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Abstract

Current methods for learning visual categories work well when
a large amount of labeled data is available, but can run into severe
difficulties when the number of labeled examples is small. When
labeled data is scarce it may be beneficial to use unlabeled data to
learn an image representation that is low-dimensional, but never-
theless captures the information required to discriminate between
image categories. This paper describes a method for learning rep-
resentations from large quantities of unlabeled images which have
associated captions; the aim is to learn a representation that aids
learning in image classification problems. Experiments show that
the method significantly outperforms a fully-supervised baseline
model as well as a model that ignores the captions and learns a
visual representation by performing PCA on the unlabeled images
alone. Our current work concentrates on captions as the source of
meta-data, but more generally other types of meta-data could be
used (e.g., video sequences with accompanying speech).

1. Introduction

Current methods for learning visual categories work well when
a large amount of labeled data is available, but can run into severe
difficulties when the number of labeled examples is small—for
example when a user defines a new category and provides only
a few labeled examples. Image representations are typically of
high dimension, therefore requiring relatively large amounts of
training data. When labeled data is scarce it may be beneficial
to use unlabeled data to learn an image representation that is low-
dimensional, but nevertheless captures the information required to
discriminate between image categories.

In some cases unlabeled data may contain useful meta-data that
can be used to learn a low-dimensional representation that reflects
the semantic content of an image. As one example, large quantities
of images with associated natural language captions can be found
on the web. This paper describes an algorithm that uses images
with captions or other meta-data to derive an image representation
that allows significantly improved learning in cases where only a
few labeled examples are available.

More specifically, we propose to use the meta-data to induce a
representation that reflects an underlying part structure in an ex-

isting, high-dimensional visual representation. The new represen-
tation groups together synonymous visual features—features that
consistently play a similar role across different image classifica-
tion tasks. We describe how the structural learning framework of
Ando and Zhang [1] can be used to leverage the image meta-data
to learn such a representation.

Our approach exploits learning from auxilliary problems which
can be created from images with associated captions. Each aux-
illiary problem involves taking an image as input, and predicting
whether or not a particular content word (e.g, man, official, or cel-
ebrates) is in the caption associated with that image. In structural
learning, a separate linear classifier is trained for each of the aux-
illiary problems; manifold learning (e.g., SVD) is then applied to
the resulting set of parameter vectors, in essence finding a low-
dimensional space which is a good approximation to the space of
possible parameter vectors. If features in the high-dimensional
space correspond to the same semantic part, their associated classi-
fier parameters (weights) across different auxilliary problems may
be correlated in such a way that the basis functions learned by the
SVD step collapse these two features to a single feature in a new,
low-dimensional feature-vector representation.

In a first set of experiments, we use synthetic data examples to
illustrate how the method can uncover latent part structures. We
then describe experiments on classification of news images into
different topics. We compare a baseline model that uses a bag-of-
words SIFT representation of image data, to our method, which
replaces the SIFT representation with a new representation that is
learned from 8,000 images with associated captions. In addition,
we compare our method to a baseline model that ignores the meta-
data and learns a new visual representation by performing PCA on
the unlabeled images. Note that our goal is to build classifiers that
work on images alone (i.e., images which do not have captions),
and our experimental set-up reflects this, in that training and test
examples for the topic classification tasks include image data only.
The experiments show that our method significantly outperforms
both baseline models. The new representation reduces the number
of labeled examples required by a large margin: a model trained
with just a single positive example using the new representation
performs as well as models trained with between 8 and 16 positive
examples for the baseline models; a new model trained with 4 pos-
itive examples performs as well as models trained with between 16
and 32 positive examples for the baseline models.



2. Previous work

When few labeled examples are available most current super-
vised learning methods [19, 7, 9, 15, 11] for image classification
may work poorly. To reach human performance, it is clear that
knowledge beyond the supervised training data needs to be lever-
aged.

There is a large literature on semi-supervised learning ap-
proaches, where unlabeled data is used in addition to labeled data.
We do not aim to give a full overview of this work, for a com-
prehensive survey article see [14]. Most semi-supervised learning
techniques can be broadly grouped into three categories depending
on how they make use of the unlabeled data: density estimation,
dimensionality reduction via manifold learning and function regu-
larization. Generative models trained via EM can naturally incor-
porate unlabeled data for classification tasks [12, 2]. In the context
of discriminative category learning, Fisher kernels [8] have been
used to exploit a learned generative model of the data space in an
SVM classifier.

Our work is related to work in transfer or multi-task learn-
ing, where training data in related tasks is used to aid learning
in the problem of interest. Transfer and multi-task learning have
a relatively long history in machine learning [17, 4, 13, 1]. Our
work builds on the structure learning approach of Ando and Zhang
[1], who describe an algorithm for transfer learning, and suggest
the use of auxilliary problems on unlabeled data as a method for
constructing related tasks. In vision a Bayesian transfer learning
approach has been proposed for object recognition [5] where a
common prior over visual classifier parameters is learnt, their re-
sults show a significant improvement when learning from a few la-
beled examples. In the context of multi-task learning, approaches
that learn a shared part structure among different classes have
also been proposed. In [18] Torralba introduced a discriminative
(boosted) learning framework that learns common structure. The
paper demonstrated faster learning with better generalization when
parts are shared among classes. Epshtein and Ullman [?] have also
addressed this goal, presenting an approach which identifies func-
tional parts by virtue of shared context. To the best of our knowl-
edge, no previous approach to learning parts in images has made
use of meta-data and structure learning.

Several authors have considered the use of images with associ-
ated text data. Fergus et al. [6] developed a method using Google’s
image search to learn visual categories, and report results compa-
rable to fully supervised paradigms. Other work that has made
use of image and/or video caption data includes CMU’s Infomedia
system1 and Berkeley’s object-recognition as machine-translation
[3], and names-and-faces in the news efforts [10].

3. Learning Visual Representations

A good choice of representation of images will be crucial to the
success of any model for image classification. The central focus of
this paper is a method for automatically learning a representation
from images which are unlabeled, but which have associated meta-
data, for example natural language captions. We are particularly
interested in learning a representation that allows effective learn-
ing of image classifiers in situations where the number of training

1http://www.informedia.cs.cmu.edu/

examples is small. The key to the approach is to use meta-data
associated with the unlabeled images to form a set of auxilliary
problems which drive the induction of an image representation.
We assume the following scenario:

• We have labeled (supervised) data for some image classifica-
tion task. We will call this the core task. For example, we might
be interested in recovering images relevant to a particular topic
in the news, in which case the labeled data would consist of im-
ages labeled with a binary distinction corresponding to whether
or not they were relevant to the topic. We denote the labeled ex-
amples as the set (x1, y1), . . . , (xn, yn) where (xi, yi) is the i’th
image/label pair. Note that test data points for the core task con-
tain image data alone (these images do not have associated caption
data, for example).

• We have N auxilliary training sets, Ti =
{(xi

1, y
i
1), . . . , (x

i
ni

, yi
ni

)} for i = 1 . . . N . Here xi
j is the

j’th image in the i’th auxilliary training set, yi
j is the label for

that image, and ni is the number of examples in the i’th training
set. The auxilliary training sets consist of binary classification
problems, distinct from the core task, where each yi

j is in
{−1, +1}. Shortly we will describe a method for constructing
auxilliary training sets using images with captions.

• The aim is to learn a representation of images, i.e., a function
that maps images x to feature vectors f(x). The auxilliary training
sets will be used as a source of information in learning this repre-
sentation. The new representation will be applied when learning a
classification model for the core task.

In the next section we will describe a method for inducing a
representation from a set of auxilliary training sets. The intuition
behind the method is to find a representation which is relatively
simple (i.e., of low dimension), yet allows strong performance on
the auxilliary training sets. If the auxilliary tasks are sufficiently
related to the core task, the learned representation will allow ef-
fective learning on the core task, even in cases where the number
of training examples is small.

A central question is how auxilliary training sets can be created
for image data. A key contribution of this paper is to show that un-
labeled images which have associated text captions can be used to
create auxilliary training sets, and that the representations learned
with these unlabeled examples can significantly reduce the amount
of training data required for a broad class of topic-classification
problems. Note that in many cases, images with captions are read-
ily available, and thus the set of captioned images available may
be considerably larger than our set of labeled images.

Formally, denote a set of images with associated captions as
(x′

1, c1), . . . , (x
′
m, cm) where (x′

i, ci) is the i’th image/caption
pair. We base our N auxilliary training sets on N content words,
(w1, . . . , wN ). A natural choice for these words would be to
choose the N most frequent content words seen within the cap-
tions.2 N auxilliary training sets can then be created as follows.
Define Ii[c] to be 1 if word wi is seen in caption c, and −1 other-
wise. Create a training set Ti = {(x′

1, Ii[c1]), . . . , (x
′
m, Ii[cm])}

for each i = 1 . . . N . Thus the i’th training set corresponds to the
binary classification task of predicting whether or not the word wi

is seen in the caption for an image x′.

2In our experiments we define a content word to be any word which
does not appear on a “stop list” of common function words in English.



Input: Training sets {(xi
1, y

i
1), . . . , (xi

ni
, yi

ni
)} for i =

1 . . .N . Here xi
j is the j’th image in the i’th training set,

yi
j is the label for that image. ni is the number of examples

in the i’th training set. We consider binary classification
problems, where each y i

j is in {−1, +1}. Each image x is

represented by a feature vector g(x) ∈ R
d.

Step 1: Train N linear classifiers. For i = 1 . . .N ,
choose the optimal parameters on the i’th training set to
be w∗

i = arg minw Li(w) where

Li(w) =
ni∑

j=1

l(w · g(xi
j), y

i
j) +

C

2
||w||2

(See section 3.1 for more discussion.)

Step 2: Perform SVD on the Parameter Vectors. Form
a matrix W of dimension d × N , by taking the parameter
vectors w∗

i for i = 1 . . .N . Compute a projection matrix
A of dimension h× d by taking the first h eigenvectors of
WW′.

Output: The projection matrix A ∈ R
h×d.

Figure 1. The structural learning algorithm.

This section describes an algorithm for learning a representa-
tion from a set of auxilliary training sets. We adopt the framework
described in [1]. We assume that a baseline representation of im-
ages g(x) ∈ R

d is available. In the experiments in this paper
g(x) is a SIFT histogram representation [16]. In general, g(x)
will be a “raw” representation of images that would be sufficient
for learning an effective classifier with a large number of training
examples, but which performs relatively poorly when the number
of training examples is small. For example, with the SIFT repre-
sentation the feature vectors g(x) are of relatively high dimension
(we use d = 1, 000), making learning with small amounts of train-
ing data a challenging problem without additional information.

Note that one method for learning a representation from the
unlabeled data would be to use PCA—or some other density es-
timation method—over the feature vectors g(x1), . . . ,g(xm) for
the set of unlabeled images (we will call this method the data-PCA
method). The method we describe differs significantly from PCA
and similar methods, in its use of meta-data associated with the
images, for example captions. Later we will describe synthetic ex-
periments where PCA fails to find a useful representation, but our
method is successful. In addition we describe experiments on real
image data where PCA again fails, but our method is successful in
recovering representations which significantly speed learning.

Given the baseline representation, the new representation is de-
fined as f(x) = Ag(x) where A is a projection matrix of dimen-
sion h × d.3 The value of h is typically chosen such that h � d.
The projection matrix is learned from the set of auxilliary train-

3Note that the restriction to linear projections is not necessarily lim-
iting. It is possible to learn non-linear projections using the kernel trick;
i.e., by expanding feature vectors g(x) to a higher-dimensional space, then
taking projections of this space.

ing sets, using the structural learning approach described in [1].
Figure 1 shows the algorithm.

In a first step, linear classifiers w∗
i are trained for each of the

N auxilliary problems. In several parameter estimation methods,
including logistic regression and support vector machines, the op-
timal parameters w∗ are taken to be w∗ = arg minw L(w) where
L(w) takes the following form:

L(w) =

nX

j=1

l(w · g(xj), yj) +
C

2
||w||2 (1)

Here {(x1, y1), . . . , (xn, yn)} is a set of training examples, where
each xj is an image and each yj is a label. The constant C > 0
dictates the amount of regularization in the model. The function
l(w · g(xj), yj) is some measure of the loss for the parameters w
on the example (xj , yj). For example, in support vector machines
[?] l is the hinge-loss, defined as l(m, y) = (1 − ym)+ where
(z)+ is z if z >= 0, and is 0 otherwise. In logistic regression the
loss function is

l(m, y) = − log
exp{ym}

1 + exp{ym} . (2)

Throughout this paper we use the loss function in Eq. 2, and clas-
sify examples with sign(w · g(x)) where sign(z) is 1 if z ≥ 0,
−1 otherwise.

In the second step, SVD is used to identify a matrix A of di-
mension h× d. The matrix defines a linear subspace of dimension
h which is a good approximation to the space of induced weight
vectors w∗

1 , . . . ,w∗
N . Thus the approach amounts to manifold

learning in classifier weight space. Note that there is a crucial
difference between this approach and the data-PCA approach: in
data-PCA SVD is run over the data space, whereas in this approach
SVD is run over the space of parameter values. This leads to very
different behavior of the two methods.

Ando and Zhang [1] describe the following method that makes
use of the projection matrix A when training a model for a new
problem. The parameter values are chosen to be w∗ = A′v∗

where v∗ = arg minv L(v) and

L(v) =

nX

j=1

l((A′v) · g(xj), yj) +
C

2
||v||2 (3)

This essentially corresponds to constraining the parameter vector
w∗ for the new problem to lie in the sub-space defined by A.
Hence we have effectively used the auxilliary training problems
to learn a sub-space constraint on the set of possible parameter
vectors.

If we define f(x) = Ag(x), it is simple to verify that

L(v) =

nX

j=1

l(v · f(xj), yj) +
C

2
||v||2 (4)

and also that sign(w∗ · g(x)) = sign(v∗ · f(x)). Hence an
alternative view of the algorithm in figure 1 is that it induces a new
representation f(x). In summary, the algorithm in figure 1 derives
a matrix A that can be interpreted either as a sub-space constraint
on the space of possible parameter vectors, or as defining a new
representation f(x) = Ag(x).
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Figure 2. Concept figure illustrating how manifold learning in
classifier weight space can group features corresponding to visual
parts. Parts (eyes, nose, mouth) of an object (face) may have dis-
tinct visual appearances (the top row of cartoon part appearances).
A specific face (e.g., a or b) is represented with the boolean indica-
tor vector as shown. Matrix D shows all possible faces given this
simple model; PCA on D is shown row-wise in PD (first principal
component is shown also above in green as PD1.) No basis in PD
groups together eyes or mouth appearances; different part appear-
ances never co-occur in D. However, idealized classifiers trained to
recognize, e.g., faces with a particular mouth and any eye (H,S,N),
or a particular eye given and mouth (LL,LC,LR,EC), will learn to
group features into parts. Matrix T and blue vectors above show
these idealized boolean classifier weights; the first principal com-
ponent of T is shown in red as PT1, clearly grouping together the
four cartoon eye and the three cartoon mouth appearances. PT1

would be a very useful feature for future learning tasks related to
faces in this simple domain.

4. Examples Illustrating the Approach

Figure 2 shows a concept figure illustrating how PCA in a clas-
sifier weight space can discover functional part structures given
idealized auxillary tasks. When the tasks are defined such that
to solve them they need to learn to group different visual appear-
ances, the distinct part appearances will then become correlated in
the weight space, and techniques such as PCA will be able to dis-
cover them. In practice the ability to obtain such ideal classifiers is
critical to our method’s success. Next we will describe a synthetic
example where the method is successful; in the following section
we present real-world examples where auxillary tasks are readily
available and yield features that speed learning of future tasks.

We now describe experiments on synthetic data that illustrate
the approach. To generate the data, we assume that there is a set
of 10 possible parts. Each object in our data consists of 3 distinct
parts; hence there are

`
10
3

´
= 120 possible objects. Finally, each

of the 10 parts has 5 possible observations, giving 50 possible ob-
servations in total (the observations for each part are distinct).

As a simple example (see figure 3), the 10 parts might corre-
spond to 10 letters of the alphabet. Each “object” then consists
of 3 distinct letters from this set. The 5 possible observations for
each part (letter) correspond to visually distinct realizations of that
letter; for example, these could correspond to the same letter in dif-
ferent fonts, or the same letter with different degrees of rotation.

(a)

a A A A A
b b B b b
c C c c c

. . .
j J J J J

(b)

A b c a b D
A b c A b D
a b c a b d
A d E b c f
A D E B c f
A D e b C f

Figure 3. Synthetic data involving objects constructed from letters.
(a) There are 10 possible parts, corresponding to the first 10 letters
of the alphabet. Each part has 5 possible observations (correspond-
ing to different fonts). (b) Each object consists of 3 distinct parts;
the observation for each part is drawn uniformly at random from
the set of possible observations for that part. A few random draws
for 4 different objects are shown.

The assumption is that each observation will end up as a distinct
visual word, and therefore that there are 50 possible visual words.

The goal in learning a representation for object recognition in
this task would be to learn that different observations from the
same part are essentially equivalent—for example, that observa-
tions of the letter “a” in different fonts should be collapsed to the
same point. This can be achieved by learning a projection matrix
A of dimension 10×50 which correctly maps the 50-dimensional
observation space to the 10-dimensional part space. We show that
the use of auxilliary training sets, as described in section 3.1, is
successful in learning this structure, whereas PCA fails to find any
useful structure in this domain.

To generate the synthetic data, we sample 100 instances of each
of the 120 objects as follows. For a given object y, define Py to
be the set of parts that make up that object. For each part p ∈
Py, generate a single observation uniformly at random from the
set of possible observations for p. Each data point generated in
this way consists of an object label y, together with a set of three
observations, x. We can represent x by a 50-dimensional binary
feature vector g(x), where only 3 dimensions (corresponding to
the three observations in x) are non-zero.

To apply the auxilliary data approach, we create 120 auxilliary
training sets. The i’th training set corresponds to the problem of
discriminating between the i’th object and all other 119 objects. A
projection matrix A is learned from the auxilliary training sets. In
addition, we can also construct a projection matrix using PCA on
the data points g(x) alone. Figures 4 and 5 show the projections
learned by PCA and the auxilliary tasks method. PCA fails to learn
useful structure; in contrast the auxilliary task method correctly
collapses observations for the same part to nearby points.

5. Experiments on Images with Captions

We collected a data set consisting of 10,576 images.
These images were collected from the Reuters news website
(http://today.reuters.com/news/) during a period of
one week. Images on the Reuters website are partitioned into sto-
ries or topics, which correspond to different topics in the news.
Thus each image has a topic label—in our case, the images fell
into 130 possible topics. Figure 6 shows some example images.

The experiments involved predicting the topic variable y for
test images. We reserved 8, 000 images as a source of training
data, and an additional 1, 000 images as a potential source of de-
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Figure 4. The representations learned by PCA on the synthetic data
problem. The first figure shows projections 1 vs. 2; the second
figure shows projections 2 vs. 3. Each plot shows 50 points cor-
responding to the 50 observations in the model; observations cor-
responding to the same part have the same color. There is no dis-
cernable structure in the figures. The remaining dimensions were
found to similarly show no structure.
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Figure 5. The representations learned by structural learning on the
synthetic data problem. The first figure shows projections 1 vs. 2;
the second figure shows projections 2 vs. 3. Each plot shows 50
points corresponding to the 50 observations in the model; obser-
vations corresponding to the same part have the same color. There
is clear structure in features 2 and 3, in that observations corre-
sponding to the same part are collapsed to nearby points in the
projected space. The remaining dimensions were found to show
similar structure to those in dimensions 2 and 3.

Figure 6. Example images from the figure skating, ice hockey,
Golden Globes and Grammy topics.

velopment data. The remaining 1,576 images were used as a test
set. Multiple training sets of different sizes, and for different top-
ics, were created as follows. We created training sets Tn,y for

n = {1, 2, 4, 8, 16, 32, 64} and y = {1, 2, 3, . . . , 15}, where
Tn,y denotes a training set for topic y which has n positive ex-
amples from topic y, and 4n negative examples. The 15 topics
corresponded to the 15 most frequent topics in the training data.
The positive and negative examples were drawn randomly from
the training set of size 8, 000. We will compare various models by
training them on each of the training sets Tn,y, and evaluating the
models on the 1,576 test images.

In addition, each of the 8, 000 training images had associated
captions, which can be used to derive an image representation (see
section 3.1). Note that we make no use of captions on the test or
development data sets. Instead, we will use the 8, 000 training im-
ages to derive representations that are input to a classifier that uses
images alone. In summary, our experimental set-up corresponds
to a scenario where we have a small amount of labeled data for a
core task (predicting the topic for an image), and a large amount
of unlabeled data with associated captions.

A baseline model was trained on all training sets Tn,y. In each
case the resulting model was tested on the 1, 576 test examples.
The baseline model consists of a logistic regression model over
the SIFT features: to train the model we used conjugate gradient
descent to find the parameters w∗ which maximize the regularized
log-likelihood, see equations 1 and 2. When calculating equal-
error-rate statistics on test data, the value for P (y = +1|x;w∗)
can be calculated for each test image x; this score is then used to
rank the test examples.

The parameter C in Eq. 1 dictates the amount of regulariza-
tion used in the model. For the baseline model, we used the de-
velopment set of 1, 000 examples to optimize the value of C for
each training set Tn,y. Note that this will in practice give an up-
per bound on the performance of the baseline model, as assuming
1, 000 development examples is almost certainly unrealistic (par-
ticulary considering that we are considering training sets whose
size is at most 320). The values of C that were tested were 10k ,
for k = −5,−4, . . . , 4.

As an additional baseline, we again trained a logistic-
regression classifier, but with the original feature vectors g(x) in
training and test data replaced by h-dimensional feature vectors
f(x) = Ag(x) where A was derived using PCA. A matrix F of
dimension 1, 000 × 8, 000 was formed by taking the feature vec-
tors g(x) for the 8, 000 data points; the projection matrix A was
constructed from the first h eigenvectors of FF′. The PCA model
has free parameters h and C. These were optimized using the
method described in section 5.5. We call this model the data-PCA
model.

We ran experiments using the structure prediction approach de-
scribed in section 3. We train a logistic-regression classifier on fea-
ture vectors f(x) = Ag(x) where A is derived using the method
in section 3.1. The matrix A is induced in two steps. First, using
the 8, 000 training images, we created 100 auxilliary training sets



corresponding to the 100 most frequent content words in the cap-
tions.4 Each training set involves prediction of a particular content
word. The input to the classifier is the SIFT representation of an
image. Next, we trained linear classifiers on each of the 100 auxil-
liary training sets to induce parameter vectors w1 . . .w100. Each
parameter vector is of dimension 1, 000; we will use W to refer
to the matrix of size 1, 000 × 100 which contains all parameter
values. The projection matrix A consists of the h eigenvectors in
R

d which correspond to the h largest eigenvalues of WW′.

There are two free parameters in the data-PCA and the pre-
dictive structure models: the dimensionality of the projection h,
and the constant C used in Eq. 1. A single topic—the 7th most
frequent topic in the training data—was used to tune these param-
eters for both model types. For each model type the model was
trained on all training sets Tn,7 for n = 1, 2, 4, 8, ..., 64, with val-
ues for h taken from the set {2, 5, 10, 20, 30, 40, 200, 400} and
values for C chosen from {0.00001, 0.0001, . . . , 1000}. Define
En

h,C to be the equal-error-rate on the development set for topic 7,
when trained on the training set Tn,7 using parameters h and C.
We choose the value h∗ for all experiments on the remaining 14
topics as

h∗ = arg min
h

X

i=1,2,...,64

min
C

Ei
h,C

This corresponds to making a choice of h∗ that performs well on
average across all training set sizes. In addition, when training a
model on a training set with i positive examples, we chose C∗

i =
arg minC Ei

h∗,C as the regularization constant. The motivation
for using a single topic as a validation set is that it is realistic to
assume that a fairly substantial validation set (1,000 examples in
our case) can be created for one topic; this validation set can then
be used to choose values of h∗ and C∗

i for all remaining topics.

Figure 7 shows the mean equal error rate and standard devi-
ation over ten runs for the experiments on the Reuters dataset.
For all training set sizes the structural learning model leads to
improved performance. The average performance with one pos-
itive training example is around 62% with the structural learning
method; to achieve similar performance with the baseline model
requires between four and eight positive examples. Similary, the
performance with 4 positive examples for the structural learning
method is around 67%; the baseline model requires between 32
and 64 positive examples to achieve this performance. PCA’s per-
formance is lower than the baseline model for all training sizes and
the gap between the two increases with the size of the training set.

Figure 8 shows mean equal error rates over the ten runs for each
topic. Structural learning improves performance for all but three
of the topics. Figures 9 and 10 show equal error rates for two
different topics. The first topic, “Australian Open”, is one of the
topics that exhibits the most improvement from structural learn-
ing. The second topic, “Winter Olympics”, is one of the three top-
ics for which structural learning does not improve performance.
As can be observed from the Australian Open curves the use of

4Content words are defined as any words which do not appear on a
“stop” list of common function words.
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Figure 7. Equal error rate averaged across topics, with standard
deviations calculated from ten runs for each topic. The equal error
rates are averaged across 14 topics; the 7th most frequent topic is
excluded as this was used for cross-validation (see section 5.5).
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Figure 9. Roc Curves for the “Australian Open” topic.

structural features speeds the generalization ability of the classi-
fier. The structural model trained with only two positive examples
performs comparably to the baseline model trained with sixty four
examples. For the Winter Olympics topic the three models per-
form similarly. At least for a small number of training examples,
this topic exhibits a slow learning curve; i.e. there is no significant
improvement in performance as we increase the size of the labeled
training set; this suggests that this is an inherently harder class.

6. Conclusions

We have described a method for learning visual representations
from large quantities of unlabeled images which have associated
captions. The method makes use of auxilliary training sets corre-
sponding to different words in the captions, and structural learn-
ing, which learns a manifold in parameter space. The induced
representations significantly speed up learning of image classifiers
applied to topic classification. Our results show that when meta-
data labels are suitably related to a target (core) task, the structure
learning method can discover feature groupings that speed learn-
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Figure 8. Mean equal error rates per topic computed over 10 runs for the three models; blue corresponds to the structural learning model,
green to the baseline model and red to pca. The topics are: Australian Open, Ariel Sharon, Female Skating, Figure Skating, Golden Globes,
Grammy Awards, Ice Hockey, Iraq, Men Sky, Olympic Games, Muslim protest, Oscars, SuperBowl, Winter Olympics, Women Snowboard.
Note that the 7th most frequent topic, “Oscars”, was used to cross-validate parameters in the approach (see section 5.5)
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Figure 10. Roc Curves for the “Winter Olympics” topic.

ing of the target task. Future work includes exploration of au-
tomatic determination of relevance between target and auxilliary
tasks, and experimental evaluation of the effectiveness of structure
learning from more weakly related auxillary domains.
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