computation and some applications. IEEE Transactions on automatic control 25,
2 (1980), 164–176.

[32] Heiko Koziolek. 2011. The sposad architectural style for multi-tenant soft-
ware applications. In 2011 Ninth Working IEEE/IFIP Conference on Software
Architecture. IEEE, 320–327.

[33] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The case for learned index structures. In Proceedings of the 2018 international
conference on management of data. 489–504.

[34] Hugh Leather and Chris Cummins. 2020. Machine learning in compilers: Past,
present and future. In 2020 Forum for Specification and Design Languages (FDL).
IEEE, 1–8.

[35] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[36] Yao Lu, Srikanth Kandula, Arnd Christian König, and Surajit Chaudhuri. 2021.
Pre-training summarization models of structured datasets for cardinality estima-
tion. Proceedings of the VLDB Endowment 15, 3 (2021), 414–426.

[37] Michael V Mannino, Paicheng Chu, and Thomas Sager. 1988. Statistical profile
estimation in database systems. ACM Computing Surveys (CSUR) 20, 3 (1988),
191–221.

[38] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. 2019. Learning scheduling algorithms for data pro-
cessing clusters. In Proceedings of the ACM special interest group on data
communication. 270–288.

[39] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2022. Bao: Making learned query optimization practical.
ACM SIGMOD Record 51, 1 (2022), 6–13.

[40] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A learned
query optimizer. arXiv preprint arXiv:1904.03711 (2019).

[41] Ryan Marcus and Olga Papaemmanouil. 2018. Deep reinforcement learning for
join order enumeration. In Proceedings of the First International Workshop on
Exploiting Artificial Intelligence Techniques for Data Management. 1–4.

[42] Vivek Narasayya and Surajit Chaudhuri. 2022. Multi-Tenant Cloud Data Ser-
vices: State-of-the-Art, Challenges and Opportunities. In Proceedings of the 2022
International Conference on Management of Data. 2465–2473.

[43] Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh, Tim
Kraska, Marc Friedman, and Alekh Jindal. 2021. Steering query optimizers: A
practical take on big data workloads. In Proceedings of the 2021 International
Conference on Management of Data. 2557–2569.

[44] Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality
Estimates That Matter. Proc. VLDB Endow. 14, 11 (2021), 2019–2032. https:
//doi.org/10.14778/3476249.3476259

[45] Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam
Madden, Tim Kraska, and Mohammad Alizadeh. 2023. Robust Query Driven
Cardinality Estimation under Changing Workloads. Proceedings of the VLDB
Endowment 16, 6 (2023), 1520–1533.

[46] Nicolas Poggi, Víctor Cuevas-Vicenttín, Josep Lluis Berral, Thomas Fenech, Gon-
zalo Gómez, Davide Brini, Alejandro Montero, David Carrera, Umar Farooq
Minhas, Jose A Blakeley, et al. 2020. Benchmarking Elastic Cloud Big Data
Services under SLA Constraints. In Performance Evaluation and Benchmarking
for the Era of Cloud (s) 11th TPC Technology Conference, TPCTC 2019, Los
Angeles, CA, USA, August 26, 2019, Revised Selected Papers 11. Springer, 1–18.

[47] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[48] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 10684–10695.

[49] Gaurav Saxena, Mohammad Rahman, Naresh Chainani, Chunbin Lin, George
Caragea, Fahim Chowdhury, Ryan Marcus, Tim Kraska, Ippokratis Pandis,
and Balakrishnan Narayanaswamy. 2023. Auto-WLM: Machine learning en-
hanced workload management in Amazon Redshift. In Companion of the 2023
International Conference on Management of Data. 225–237.

https://sysstat.github.io/
https://github.com/learnedsystems/ceb
https://github.com/learnedsystems/ceb
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/3476249.3476259


Parimarjan Negi1 , Ziniu Wu1 , Arash Nasr-Esfahany1 , Harsha Sharma1

Mohammad Alizadeh1 , Tim Kraska1 , Sam Madden1

[50] Patricia G Selinger. 1990. The impact of hardware on database systems. In IBM
Germany Scientific Symposium Series. Springer, 316–334.

[51] Praveen Seshadri, Joseph M Hellerstein, Hamid Pirahesh, TY Cliff Leung, Raghu
Ramakrishnan, Divesh Srivastava, Peter J Stuckey, and S Sudarshan. 1996. Cost-
based optimization for magic: Algebra and implementation. In Proceedings of the
1996 ACM SIGMOD international conference onManagement of data. 435–446.

[52] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost models for big data query processing: Learning, retrofitting, and our find-
ings. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 99–113.

[53] Yuanfeng Song, Yuqiang Li, Shuhuan Fan, Dongsheng He, and Jianming Liao.
2022. A New Graph Neural Network-based Join Optimization Algorithm. In
2022 International Conference on Algorithms, Data Mining, and Information
Technology (ADMIT). IEEE, 20–24.

[54] Ji Sun and Guoliang Li. 2019. An end-to-end learning-based cost estimator. arXiv
preprint arXiv:1906.02560 (2019).

[55] Yannis Theodoridis, Emmanuel Stefanakis, and Timos Sellis. 1998. Cost mod-
els for join queries in spatial databases. In Proceedings 14th International
Conference on Data Engineering. IEEE, 476–483.

[56] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using
t-SNE. Journal of machine learning research 9, 11 (2008).

[57] Alexander van Renen and Viktor Leis. 2023. Cloud Analytics Benchmark.
Proceedings of the VLDB Endowment 16, 6 (2023), 1413–1425.

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[59] Francesco Ventura, Zoi Kaoudi, Jorge Arnulfo Quiané-Ruiz, and Volker Markl.
2021. Expand your training limits! generating training data for ml-based
data management. In Proceedings of the 2021 International Conference on
Management of Data. 1865–1878.

[60] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Moti-
vala, and Thierry Cruanes. 2020. Building An Elastic Query Engine on Disag-
gregated Storage. In 17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 449–462.
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

[61] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a learning optimizer for shared clouds.
Proceedings of the VLDB Endowment 12, 3 (2018), 210–222.

[62] Wentao Wu, Yun Chi, Hakan Hacígümüş, and Jeffrey F Naughton. 2013. Towards
predicting query execution time for concurrent and dynamic database workloads.
Proceedings of the VLDB Endowment 6, 10 (2013), 925–936.

[63] Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigümüs, and
Jeffrey F Naughton. 2013. Predicting query execution time: Are optimizer cost
models really unusable?. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE). IEEE, 1081–1092.

[64] Ziniu Wu, Pei Yu, Peilun Yang, Rong Zhu, Yuxing Han, Yaliang Li, Defu Lian,
Kai Zeng, and Jingren Zhou. 2021. A unified transferable model for ml-enhanced
dbms. arXiv preprint arXiv:2105.02418 (2021).

[65] Zongheng Yang,Wei-Lin Chiang, Sifei Luan, GautamMittal, Michael Luo, and Ion
Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demonstrations.
In Proceedings of the 2022 International Conference on Management of Data.
931–944.

[66] Wangda Zhang, Matteo Interlandi, Paul Mineiro, Shi Qiao, Nasim Ghazanfari,
Karlen Lie, Marc Friedman, Rafah Hosn, Hiren Patel, and Alekh Jindal. 2022.
Deploying a steered query optimizer in production at Microsoft. In Proceedings
of the 2022 International Conference on Management of Data. 2299–2311.

[67] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: a
tree transformer model for query plan representation. Proceedings of the VLDB
Endowment 15, 8 (2022), 1658–1670.

[68] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query performance
prediction for concurrent queries using graph embedding. Proceedings of the
VLDB Endowment 13, 9 (2020), 1416–1428.

[69] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu,
and Jingren Zhou. 2023. Lero: A Learning-to-Rank Query Optimizer. arXiv
preprint arXiv:2302.06873 (2023).

https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

	Abstract
	1 Introduction
	2 Related Work
	3 Query Latencies with changing system contexts
	4 Our Model
	4.1 Factorized Model Architecture.
	4.2 OS Pre-trained Transformer
	4.3 Discussion

	5 Dataset
	6 Experiments
	6.1 Experimental Setup
	6.2 Generalizing to new environments
	6.3 Analysis and Other Use Cases
	6.4 Pre-training Design

	7 Conclusion
	References

