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Abstract

Data center network operators often need accurate estimates
of aggregate network performance, such as the frequency
of poor tail latency events, to guide network configuration
– when and where to add capacity as a function of increased
load, which network congestion control algorithm to use and
how best to tune its parameters, and so forth. Unfortunately,
existing methods for estimating aggregate network statistics
are either fast and systematically inaccurate, or are detailed
but too slow to be practical at the data center scale.
In this paper, we develop and evaluate a scale-free, fast,

and accurate model for estimating data center network tail
latency performance given workload, topology, and network
configuration. First, we show that path-level simulations –
simulations of traffic that intersects a given path – produce
almost the same aggregate statistics as full network-wide
packet-level simulations. We use a simple and fast flow-level
fluid simulation in a novel way to capture and summarize
essential elements of the path workload, including the effect
of cross-traffic on flows on that path. We use this inaccurate
simulation as input to a simple machine-learning model to
predict path-level behavior, and run it on a sample of paths
to produce accurate network-wide estimates. Our model gen-
eralizes over the choice of congestion control (CC) protocol,
CC protocol parameters, and routing. Relative to Parsimon, a
state-of-the-art system for rapidly estimating aggregate net-
work tail latency, our approach is significantly faster (5.7×),
more accurate (45.9% less error), and more robust.

1 Introduction

Network simulation is widely used in the design, planning,
and operation of networks. Prominent simulators, e.g., ns-
3 [42],OPNET[27],OMNET++[47], andhtsim[20], arepacket-
level discrete-event simulators. They take every interaction
at each network component (e.g., packet arrival, timer expi-
ration, etc.), serialize them in a single event queue, and go
through them one by one. As a result, they are inherently
slow and their performance does not keep up with the size
and speed of current networks. Recent work proposes ma-
chine learning (e.g., MimicNet [50], DeepQueueNet [49]) and
newparallelization strategies (e.g., Parsimon [51],DONS [17])
to accelerate and improve the scalability of traditional simula-
tors. However, these proposals also operate at the granularity
of packets. As network speeds continue to increase, packet-
levelmodels inevitably become too slow. For example, a single
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Figure 1:m3’s high-level architecture

data center switch chip can forward 25 billion packets per
second [48]. Even the most efficient packet-level simulator is
much slower than real-time even for one switch.

Our goal is to design a performance model that overcomes
the limitations of packet-level simulation without sacrificing
fidelity. Most network simulations are not used to inspect the
behavior of individual packets or even individual flows. In
many use cases, a network designer is interested in certain
performance metrics (e.g., network throughput, tail latency,
flow completion time) and how they are affected by changes
in network conditions (e.g., workload characteristics) and
various design choices (e.g., congestion control parameters,
routing policies, job placement). Rather than simulate every
packet interaction, can we learn a model that predicts these
performance metrics using a higher level of abstraction?
We propose m3, a system that uses machine learning to

predict the flow-level performance of a data center network.
m3 is trained using ground-truth data from a packet-level sim-
ulator such as ns-3.1 Given a network topology, an arbitrary
workload— specified as a sequence of flows and their network
paths— and optionally a set of design parameters (e.g., con-
gestion control knobs), m3 can predict the flow completion
time (FCT) distribution for a class of traffic, such as the flows in
a certain size range, flows sent from certain endpoints, flows
traversing certain paths, and so forth.
To understand m3’s design, let us consider a packet-level

simulator like ns-3 as implementing a function that maps an
input workload and a network topology to some performance
statistics (Figure 1(a)). Our goal is to learn a fast and accurate

1The techniques we develop can in theory be used to learn a performance
model based on a real network, but we leave this to future work.
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approximation of this function from training examples de-
rived from packet-level simulations. Conceptually, this is a
supervised learning problem. However, two key challenges
make it difficult.

First, the space of possible workloads and network topolo-
gies is vast, and we cannot collect training data for every
scenario. We could perhaps consider only certain workloads
or topologies during training, but ideally, we want the model
to generalize. Retraining for each new scenario may end up
being slower than using a packet-level simulator. Moreover,
there is a limit to the network scale we can simulate to col-
lect training data. Beyond a few hundred nodes, packet-level
simulators take hours to days for each second of simulation
time [51]. Training a complex model can easily require hun-
dreds of thousands tomillions of examples, so it is impractical
for large-scale networks.
Second, it is not clear how to represent the inputs to the

model efficiently. The network topology is an arbitrary graph,
and the workload is an arbitrary sequence of flows (with their
arrival times, sizes, and paths). Existing approaches such as
using graph neural networks to process network topology
information [13, 14, 45] face significant scalability and gener-
alization challenges [10, 18] (a datacenter network can have
hundreds of thousands of nodes and links). Similarly, pro-
cessing millions of flows using standard sequence models
such as Transformers [46] is prohibitively expensive. Simple
features such as the traffic load, flow size, and inter-arrival
time distributions, cannot capture complexworkloads such as
non-stationary or correlated traffic patterns (e.g., small flows
occur in bursts, large flows are spread out).
m3 addresses these challenges using two key ideas. First,

it decomposes a large-scale network simulation into a set of
path-level simulations. Each path-level simulation consists of
only those flows that traverse at least one link on a specific
path. The flows traversing the entire path are referred to as
the foreground traffic, and the other flows sharing a link with
the foreground flows are referred to as background traffic.
Any flows that interact with background traffic at other net-
work links (not along the path) are ignored. m3’s machine
learning model is trained to predict the FCT distribution of
the foreground traffic in an arbitrary path-level simulation.
To estimate network-wide behavior,m3 samples several paths
and combines their predictions to derive the network-wide
FCT distribution.
Our use of path-level decomposition is inspired by Parsi-

mon [51], which proposed to approximate a large-scale net-
work simulation via independent link-level simulations that
can be executed in parallel. Path-level decomposition is more
accurate than link-level decomposition (since it captures in-
teractions between links along a path), and our experiments
show that it provides an accurate approximation of network-
wide performance for real-world datacenter workloads and
topologies. Using path-level scenarios as the building block

for network-wide performance estimation also greatly sim-
plifies m3’s learning task. We only need to collect training
data for path scenarios, which is scalable since even large
datacenter networks have a modest maximum path length.
Providing topological information to the model also becomes
trivial using a small sequence of features associatedwith each
link along the path.
m3’s second key idea is to use a fast flow-level simulator

to extract rich workload-related features suited to FCT per-
formance prediction. Given a path-level scenario consisting
of sequences of foreground and background flows, m3 first
runs flowSim, a simple simulator that assigns flows their max-
min fair rate allocations at each point in time and computes
the flow completion times. It then extracts a feature map of
FCT statistics for flows of different sizes, which serve as the
primary input to the machine learning model (Figure 1(b)).
flowSim is extremely fast, e.g., it simulates 0.8 million flows
on a path in around 1 second (687× faster than ns-3). However,
bandwidth sharingmodels [30] such asmax-min fairness only
provide a coarse approximation of the behavior of congestion-
controlled flows. Such models are particularly inaccurate for
short flows since they do not capture queuing dynamics and
latency. Nevertheless, we show that flowSim’s FCT statistics
are excellent features for predicting the network’s true be-
havior. The feature map derived from flowSim is sensitive to
many important aspects of the workload, such as the volume,
burstiness, and size characteristics of the flows.

We train m3 using a diverse mix of synthetically generated
path scenarios. These synthetic scenarios capture the complex
dynamicsofnetworkworkloads includingflowsizevariations,
burstiness levels, congestion control protocols, andmaximum
link load conditions, all within parking-lot topologies of 2 to
6 hops. In the evaluation, we validate m3 with the pre-trained
models against production workloads and actual network
topologies. A primary metric we use is error in the estimate
of the p99 FCT slowdown; the ratio of the flow completion
time for different flow sizes, normalized to the ideal flow com-
pletion time for that flow size on an unloaded network, at the
99th-percentile. We summarize our evaluation results below.
• Given a diverse mix of production workloads on a 32-rack,
256-host fat tree topology, m3 delivers a 5.7× speed-up in
simulation time over Parsimon [51], alongside superior ac-
curacy in p99 FCT slowdown estimation. m3 demonstrates
mean estimation errors of 9.89%, compared to Parsimon’s
18.29%.
• Ona larger scale,within a 384-rack, 6144-host fat-tree topol-
ogywith different loads, m3 completes the simulation in up
to 54s. Thismarks significant improvements over Parsimon
(2 minutes and 8 seconds) and ns-3 (18.5 hours), with a no-
table reduction in estimation error from89.4% (in Parsimon)
to 5%.
• m3 can adapt to a variety of workloads, topologies, and
network conditions. Even when trained on scenarios with
varied congestion control settings, m3 accurately forecasts
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Figure 2: (a) Illustration of foreground and backgroundflows
on a path in a fat-tree network topology. (b) Distribution
of hop counts on sampled paths for different workloads.
(c) Accuracy of path-level ns-3 relative to full-network
simulation for tail (99th percentile) slowdown. (d) Number
of foreground and background flows on sampled paths for
different workloads. (e) Path-level ns3’s error distribution
as a function of path length and number of foreground flows.

tail FCT slowdown for new, unseen parameters, highlight-
ing its capacity for effective counterfactual analysis.
m3’s code is available at https://github.com/netiken/m3.

This work does not raise any ethical issues.

2 Insights

In this section, we use data from ns-3 to motivate our model’s
use of path-level decomposition and workload featurization.

2.1 Path-level Decomposition

Modern hyperscalar data center networks can be enormously
large, with hundreds of thousands of servers and network
links and thousands of network switches. With network core
and server link speeds continuing to increase exponentially,
accurately simulatingnetworkbehavior at scalewith apacket-
switched simulator is a daunting task. In recent work on Par-
simon [51], Zhao et al. suggest decomposing the network into

a set of independent queues representing each link, and then
simulating the traffic traversing each queue in parallel. If each
queue experiences congestion independently and transiently,
the per-queue results can be combined to approximate aggre-
gate network behavior. However, this approximation breaks
downwith higher utilization, higher levels of oversubscrip-
tion, and for workloads with correlated endpoint behavior. In
the recent work onMimicnet [50], Zhang et al. use machine
learning to train a generative model of the impact of clusters,
or subsets, of the network on other clusters. This allows fast,
small scale cluster-level simulations tobegeneralized to larger
scale systems. However, this work assumes a topological and
workload uniformity that is rarely found in practice.

Our work is inspired by these earlier efforts, but aims to
work at scale for general workloads and topologies, without
implicit assumptions about traffic independence or topolog-
ical regularity. While Mimicnet showed that it is possible to
train a model on a specific topology, it is hard to envision
how to train a model of an entire network in a way that is
topology independent, so that it produces accurate aggregate
performance evenwhenwe remove or add a link or switch, or
upgradeaportionof thenetwork [52], oruseoptical switching
to dynamically change core link capacities [41].
Instead, we set ourselves a simpler problem. We decom-

pose the network into a set of paths; each path is a sequence
of links and switches connecting a source node with some
destination, as illustrated in Figure 2(a). A large scale data
center network may have billions of such paths; with fault
tolerant redundancy, there may be hundreds of paths even
between the same source and destination node. Paths can
be of varying length (in a data center setting, they typically
having an even number of hops) with varying link capaci-
ties and traffic.We call the traffic from the path source to its
destination foreground traffic; background traffic intersects
the foreground traffic over at least one hop. Importantly, the
number of possible configurations and workloads for individ-
ual paths is vastly smaller than that for networks, making the
challenge of building an accurate model tractable.
We do make a simplifying assumption, that the perfor-

mance of foreground traffic is primarily determined by the
latency, capacity, and scheduling policies of the links along
the path, along with the characteristics of the foreground and
background traffic. In other words, we assume that flows that
do not intersect a path do not significantly affect the behavior
of foreground traffic. This is of course an approximation. For
example, the presence of upstream bottlenecks can smooth
cross-traffic, affecting its interaction with the foreground
flows. However, it is a much weaker assumption than some
prior work, such as Parsimon which assumes independence
of individual queues, rather than individual paths [51].
To validate this approximation and its effect on accuracy,

we use ns-3 to simulate three scenarios with different traffic
matrices and flow sizes drawn from production workloads,
alongwith differentmaximum link load and oversubscription
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Scenario #Flows Traffic Max load Workload Oversub ns-3 Parsimon ns-3-path
p99 sldn time p99 sldn time p99 sldn time

Mix 1
10M

Mat A 42.46% CacheFollower 4-to-1 4.565 41.70h 5.023 345s 4.527 11.50h
Mix 2 Mat B 28.46% WebServer 1-to-1 4.602 9.648h 4.893 65s 4.504 1.781h
Mix 3 Mat C 73.83% WebServer 2-to-1 13.891 8.064h 15.24 40s 13.07 0.566h

Table 1: Comparison of the 99th-percentile flow completion time (FCT) slowdown (sldn) and computation times for 10million
flows for different simulationmethods, workload, and oversubscription scenarios. Configuration is the same as Section 5.2.

levels (Table 1) for the fat-tree topologyused inSection5.2. For
each scenario, we simulate 10 million flows with Equal-Cost
Multi-Path (ECMP) routing using ns-3.

To validate our path-based approach, we randomly sample
500 paths with the probability proportional to the number of
foreground flows they carry, with replacement. This selection
is further explained in §3.2. The distribution of hop counts of
these paths is shown in Figure 2(b). For each selected path, we
simulate its foreground and background flows, again using ns-
3, but excluding the flows that do not intersect that path. We
call this approach ns-3-path. When we compare the per-path
results from ns-3 with ns-3-path in Figures 2(c) and 2(e), we
showthisapproachhashighaccuracyand is robust todifferent
scenarios (Figure 2(c)), hop counts and the ratio of foreground
to background flows. We then aggregate the flow completion
time slowdown across the 500 sampled paths from ns-3-path
and compare that against the network-wide aggregate statis-
tics from ns-3. Table 1 shows the p99 tail latency slowdown
of both methods across three different sample scenarios. ns-
3-path has an average p99 slowdown estimation error of only
2%. However, this does not completely solve the problemwe
posed. The table also lists the computation times of ns-3 and
ns-3-path for the different scenarios. Because ns-3-path must
simulate all flows intersecting the foreground traffic, its ag-
gregate runtime on a server is nearly the same as the full ns-3
simulation; more accurate but much slower than Parsimon.

2.2 Workload Featurization

Another key aspect of our approach is to use flow-level sim-
ulation to quickly characterize and summarize path-level
workload information as input to a machine learning model.
Even when we narrow our focus to an individual path, there
are hundreds of thousands of flows andmillions of packets in-
tersecting and affecting the performance of foreground traffic
on the path. The path level workload is a complex and long
sequence of foreground and background flow arrival times
and sizes, with complex congestion control dynamics. Even
if we were to try to use that data to train a model, it is not
clear how to featurize the workload [4] and represent it as
input to a model in a way that generalizes to a sufficiently
large space of workloads. Simple features such as flow size
and inter-arrival time distributions are plausible choices, but
what about the joint distribution of flow size and inter-arrival
times, e.g., whether we have bursts of large or small flows.

20% 40% 60% 80% 100%

(0, 250B)
(250B, 500B)
(500B, 750B)
(750B, 1KB)
(1KB, 2KB)
(2KB, 5KB)

(5KB, 7.5KB)
(7.5KB, 10KB)
(10KB, 50KB)

(50KB, INF)

(a) 𝜎 =1.0

20% 40% 60% 80% 100%

(b) 𝜎 =1.5

20% 40% 60% 80%100%
1

2

3

4

5

FC
T 

slo
wd

ow
n

(c) 𝜎 =2.0

20% 40% 60% 80% 100%

(0, 250B)
(250B, 500B)
(500B, 750B)
(750B, 1KB)
(1KB, 2KB)
(2KB, 5KB)

(5KB, 7.5KB)
(7.5KB, 10KB)
(10KB, 50KB)

(50KB, INF)

(d) load=20%

20% 40% 60% 80% 100%

(e) load=50%

20% 40% 60% 80%100%
1

2

3

4

5

FC
T 

slo
wd

ow
n

(f) load=80%

20% 40% 60% 80% 100%

(0, 250B)
(250B, 500B)
(500B, 750B)
(750B, 1KB)
(1KB, 2KB)
(2KB, 5KB)

(5KB, 7.5KB)
(7.5KB, 10KB)
(10KB, 50KB)

(50KB, INF)

(g) Hadoop

20% 40% 60% 80% 100%

(h) CacheFollower

20% 40% 60% 80%100%
1

2

3

4

5

FC
T 

slo
wd

ow
n

(i) WebServer

Figure 3: Distribution of flow completion time (FCT) slow-
down (x-axis) computed by flowSim for a single link simula-
tion fordifferentflowsize buckets (y-axis). Thebaselinework-
load is given by themiddle column: CacheFollower size dis-
tribution, burstiness level of 𝜎 =1.5, andmaximum link load
of 50%. Each row varies a single dimension of the workload.

This approach also cannot model non-stationary or diurnal
arrival patterns, something that is trivial in ns-3.

We observe that a max-min flow-level simulation [34] can
capture much of what we are interested in with respect to
workload characterization. To test this hypothesis, we built
a fast max-min flow-level simulator called flowSim (Algo. 1);
flowSim assumes flows proceed at a uniform rate defined
by the fair-share rate given the other flows along the path.
A flow’s rate is recalculated after the arrival or completion
of any competing flow. The flow completes when its rate
consumes the flow size, plus a topology-specific end-to-end
latency factor.
For characterizing traffic along a path, flowSim offers a

number of benefits:
• It operates at flow-level abstraction, and its computational
complexity increases based on the combined number of
foreground and background flows along a given path.
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• Unlike ns-3 which must model switch packet marking be-
havior and endpoint congestion control, flowSim involves
only basic calculations that are fast and easy to use.
• Although it does not model queuing effects, latency inter-
actions, or the impact of congestion control protocols, and
as we show later it is not accurate for small flows (Figure 5),
flow-level simulation creates a rich input representation
capturing the bandwidth interaction of flows.
We illustrate this in Figure 3. The graphic shows the flow

completion time (FCT) slowdown computed by flowSim for a
single link. The heatmap shows the FCT slowdown for flows
of each bucket size (y-axis), using percentile buckets (x-axis)
to capture the FCT slowdown distribution. Thus, the right
hand side of each heatmap shows the 99th-percentile tail la-
tency for each flow size; the left its 1-percentile latency. All
heatmaps in the middle column use the CacheFollower size
distribution, a burstiness level of 𝜎 =1.5, and a maximum link
load of 50% (these parameters are further explained in §5.1).
In the first row, traffic burstiness increases from left to right.
As evident by the figure, increasing the burstiness increases
the tail slowdown for small flows and almost all slowdown
percentiles for large flows. The second row shows the impact
of increasing load. This has an effect similar to burstiness, but
if we look closer, the effect of increasing burstiness is more
skewed across different size buckets. This simple example
illustrates the effectiveness of using max-min flow slowdown
statistics for featurizing theworkload. An informative feature
is different for workloads with distinct behavior so that there
is the potential for a data-driven machine learning model to
pick up on this difference and produce accurate slowdowns.

3 SystemArchitecture ofm3

m3 uses machine learning to predict flow performance distri-
butions in data center networks. Its efficiency and generality
are supported by two key ideas: 1) decomposing large net-
works into independent paths and 2) extracting richworkload
features with flow-level simulation. This section describes
howm3 implements these ideas.

3.1 High-Level Overview

Figure 4 illustrates m3 ’s architecture. Given the traffic work-
load and the network topology, m3 first decomposes 1 the
network topology into independent paths and, for each path,
identifies all foreground and background flows. To reduce the
number of paths that must be simulated, m3 uses weighted
sampling to select a representative sample (§3.2). The sampled
paths are used for path-level simulations 2 , which, owing to
their independence, can be executed in parallel. Each path-
level simulation uses an efficient max-min fair sharing algo-
rithm [30, 34] called flowSim 3 to compute initial FCT slow-
down estimates, separately for foreground and background
traffic. These estimates are then translated into a feature map
4 used as input to a machine learning model (§3.3). To ac-
count for different network configurations such as the choice
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Figure 4:m3’sworkflow: Inputs (grey boxes), outputs (purple
boxes), intermediate artifacts (parallelograms), and core
components (rounded boxes).

of congestion control protocol and bandwidth-delay prod-
uct, the feature map is combined with network specifications
5 . Then, m3 uses machine learning to refine its predictions
of the FCT slowdowns for foreground traffic to match the
ground truth 6 from ns-3-path (§2.1), factoring in the dy-
namics of the foreground and background traffic, queuing
delays, and the congestion control protocol (§3.4). The above
process is carried out once for each sampled path (in parallel).
Once all results are obtained, m3 aggregates them 7 into
network-wide performance metrics (§3.5). Lastly, m3 offers
an interactive user interface 8 , supporting targeted queries
that can enhance network management decisions.

3.2 Generating Path-Level Simulations

We begin by specifying the path-level simulation, which con-
sists of a workload and a topology.
Path-Level Specification. To start, given a full network
topology and a set of flows, m3 uses the flows’ routes to asso-
ciate each linkwith theflows traversing it.Apath is a sequence
of links, and its path-level workload consists of all flows that
traverse any link in the path. The flows’ arrival times and sizes
are unmodified. We distinguish between foreground flows,
which traverse the entire path, and background flows, which
only intersect the path at one or more (but not all) hops (Fig-
ure 2(a)). More precisely, suppose 𝑃 = (𝑙1,𝑙2, ...,𝑙𝑛) is a path
that consists of 𝑛 links, let F be the set of all flows, and let
traverses(𝑓 ,𝑙) beapredicatewhich is truewhenaflow 𝑓 ∈F
traverses a link 𝑙 ∈𝑃 . The set of foregroundflows𝐹 for path𝑃 is

𝐹 ≜ {𝑓 ∈F |∀𝑙 ∈𝑃 : traverses(𝑓 ,𝑙)}, (1)
and the set of background flows 𝐵 is

𝐵≜ {𝑓 ∈F | 𝑓 ∉𝐹 ∧ ∃𝑙 ∈𝑃 : traverses(𝑓 ,𝑙)}. (2)
The goal of path-level simulations is to predict the perfor-
mance of foreground flows in 𝐹 given background flows in
𝐵 (context), for later downstream processing. §3.4 describes
how these outputs are formatted and used.
Each path also has a path-level topology which contains

only the nodes and links on the path, as well as whatever
other nodes and links are needed to support the background
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Figure 5: Distribution of FCT slowdown for different
flow size buckets from ns-3, flowSim, and m3 on a 4-hop
parking-lot topology
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Figure 6: (Left) Distribution of total #paths across 192
workloads on a 32-rack, 256-host fat-tree topology; (Right)
Sampling error distribution shrinks quickly when increasing
#sampled paths.

traffic. For brevity, we refer to the links on the path as orig-
inal links, and all other links as synthetic links. Conceptually,
a path-level topology is a parking lot topology like the one
shown in Figure 7(a). In this figure, the original links are the
ones connecting purple nodes, and all others are synthetic.
To avoid introducing artificial contention among background
flows, each background flow connects to the point where it
joins/exits the foreground path with bandwidth equal to its
source/destination capacity.
Weighted Path Sampling. m3’s path-level decomposition
presents an additional challenge: the number of paths grows
rapidly with network size. Figure 6(a) shows a CDF of the
number of populated paths when simulating 192 different
workloads on a 32-rack, 256-host topology (see §5.1). Even on
small topologies, the number of populated paths can number
in the hundreds of thousands, and it prohibitively expensive
to simulate eachone.To reduce thenumberof simulatedpaths,
we use a weighted sampling strategy wherein the probability
of sampling a path 𝑃 is proportional to the number of fore-
ground flows on 𝑃 , with replacement (a popular path may
appear in the sample more than once).

To investigate the sensitivity of aggregate slowdown to
number of sampled paths, we first run 192 different scenarios
in ns-3. Then, for each scenario, we sample different num-
bers of paths using the strategy described above. For each
set of sampled paths, we aggregate the foreground flows and
compute the p99 FCT slowdown.We then compare the p99
slowdown of the sampled paths to the p99 slowdown of the
entire network to derive a relative error. Figure 6(b) shows
the cumulative distribution function (CDF) of the relative p99
slowdown error for different path sample sizes. We observe
that sampling 100 paths is enough to exceed Parsimon’s [51]
accuracy; sampling 500 paths bounds the relative p99 slow-
down error to within 10%.

3.3 Quick Estimation via flowSim

To produce initial FCT estimates for the path-level topologies,
m3 uses a reference system, which we call flowSim, that as-
signs flows their max-min fair rate allocation [30, 34] at each
point in time. Appendix A has the implementation details.
Figure 5 shows that flowSim provides good estimates of

FCT slowdown for large flows exceeding 10KB since the per-
formance of DCTCP is reasonably modeled as bandwidth
sharing for large flows. However, flowSim underestimates the
FCTsof short flows, especially in the tail of thedistribution, be-
cause it does not model queueing dynamics. The next section
describes howwe use machine learning to reduce this error.

3.4 Improving Estimates withMachine Learning

m3 uses flowSim’s initial estimates to create feature maps as
input to a machine learning model. The foreground estimates
are refined by machine learning, incorporating the dynamics
of queueing and congestion control, while the background es-
timates are used as context tohelp themodel produce accurate
predictions for the performance of foreground traffic.
Deriving FeatureMaps fromflowSim’s FCT Slowdown.
flowSim estimates FCT slowdowns for all flows in the path-
levelworkload,both foregroundandbackground.Thenumber
of background flows can be very large, as shown in Figure 2(d).
We wish to refine these estimates with machine learning, but
what should the features be? Processing large numbers of
flows directly using standard sequence models such as Trans-
formers [46] is prohibitively expensive. On the other hand,
statistical features like traffic volume, mean flow size, and
inter-arrival times may not capture enough workload dynam-
ics, as discussed in §2.2.

Tobalanceefficiencyagainstfidelity,m3convertsflowSim’s
estimates into concise feature maps, as shown in Figure 7(a).
Given a path 𝑃 = (𝑙1,𝑙2, ... ,𝑙𝑛) with 𝑛 links and a set of fore-
ground flows 𝐹 (the red solid line) the feature map𝑀 is:
𝑀𝐹
𝑠,𝑝 = {Sldn(𝑓 ) | 𝑓 ∈𝐹, size(𝑓 ) ∈bucket𝑠 , percentile(𝑓 )=𝑝} (3)

where m3 first categorizes foreground flows into 𝑠 buckets
based on the size of each flow, ranging from packet sizes un-
der 250B to flows exceeding 50KB.Within each bucket 𝑠 , m3
records the slowdown (Sldn) predicted by flowSim across 𝑝
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Figure 7: Design of path-level m3

fixed percentiles, spanning from 1% to 100% in 1% increments.
The final feature map has dimension 𝑠×𝑝 , represented by the
orange rectangle.

The performance of the foreground flows is also affected by
the amount and character of the background traffic (shown as
blue dotted lines). For each link along the foreground path,m3
creates a similar feature map (flowSim computed FCT slow-
down of dimension 𝑠×𝑝) for the background flows traversing
that link. This yields 𝑛 contextual feature maps (represented
by blue rectangles) {𝑀𝐵𝑙1

𝑠,𝑝 , ...,𝑀
𝐵𝑙𝑛

𝑠,𝑝 }, one for each hop in an
n-hop path 𝑃 = (𝑙1,𝑙2,...,𝑙𝑛).
Refining flowSim’s FCT Slowdown Estimations. Fig-
ure 7(b) shows how m3 refines flowSim’s FCT slowdown
estimates: 1 Starting with flow sizes and their associated
slowdown estimates, 2 m3 transforms the FCT slowdowns
into 𝑛 + 1 structured feature maps (𝑀𝐹

𝑠,𝑝 ; {𝑀𝐵𝑙1
𝑠,𝑝 , ... ,𝑀

𝐵𝑙𝑛

𝑠,𝑝 }),
corresponding to both foreground and background traffic
along the 𝑛-hop path. 3 The feature map 𝑀𝐹

𝑠,𝑝 is then flat-
tened to serve as a feature for foreground flows 𝐹 . 4 Simul-
taneously, m3 feeds the sequence of 𝑛 background feature
maps {𝑀𝐵𝑙1

𝑠,𝑝 ,...,𝑀
𝐵𝑙𝑛

𝑠,𝑝 } into a small transformer-based LLama2
model [46], forming a background context. We use a trans-
former as a typical sequence model to be able to process vari-
able number of inputs (one feature map per hop, representing
thecompetingbackground traffic).Wecall itsfixed-lengthout-
put background context. 5 An additional input to the model
is the foreground path specification, such as the bandwidth-
delay product (BDP) , congestion control protocol used (e.g.,

DCTCP [1], TIMELY [33], DCQCN [53]), and parameters for
those protocols.We show thatm3 can be trained to generalize
its results across the space of those parameters.

6 The combined foreground feature, background context,
and network specifications are then fed into a two-layer mul-
tilayer perceptron (MLP) model to predict the final slowdown
distribution of foreground flows for this path. 7 Respond-
ing to user-defined queries, m3 generates the foreground FCT
slowdownat specificpercentiles for designatedflowsize buck-
ets. For example, the default output has four size buckets for (0,
1KB], (1KB, 10KB], (10KB, 50KB], (50KB,∞). Each bucket has
the corrected FCT slowdown at 100 fixed percentiles, span-
ning from 1% to 100% in 1% increments. 8 In training, m3
optimizes its transformer andDNNusingL1 loss for all the 100
fixed percentiles. To align it with the user-provided ground
truth, such as FCT slowdown data from ns-3. In future work,
we hope to test the model’s ability in learning the slowdown
distribution of real networks with different configurations
and live application demand.

Our results suggest these features sufficiently capture net-
work’s dynamics for effective prediction of foreground FCT
slowdown distribution for various flow sizes. Figure 5 com-
pares the corrected FCT slowdowns at specific percentiles
(represented by black dots) against the original estimates
from flowSim (represented by orange dots) for a 4-hop path
topology and Meta’s workloads (details in §5.1). m3 is able to
accurately adjust flowSim’s FCT slowdowns across various
flow size buckets, even for tail slowdowns of short flows.

3.5 Estimating Network-Wide Slowdown

Carrying out the above for 𝑘 sampled paths results in 𝑘 size-
bucketed FCT slowdown distributions as shown in Figure 8.
What remains is to combine the 𝑘 path-level results into a
network-wide set of size-bucketed distributions, and then,
optionally, to further combine the distributions in each bucket
into a single FCT slowdown distribution.

Figure 8 illustrates how this is done. First, recall from §3.2
that the 𝑘 paths already constitute a flow-count-weighted
random sample of the entire network. Therefore, to combine
them into a single set of buckets in a manner that respects
workload volume, we need only aggregate them uniformly.
Second, m3 combines the distributions from each bucket into
a single distribution via probabilistic sampling, where the
probability of sampling a particular bucket is in proportion
to the number of flows in that bucket. This ensures that the
different flow sizes buckets are appropriately represented in
the combined distribution.2

4 Implementation

Figure 9 depicts m3’s main components:
• MLModel Training ( 1 ): m3 uses the PyTorch Lightning
framework for distributed training.We train for 400 epochs

2Averaging the buckets at a given percentile across all paths will not produce
accurate statistics for the network-wide performance at that same percentile.
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Figure 8: Aggregating FCT slowdown at different size
buckets from 𝑘 path-level simulations into an empirical CDF
for network-wide FCT slowdown analysis.
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Figure 9:m3’s implementation

on 4 A100 GPUs. 4 m3’s model checkpoints include a
66.5MB transformer and a 4.9MBMLP.
• End-to-End Inference ( 2 ): m3’s inference pipeline is
written in 4300 lines of Rust and C. The Rust component
exposes the top-level interface and implements path decom-
position, parallel execution, and aggregation. 3 Path level
computations including flowSim, feature map extraction,
and ML inference are written in C. Inference code runs
on CPU and is optimized for speed, facilitating interactive
network performance querying and design exploration.

5 Evaluation

We evaluate m3 using three criteria:
• Generalization across workloads and topologies (§5.2)
• Scalability for large-scale network topologies (§5.3)
• Counterfactual search for network parameter exploration
(§5.4)

Further experiments (§5.5) demonstrate sources of error, and
ablate the impact of design choices.

5.1 Setup

Training Dataset. We train m3 on a synthetic dataset of
120,000 parking lot topology (single path) ns-3 simulations.
To generate this dataset, we select 2000 workload parameters
randomly fromTable 2. For eachworkload,wepick 20 random
network configurations from Table 4, and use all the 3 path

Parameter Sample space
#Foreground flows 20000
Flow size distribution Pareto, Exp, Gaussian, Lognormal
Size parameter (𝜃 ) 5k (small) to 50k (large), continuous
Burstiness parameter (𝜎) 1 (low) to 2 (high), continuous
Max load 20% to 80%, continuous

Path length 2-hops, 4-hops, 6-hops

Network configuration See Table 4

Table 2: Training Set Parameters

Parameter Sample space
#Flows 10M
Oversubscription 1-to-1, 2-to-1, 4-to-1
Traffic matrix A, B, C (See Figure 18(a))
Flow size distribution CacheFollower, WebServer, Hadoop
Burstiness Low (𝜎 =1), High (𝜎 =2)
Max load 26% to 83% (continuous range)

Fat-tree topology Small (256-host), Large (6144-host)

Network configuration See Table 4

Table 3: Test Set Parameters

Parameter Sample space
Init window 5 to 30KB, continuous
Buffer size 200 to 500KB, continuous
PFC Flag 0 (disabled), 1 (enabled)

CC protocol DCTCP, TIMELY, DCQCN, HPCC
DCTCP (𝐾 ) 5 to 20KB, continuous
DCQCN (𝐾𝑚𝑖𝑛 ,𝐾𝑚𝑎𝑥 ) (20 to 50KB, 50 to 100KB)
HPCC (𝜂, 𝑅𝑎𝑡𝑒𝐴𝐼 ) (0.70 to 0.95, 500 to 1000 Mbps)
TIMELY (𝑇𝑙𝑜𝑤 ,𝑇ℎ𝑖𝑔ℎ) (40 to 60𝜇s, 100 to 150𝜇s)

Table 4: Network Configuration Parameters

lengths in Table 2. We leave out 10% of the data points ran-
domly for validation. Generated flows are divided uniformly
at random among all source-destination pairs. We train m3
once and show its performance in §5.2, §5.3, and §5.4.
MLmodel. m3 uses a tiny [12] version of Llama-2 [46] to pro-
cess flowSim featuremaps for background flows and generate
context features. This sequencemodel has 4 layers and 4 atten-
tionheadswith an embedding size of 576 and a block size of 16,
resulting in approximately 16.8 million parameters. m3 also
uses a two-layer MLP with the hidden size of 512 to predict
the slowdown distribution given foreground features, back-
ground context, and the network configuration of interest.

To generate flowSim feature maps, we partition flow sizes
into 10 consecutive size buckets, ranging from less than 250
bytes to over 50KB. For flows in every size bucket, we extract
slowdowns from flowSim and convert it to a 100-dimensional
vector of percentiles from 1% to 100%, in 1% steps. We further
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stack vectors for all size buckets. This creates a feature map
with a dimensionality of 10×100, offering a detailed and ex-
tensive view of flowSim’s slowdown profile. m3 outputs the
same percentile range for four flow size buckets, from less
than 1KB to over 50KB.
Real-world Test Set. We use Meta’s traffic matrices [44],
covering diverse clusters like databases (CacheFollower), web
servers (WebServer), and Hadoop. Traffic within these ma-
trices is rack-to-rack, with random intra-rack host selection.
Flow size distributions come from the same study (See Fig-
ure 18(b)). For inter-arrival times, we use log-normal distribu-
tion with two burstiness levels. For low burstiness, we select
log-normal shape parameter𝜎 = 1, and for high burstiness, we
choose 𝜎 = 2. Load level is picked randomly such that no link
exceeds its capacity. Tables 3 and 4 summarize the test set.
Network Topology. We evaluate m3’s performance using
twodifferent fat-tree network topologies.Weuse a large-scale
384-rack, 6144-host fat-tree topology to evaluatem3’s scalabil-
ity in §5.3. This topology is based onMeta’s data center fabric
design [44], featuring layers of switches with hosts linked via
10Gbps connections to top-of-rack (ToR) switches andhigher-
tier connections at 40 Gbps. Due to the high computational
complexity of running ns-3 for gathering ground-truth data
in this large setup, we scale down the topology and workload
to fit a 32-rack, 256-host topology for extensive experiments
in §5.2 and §5.4.
Baseline and PerformanceMetrics. We compare m3’s per-
formancewith Parsimon [51], a state-of-the-art fast simulator,
using the ns-3 simulator as ground-truth. The primary per-
formance metric is relative p99 slowdown estimation error
defined as follows:

estimated slowdown−ground-truth slowdown
ground-truth slowdown

(4)

We drop the sign and use the magnitude when reporting me-
dian or average. We also record the wall clock running time
of each scheme for speed comparison.

5.2 Sensitivity Analysis

Setting. To assess m3’s adaptability to workloads and topolo-
gies, we use the small-scale topology described in §5.1. It
consists of two pods with 16 racks each and eight hosts per
rack, with variable spine counts to reflect different oversub-
scription levels. We randomly sample 192 scenarios that use
DCTCP3 from Table 3 to create our test set. We show the
impact of different protocols and their parameters in §5.4.
Accuracy andWorkload Robustness. Figure 10(a) shows
thedistributionofp99FCTslowdownestimationerrors across
the test set form3 and Parsimon.m3 achieves average relative
p99 slowdown error of 9.9%, outperforming Parsimon’s 18.3%.
Notably, m3maintained superior performance at the tail with
a maximum p99 error of 34.1%, compared to Parsimon’s 146%.

3Parsimon’s fast implementation in Rust only supports DCTCP.
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Figure 10: m3 is faster, more accurate, and robust than
Parsimon.

Figure 10(b) illustrates error distribution for different max-
imum link loads. While Parsimon’s error and its variance
increase at loads above 50%, m3’s accuracy remains stable,
exhibiting a consistent median error of about 5% throughout
the load spectrum. Error variance for m3 increases modestly
for loads above 50%, but less than Parsimon. Further analy-
sis in Figure 11 depicts m3’s robustness against variations in
traffic matrix, flow size distribution, oversubscription, and
burstiness. m3 suffers slightly for traffic matrix C since it has
themost skewed traffic, resulting inmanypathswith less than
10 flows deviating from our training distribution. In contrast,
Parsimon exhibits amore pronounced and skewed estimation
error pattern when dealingwith trafficmatrix A, the flow size
distribution ofWebServer, an oversubscription ratio of 4-to-1,
and burstier workloads (𝜎 =2.0).
Runtime. The wall clock time for running simulations is
demonstrated in Figure 10(c). Despite its better accuracy, m3
is 4-8× faster in end-to-end runtime compared to Parsimon
on the same topology and workload. m3 has an average run-
time of 36.4 seconds, while Parsimon and ns-3 take 3 minutes
27 seconds and nearly 40.5 hours on average, respectively.
Figure 10(d) further indicates that flow size distribution does
not affect m3’s runtime, as its execution time depends only
on the number of flows. However, runtime of a discrete-event
packet-level simulator like Parsimon depends on the number
of packet-level events and therefore is affected by the flow
size distribution. In otherwords, Parsimon is relatively slower
for workloads with more packets per flow.

5.3 Scalability to Large Topologies andHigh Loads

Setup. To evaluate m3’s scalability, we use a high load in our
large-scale topology that has 384 racks and 6,144 hosts [44].
We use one of the traffic matrices (matrix B) and a 2-to-1
oversubscription ratio in the core network. We set the traffic
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Max Load #Flows ns-3 Parsimon m3 ns-3 Parsimon m3
p99 sldn p99 sldn error p99 sldn error time time speeup time speeup

30% 6.83M 1.94 4.20 +116% 1.96 +1.03% 9.39h 52s 650× 24s 1408×
50% 11.4M 2.05 4.29 +109% 2.03 -0.98% 13.5h 1m29s 546× 39s 1246×
70% 15.9M 2.46 4.66 +89.4% 2.34 -4.88% 18.5h 2m8s 520× 54s 1233×

Table 5: Comparison ofm3, Parsimon, and ns-3 in terms of p99 FCT slowdown and runtime in large-scale simulations.
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Figure 11: Sensitivity of p99 slowdown error distribution
to workload parameters
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Figure 12: FCT slowdownestimated bym3, Parsimon, andns-
3 in a large-scale network simulation with 50%max link load.
The horizontal dashed line represents the 99th percentile.

burstiness to a high level (𝜎 = 2) to simulate realistic data
center conditions. The evaluation encompasses three distinct
scenarios to gaugem3’s performance under varying load con-
ditions. In the first scenario, the network managed 7 million
flows, achieving a maximum link load of approximately 30%.
In the second scenario, the networkmanaged 11million flows,
achieving a maximum link load of approximately 50%. The
final scenario increases the intensity with 16 million flows,
pushing the maximum link load to about 70%.

QuantitativeResults: Table 5 highlights performance ofm3,
Parsimon, and ns-3 in terms of p99 FCT slowdown and simula-
tion running time. Notably, m3 significantly accelerates simu-
lation, achievesup to1408× speedupoverns-3, andbrings sim-
ulation times down from tens of hours as low as 24 seconds. In
terms of accuracy, m3 excels with p99 FCT slowdown relative
error magnitude of 2.3%, superior to Parsimon’s 104.8% error.
Comparative Insight: Figure 12 shows the FCT slowdown
distributions from m3, Parsimon, and ns-3 under 50% load.
m3’s estimation is close to ns-3 across different flow size buck-
ets, especially for the tail.

5.4 Counterfactual Search for Design Exploration

As a case study to demonstrate m3’s utility for quickly explor-
ing the space of network design parameters via counterfac-
tual search, we evaluate m3’s ability in predicting the impact
of changing HPCC’s initial congestion window size and 𝜂
(parameter controlling the tradeoff between utilization and
transient queue length) on p99 FCT slowdown for different
flowclasses.Weuse the 32-rack, 256-host small network topol-
ogy for this experiment. Flow size distribution is WebServer,
traffic matrix is C, max link load is 50%, PFC is enabled, and
buffer size is 200KB.

First, we fix 𝜂 to 90% and sweep the range of initial conges-
tion window sizes in Figure 13. As the figure shows, m3’s p99
slowdownpredictions are close tons-3, and capture the trends.
For example, it correctly predicts that increasing the conges-
tion initial window size hurts the performance of small flows.
Notably, m3 takes only 25.2 seconds to explore the effect of
window size,whereas the same experiment takes 8 hourswith
ns-3. As a result, m3 enables live configuration exploration
which was not possible before. This opens new avenues for
tuning datacenter network parameters in response to changes
in workloads that we are pursuing as future work. Next, we
fix the initial congestion window size to 20KB, and sweep 𝜂
in Figure 14. Again, m3 is able to correctly capture the effect
of 𝜂 on p99 FCT slowdown, while having an average speedup
of 763× compared to ns-3.

5.5 Ablation Study

Here, we ablate m3’s design choices. m3’s sources of estima-
tion errors are twofold: First, it decomposes full networks into
independent path-level simulations, ignoring the effect of any
traffic not intersecting the path. Second, it approximates the
path-level simulation with flowSim andmachine learning. To
measure the effect of ignoring traffic that does not intersect a
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Figure 13:m3 accurately predicts the effect of changing the initial congestion window size on p99 FCT slowdown for different
classes of flows, much faster (1139×) than ns-3.
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Figure 14:m3 accurately predicts the effect of changing CC parameters (HPCC’s 𝜂) on p99 FCT slowdown for different classes
of flows, much faster (763×) than ns-3.

path,we use ns-3-path defined in §2. It showswhat the error is
if the simulator is perfect (ns-3), butwe ignore the effect of traf-
fic not intersecting paths on its foreground flows.We estimate
the slowdownof paths’ foregroundflows in the small-scale 32-
rack, 256-host fat-tree topologywith ns-3-path,m3, and Parsi-
mon. Figure 15 shows that the assumptionwemade (ignoring
traffic that doesnot intersect a path) accounts for less thanhalf
of m3’s error, and more than half of the error is coming from
approximation with machine learning. Furthermore, Parsi-
mon’s assumption of link independence is strictly worse than
m3’s assumption across all flow size buckets and path lengths.

We further evaluate the necessity of m3’s components (in-
cluding background contexts as input to the model, and using
anMLmodel) for estimating FCT slowdown of our building
block, a parking-lot topology (a single path). If we don’t use
anMLmodel, we are left with the outputs of flowSim. If we
do use theMLmodel but do not include context features from
background flows in its input, we have a crippled version of
the model that we call m3 without context. Figure 16 displays
the distribution of the p99 FCT slowdown for flowSim,m3w/o
context, and the full implementation ofm3 for syntheticwork-
load described inTable 2. Flowsimunderestimates slowdowns
in general, particularly for smaller flows and on longer paths,
resulting in errors as large as -80%. m3 corrects flowSim’s
estimation. Using context features improves m3’s accuracy
by about 33% on average, and significantly decreases variance.
The observation is consistent across varying path lengths and
flow sizes.
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Figure 15: Error breakdown for paths’ foreground flows in
the small-scale 32-rack 256-host fat-tree topology.
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Figure 16: m3 components (machine learning model and
background features) are both necessary for its path-level
accuracy.

6 RelatedWork

We organize the large literature on performance modeling
for computer networks into three groups: (i) queueing the-
ory (§6.1), (ii) flow-level methods (§6.2), and (iii) packet-level
methods (§6.3). Like m3, various researchers have leveraged
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machine learningmethods to compensate for some of the lim-
itations of each approach; we discuss those in each section.

6.1 Queueing Theory

Queueing theory models networks as system of queues with
arrival and service time processes [7, 43]. Closed-form results
are possible under certain assumptions, such as Poisson pro-
cesses with single packet flows. These assumptions are gen-
erally too simplistic for networks with endpoint congestion
control, bursty arrivals, and arbitrary flow sizes. MQL [35, 36]
uses per queue-type regression trees to learn to correct for
systematic bias in latency estimates from queueing theory,
for all queues that a packet traverses. Although correcting for
systematic bias has similarities to our workload featurization
technique, MQL is inherently less expressive since it assumes
single packet flows and uses as inputs average flow arrival
rate and coefficient of variation. These are sufficient in the
case of generalized exponential processes, but not for more
general networks. More expressive models like Markovian
arrival process [3, 8] can produce accurate estimates; how-
ever, this results in a huge state space that is computationally
complex and scales poorly. Nevertheless, they have use-cases
in performance modeling [19, 23, 24, 28, 31, 38, 40].

6.2 Flow-level granularity

Network Calculus [9, 25] models worst case metric bounds
using min-plus and max-plus algebras. However, it cannot
estimate the mean or any percentile. As we have seen, max-
min flow approximations like flowSim can accurately model
the performance of long flows, but fall short when asked to
estimate the performance of short and medium-size flows
where queue dynamics dominate. Fluid-based approaches [1,
5, 29, 32, 39] can correct for this by modelling the evolution
of flows using partial differential equations (PDEs). However,
they require high level of expertise to define PDEs describ-
ing system dynamics for every new system, and can only
model the average behavior of a stochastic system [11]. The
Routenet line of work [13, 14, 45] uses graph neural networks
with flow-level inputs to predict performance metrics. How-
ever, their flow-level features, e.g., mean rate or pre-defined
parameters for simple processes, are not expressive enough
for capturing complex workloads. Furthermore, they have
challenges in generalizing across topologies, link capacities,
and path lengths [10, 18]. As with MQL, QT-Routenet [10]
uses predictions of queuing theory techniques assuming Pois-
son arrivals as inputs to the graph neural network, and has
many of the same limitations.

6.3 Packet-level granularity

The most popular tools for estimating network performance
model networkbehavior down to thegranularity of individual
packet arrivals and departures from every switch. Examples
include ns-3 [42], OPNET [27], andOMNET++ [47]. Although
widely used by practitioners and researchers, their main issue
is performance for networks of data center scale.

It has been difficult to get significant speedup [21, 26, 37]
using traditional parallelization techniques [15, 16], leading
to performance even slower that sequential runs in some
cases [42, 50]. Recently, DONS [17] and Parsimon [51] gained
significant speedups for packet-level simulation. DONS uses
a data-oriented-design, a software paradigm popular in gam-
ing, to improve multi-core, cache, and memory efficiency.
Parsimon assumes that simultaneous congestion events and
responses of congestion protocols to multiple simultaneous
bottlenecks are only second order effects. This assumption en-
ables reasoning about links independently, leading to speedup
gains, as we have seen at some cost in accuracy.
Inspired by a workshop paper [22], a line of research uses

machine learning to speed up packet-level simulation. Mim-
icnet [50] uses a traditional packet-level simulation of a clus-
ter in a datacenter to learn the behavior of a cluster of ma-
chines; exploiting symmetries in FatTree topology [2] with
uniform traffic among equal-sized clusters of machines, it
composesmimics tomodel the behavior of the network.Deep-
QueueNet [49] uses packet-level simulation to train a model
of the packet-level behavior of every network component,
that is, every link and switch, using RNNsearch [6], while m3
instead trains a model of path behavior.
7 Conclusion

We presented m3, a fast and accurate model for estimating
aggregate flow-level statistics for data center networks under
different workloads and configuration choices. The model is
novel in several aspects. First, it is path-based, in that it approx-
imates aggregate network-wide performance by considering
only the traffic that intersectswithagivenpath. Second, it uses
a max-min flow-level simulator to quickly summarize and
featurize the broad space of possible workload characteristics
that can affect path-level performance. Feature maps for the
foreground and background traffic are combined with topol-
ogy and configuration options such as the choice of TCP con-
gestion control protocol, protocol parameters such as initial
window size, and link capacity and latency. These inputs are
then used to train the model on synthetically generated input
workloads, and tested against more realistic workloads taken
from industry standard benchmarks. Our experiments show
thatm3outperformsprior estimationapproaches inexecution
speed, prediction accuracy, and generalization capabilities.
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A Details on flowSim

Given the path-level workloads and the parking-lot topology,
Algorithm 1 outlines flowSim’s process. It begins by initializ-
ing a priority queue𝑄 with all flows 𝐹 0, accounting for their
sizes and arrival timings (lines 2-3). The algorithm adeptly
adapts to the dynamic nature of network traffic, handling the
arrivals and completions of flows (line 4). Central to its design
is the iterative bandwidth allocation strategy, rooted in the
max-min fair sharing principle. It identifies each flow’s bot-
tleneck link (line 14) and assigns bandwidth rates in amanner
that prevents any flow from exceeding the capacity of its bot-
tleneck link (lines 11-16). This iterative process ensures a just
and efficient distributionofnetwork resources, culminating in
the recording and return of FCTs for all flows (line 19). Such an
iterativebandwidth fair-sharingprocess takes several seconds
even for a 6-hop parking lot topology with 1 million flows.

Algorithm 1: flowSim’s FCT estimation based on
flow event scheduling and max-min fair sharing.
Input: Set of 𝑛 flows

𝐹 0, Set of 𝑘 links 𝐿 and initial capacities𝐶0

Output: Flow Completion Times (FCT) for flows 𝐹 ∗
1 Function get_fct_flowsim(𝐹 0, 𝐿,𝐶0)

⊲ Dynamic flow event scheduling
2 𝑄←PriorityQueue(𝐹 ∗) // Initialize

event queue with flow sizes and arrivals

3 𝐹←∅ // Set of active flows

4 while !𝑄.isEmpty() do
5 (𝑓 ,𝑡,EventType)←𝑄.pop()
6 if EventType is arrival then
7 𝐹 .add(𝑓 ) // Add new flow to active set

8 else
9 𝐹 .remove(𝑓 ) // Remove completed flow

10 RecordFCT(𝑓 ,𝑡)
⊲ Iterative max-min fair rate allocation

11 𝑅←∅ // Flow rates of active flows F

12 𝐶←𝐶0 // Current link capacities

13 while 𝑙𝑒𝑛(𝑅)≠𝑙𝑒𝑛(𝐹 ) do
14 (𝑟,𝑙)←getBottleneckLinkRate(𝐹,𝐿,𝐶)

foreach 𝑓 ∈getFlowsOnLink(𝐹,𝑙) do
15 if 𝑓 ∉𝑅 then
16 𝑅 [𝑓 ]←𝑟 // Unsaturated flows

17 𝐶←UpdateCapacities(𝐶,𝐹,𝑅)
18 𝑄←UpdatePriorityQueue(𝑄,𝐹,𝑅)

19 return RecordedFCT()

B m3’s estimation error for counterfactual search

Figure 17 demonstrates m3’s p99 slowdown estimation error
across different sample spaces in Table 4.
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Figure 17: m3’s estimation errors of p99 slowdown across
different sample spaces in Table 4.
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Figure 18:Weuse data fromMeta’s data center network [44],
including (a) the trafficmatrices extracted from the accom-
panying dataset, and (b) the flow size distributions estimated
from the published data for evaluation.
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