
Hidden-state Conditional Random Fields

A. Quattoni, S. Wang, L.-P Morency, M. Collins, T. Darrell; MIT CSAIL

Abstract

We present a discriminative latent variable model for classification problems in structured domains

where inputs can be represented by a graph of local observations. A hidden-state Conditional Random

Field framework learns a set of latent variables conditioned on local features. Observations need not be

independent and may overlap in space and time. We evaluate our model on object detection and gesture

recognition tasks.

1. Introduction

It is well known that models which include latent, or hidden-state, structure may be more expressive than

fully observable models, and can often find relevant substructure in a given domain. Hidden Markov

Models (HMMs) and Dynamic Bayesian Networks use hidden state to model observations, and have a

clear generative probabilistic formulation. In this paper we develop a hidden-state conditional random

field model, and demonstrate its ability to outperform generative hidden-state and discriminative fully-

observable models on object and gesture recognition tasks.

Conditional Random Fields have been shown to be powerful discriminative models because they can

incorporate essentially arbitrary feature-vector representations of the observed data points [13]. How-

ever, they are limited in that they cannot capture intermediate structures using hidden-state variables. In

this paper we propose a new model for classification based on CRFs augmented with latent state, which
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we call Hidden-state Conditional Random Fields (HCRFs). While HMMs are the natural extension of

MRFs, HCRFs are the analogous extension for CRFs.

Figure 3 shows the difference between HCRFS and HMMS or Hidden markov random fields. Hidden

Markov random fields are directed graphical models [8], where a random variable h is modeled as a

markov process and it is assumed that the observation variable x is a deterministic or stochastic function

of h. One way of using HMMS for classification is to assume a hidden variable h for each category and

train a model for each of them independently. That is, given k categories and m samples (where Dl is

the training data for category l)in a maximum likelihood framework the parameters θl of each of the k

models are trained to maximize P (Dl|θl).

Differently, an HCRF models the distribution P (c, h|x) directly, where c is a category and h is an

intermediate hidden variable modeled as a markov random field globally conditioned on observation x.

The parameters θ of the model are trained discriminatively to optimize P (c|x).

There is an extensive literature dedicated to gesture recognition; for hand and arm gestures, a com-

prehensive survey was presented in Pavlovic et al. [20]. Generative models have been used successfully

to recognize arm gestures [2] and a number of sign languages [1, 24]. Kapoor and Picard presented a

HMM-based, real time head nod and head shake detector [9]. Fugie et al. also used HMMs to perform

head nod recognition [6].

The main limitation of latent generative approaches is that they require a model of local features given

underlying variables, and generally presume independence of the observations. Accurately specifying

such a generative model may be challenging, particulary in cases where we wish to incorporate long

range dependencies in the model and allow hidden variables to depend on several local features. These

observations led to the introduction of discriminative models for sequence labeling, including MEMM’s

[15], [22] and Conditional Random Fields (CRFs). CRFs were first introduced by Lafferty et al. [13]

and have been widely used since then in the natural language processing community for tasks such as

noun co-reference resolution [17], named entity recognition [16] and information extraction [3].

In computer vision, CRF’s have been applied to the task of detecting man-made structures in natural

images and have been shown to outperform Markov Random Fields (MRF) [12]. Sminchisescu [23]
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applied CRFs to classify human motion activity and demonstrated their model was more accurate than

MEMMs and could discriminate subtle motion styles. Torralba et al. [25] introduced Boosted Random

Fields, a model that combines local and global image information for contextual object recognition.

Our hidden-state discriminative approach for object recognition is related to the work of Kumar and

Herbert [12], [11], who train a discriminative model using fully-labeled data where each image region is

assigned a part label from a discrete set of object parts. A CRF is trained and detection and segmentation

are performed by finding the most likely labeling of the image under the learned model. The main

difference between our approach and Kumar’s is that we do not assume that the part assignment variables

are fully observed and are instead regarded as latent variables. Incorporating hidden variables allows use

of training data not explicitly labeled with part (hidden-state) structure.

Another related model is presented in [26], which builds a discriminative classifier based on a part-

based feature representation. Such a representation is obtained by measuring the similarity between

image patches (detected with an interest point detector) to a pre-defined dictionary of parts. The dictio-

nary is built by extracting and clustering patches from a set of representative images of the target class.

Again, a significant difference between their approach and ours is that we do not perform a pre-selection

of discriminative parts, but rather incorporate such a step during training. In parallel to our work on ob-

ject recognition [21], [7] developed a hidden-state CRF model for phone recognition and demonstrated

the equivalence of HMM models to a subset of CRF models. Also, Koo and Collins [10] describe a

similar hidden state model applied to a reranking approach for natural language parsing.

In previous work on CRFs label sequences are typically taken to be fully observed on training ex-

amples. In our approach category labels are observed, but an additional layer of subordinate labels are

learned. These intermediate hidden variables model the latent structure of the input domain; our model

defines the joint probability of a class label and hidden state labels conditioned on the observations, with

dependencies between the hidden variables expressed by an undirected graph. The result is a model

where inference and parameter estimation can be carried out using standard graphical model algorithms

such as loopy belief propagation.

3



2. Hidden Conditional Random Fields

We presume a task where we wish to predict a label y given inputs. Each y is a member of a set Y of

possible labels and each vector x is a vector of local observations x = {x1, x2, . . . , xm}. The number

of local observations can vary across examples; for convenience of notation we omit dependence on the

example index and simply refer to the number of observations as m in each case. Each local observation

xj is represented by a feature vector φ(xj) ∈ <d, where d is the dimensionality of the representation.

For our object recognition task this corresponds to an image patch descriptor, while for our gesture

recognition task this contains body motion observations. Our training set consists of labeled examples

(xi, yi) for i = 1 . . . n, where each yi ∈ Y , and each xi = {xi,1, xi,2, . . . , xi,m}. For any example x

we also assume a vector of latent variables h = {h1, h2, . . . , hm}, which are not observed on training

examples, and where each hj is a member of H where H is a finite set of possible hidden labels in

the model. Intuitively, each hj corresponds to a labeling of xj with some member of H, which may

correspond to “part” or “sub-gesture” structure in an observation.

Given these definitions of labels y, observations x, and latent variables h, we define a conditional

probabilistic model:

Given a new test example x, and parameter values θ∗ induced from a training set, we will take the

label for the example to be arg maxy∈Y P (y | x, θ∗). Following previous work on CRFs [13, 12], we use

the following objective function to estimate the parameters:

L(θ) =
∑

i

log P (yi | xi, θ)− 1

2σ2
||θ||2 (1)

The first term in Eq. 1 is the log-likelihood of the data. The second term is the log of a Gaussian prior with

variance σ2, i.e., P (θ) ∼ exp
(

1
2σ2 ||θ||2

)
. We use gradient ascent to search for the optimal parameter

values, θ∗ = arg maxθ L(θ), under this criterion. As with other hidden state models (e.g., HMMs),

adding hidden state makes the optimization non-convex; we search for parameters by initializing from

multiple random start points and searching for the best local optimum.”

We encode structural constraints with an undirected graph structure, where the hidden variables
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{h1, . . . , hm} correspond to vertices in the graph. The set of graph edges (j, k) ∈ E denotes links

between variables hj and hk. The graph E can be arbitrary; intuitively it should capture any domain

specific knowledge that we have about the structure of h. In our object recognition task it is a local mesh

that encodes spatial consistency between local appearance features, while in our gesture recognition task

it is a chain that captures temporal dynamics.

We define Ψ to take the following form:

Ψ(y,h,x; θ) =
m∑

j=1

∑

l∈L1

f 1
l (j, y, hj,x)θ1

l +
∑

(j,k)∈E

∑

l∈L2

f 2
l (j, k, y, hj, hk,x)θ2

l (2)

where L1 is the set of node features, L2 the set of edge features , f 1
l , f 2

l are functions defining the features

in the model, and θ1
l , θ

2
l are the components of θ. The f 1 features depend on single hidden variable values

in the model; the f 2 features can depend on pairs of values. Note that Ψ is linear in the parameters θ,

and the model in Eq. ?? is a log-linear model. Moreover the features respect the structure of the graph,

in that no feature depends on more than two hidden variables hj, hk, and if a feature does depend on

variables hj and hk there must be an edge (j, k) in the graph E.

Assuming that the edges in E form a tree, and that Ψ takes the form in Eq. 2, then exact methods

exist for inference and parameter estimation in the model. This follows because belief propagation can

be used to calculate the following quantities in O(|E||Y|) time:

∀y ∈ Y , Z(y | x, θ) =
∑

h

exp{Ψ(y,h,x; θ)}

∀y ∈ Y , j ∈ 1 . . . m, a ∈ H, P (hj = a | y,x, θ) =
∑

h:hj=a

P (h | y,x, θ)

∀y ∈ Y , (j, k) ∈ E, a, b ∈ H, P (hj = a, hk = b | y,x, θ) =
∑

h:hj=a,hk=b

P (h | y,x, θ)

The first term Z(y | x, θ) is a partition function defined by a summation over the h variables. Terms

of this form can be used to calculate P (y | x, θ) = Z(y | x, θ)/
∑

y′ Z(y′ | x, θ). Hence inference—

calculation of arg max P (y | x, θ)— can be performed efficiently in the model. The second and third
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terms are marginal distributions over individual variables hj or pairs of variables hj, hk corresponding

to edges in the graph. The gradient of L(θ) can be defined in terms of these marginals, and hence can be

calculated efficiently. If E contains cycles then approximate methods, such as loopy belief-propagation,

may be necessary for inference and parameter estimation.

In brief, since P (h, y|x) = P (h|y, x)P (y|x) and since both terms on the right hand side can be

efficiently computed using belief propagation it follows that the joint distribution can also be computed

efficiently.”

We estimate parameters θ∗ = arg max L(θ) from a training set using a quasi-Newton method. The

gradient of L(θ) can be calculated efficiently using belief propogation update steps; the likelihood term

due to the i’th training example is:

Li(θ) = log P (yi | xi, θ) = log

( ∑
h eΨ(yi,h,xi;θ)

∑
y′,h eΨ(y′,h,xi;θ)

.

)
(3)

We first consider derivatives with respect to the parameters θ1
l corresponding to features f 1

l (j, y, hj,x)

that depend on single hidden variables. Taking derivatives gives

∂Li(θ)

∂θ1
l

=
∑

h

P (h | yi,xi, θ)
∂Ψ(yi,h,xi; θ)

∂θ1
l

−
∑

y′,h

P (y′,h | xi, θ)
∂Ψ(y′,h,xi; θ)

∂θ1
l

=
∑

h

P (h | yi,xi, θ)
m∑

j=1

f 1
l (j, yi, hj,xi)−

∑

y′,h

P (y′,h | xi, θ)
m∑

j=1

f 1
l (j, y′, hj,xi)

=
∑
j,a

P (hj = a | yi,xi, θ)f
1
l (j, yi, a,xi)−

∑

y′,j,a

P (hj = a, y′ | xi, θ)f
1
l (j, y′, a,xi)

It follows that ∂Li(θ)

∂θ1
l

can be expressed in terms of components P (hj = a | xi, θ) and P (y | xi, θ), which

can be calculated using belief propagation, provided that the graph E forms a tree structure. A similar
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calculation gives

∂Li(θ)

∂θ2
l

=
∑

(j,k)∈E,a,b

P (hj = a, hk = b | yi,xi, θ)f
2
l (j, k, yi, a, b,xi)

−
∑

y′,(j,k)∈E,a,b

P (hj = a, hk = b, y′ | xi, θ)f
2
l (j, k, y′, a, b,xi)

hence ∂Li(θ)/∂θ2
l can also be expressed in terms of expressions that can be calculated using belief

propagation.

3. Experiments

We explored the performance of our HCRF model on both object and gesture recognition tasks, mea-

suring the effect of different degrees of connectivity in the mesh of local observations in the former task

and the chain of motion observations in the latter task.

In our experiments we use a restricted form of Ψ where observations interact only with the hidden

states:

Ψ(y,h,x; θ) =
∑

j

φ(xj) · θ(hj) +
∑

j

θ(y, hj) +
∑

(j,k)∈E

θ(y, hj, hk) (4)

where θ(hj) ∈ <d for hj ∈ H is a parameter vector corresponding to the j’th latent variable. The inner-

product φ(xj) · θ(hj) can be interpreted as a measure of the compatibility between observation xj and

hidden-state hj , the parameter θ(y, hj) ∈ < for hj ∈ H, y ∈ Y can be interpreted as a measure of the

compatibility between latent variable hj and category label y, and each parameter θ(y, hi, hj) ∈ < for

y ∈ Y , and hi, hj ∈ Hmeasures the compatibility between an edge with labels hi and hj and the label y.

For these experiments we chose the number of hidden states that minimized the training error,the same

is true for the number of hidden states and mixtures used in the HMMs.

In general however the number of hidden states could be better optimized through a held out valida-

tion set. To give an idea of the sensitivity of the results to this number [Table xxx nips] shows object

recognition results for different number of hidden states.
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Figure 1: Encoding Part Dependencies in the model: images show min-spanning tree , 1-lattices (top) ,
2 , and 3-lattices (bottom) over detected features.

Data set 5 parts 10 parts

Car Side 94 99

Car Rear 91 91.7
In the object recognition domain patches xi,j in each image are obtained using the SIFT detector [14]:

each patch xi,j is then represented by a feature vector φ(xi,j) that incorporates a combination of SIFT

descriptor and relative location and scale features. We assume that parts conditioned on proximate

observations are likely to be dependent, as expressed in the neighborhood graph structure.

The graph E encodes the amount of connectivity between the hidden variables hj . Intuitively, E

determines the ability of our model to capture conditional dependencies between part assignments. Such

dependencies between hidden part assignments can be encoded using n-neighbor lattices over local

observations. However, increasing connectivity leads to an increase in the computational complexity of

performing inference in such models. If E has no connectivity (i.e E contains no edges) the potential

function for our model reduces to:

Ψ(y,h,x; θ) =
∑

j

φ(xj) · θ(hj) +
∑

j

θ(y, hj) (5)

This graph may be too poor to capture important dependencies between part assignments, especially

given that our observations often contain overlapping image patches. Another option for defining E is to

use a minimum spanning tree where the weights on the edges are the distances between the correspond-
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Figure 2: ROC curves for the 4 variants of the model: the red curve corresponds to a model with no
connectivity, the green curve to a model with minimum spanning tree connectivity, the blue curve to a
model with 2-Lattice connectivity and the yellow curve to a model with 3-Lattice connectivity; Viterbi
assignments of hidden states to local image patches for min spanning tree and unconnected model, center
and right respectively.

ing image patches. Distances could in general be based on any aspect of the location or feature space; in

our experiments below we relied on distance in the image plane. Note that the structure of E will vary

across different images. The advantage of using such a graph is that, as we mentioned earlier, when E

contains no cycles, and Ψ takes the form in Eq. 2, we can perform exact inference on E, using belief

propagation in time O(|E||Y|)2.

More generally, we define E to be an n-Lattice over the local observations. We build an n-neighbor

lattice by linking every node to its n closest nodes, (i.e. the nodes that correspond to the n closest local

observations). When E contains cycles computing exact inference becomes untractable, and we need to

resort to approximate methods using loopy-belief propagation techniques.

We evaluated the effect of different neighborhood structures on recognition performance in a simple

object category recognition task. Here for brevity we report results only for the well-known UIUC car

side dataset. Given a neighborhood structure for our model we trained a binary classifier to distinguish

between a category and a background set formed from the remaining UIUC images. The data set was

split into 3 data sets: a training data set of 200 images, a validation set of 100 images and a testing set

of 100 images. The validation set was used to select the regularization term (i.e. the variance of the

Gaussian prior) and as a stopping criteria for the gradient ascent.
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Data set Our Model Others [1]
Car Side 99 % -
Car Rear 94.6 % 90.3 %
Face 99 % 96.4 %
Plane 96 % 90.2 %
Motorbike 95 % 92.5 %

Figure 3: Comparison with state of the art approach for object recognition (Equal Error Rates)

For the first experiment we defined E to be an unconnected graph, for the second a minimum spanning

tree, for the third a 2-lattice, and for the fourth a 3-lattice, as shown in Figure 1. For the first and second

experiments gradient ascent was initialized randomly while for the third and fourth experiments we used

the minimum spanning tree solution as initial parameters. Figure 2 shows the ROC curves for the 4

variants of the model: the red curve corresponds to a model with no connectivity, the green curve to a

model with minimum spanning tree connectivity, the blue curve to a model with 2-Lattice connectivity

and the yellow curve to a model with 3-Lattice connectivity.

From this Figure we observe a significant improvement in performance when the model incorporates

some degree of dependency between the latent variables (Figure 1).

Figure 2 shows the most likely assignment of parts to features for the min-spanning tree model and the

unconnected model for an example in which the former gives a correct classification but the latter fails

to do so. Notice that both models give smooth part assignments, which is expected as the normalized

location is a feature of the patch representation. In some cases the model relies more heavily on relative

location than appearance, labeling a part based on its location and thus learning the shape of the object

rather than its appearance. A possible reason for this is that the appearance information might not be

very useful for discriminating between classes when the image resolution is too low; as it is the case for

the car dataset.

For this type of task the min-spanning tree model shows equivalent recognition performance to the

models that use more densely connected graphs. Thus it is clear that the minimum-spanning tree can

encode sufficient dependency constraints for certain categories. Table [NIPS table] shows a compari-

son between our model (with minimum spanning tree connectivity)and previous approaches to object
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Figure 4: Models used for comparative experiments on the gesture recognition task, Y is the gesture
label and S the hidden state labels. The left most figure shows a ’stack of HMMs’ model where a
separate HMM is trained for each gesture class, the middle figure shows a CRF model and the right
most figure the proposed HCRF model.

recognition [5] for a standard dataset (Calteq 4).

While results using local appearance-based feature descriptors have been promising, our model is not

limited to such features and could, for example, be defined on a region-based appearance model.

We also explored our HCRF model on body and head gesture recognition, using a chain of observed

motion features as the input representation. We evaluated HCRFs with varying levels of long range

dependencies, and compared performance to baseline CRF and HMM models. Figure 4 shows graphical

representations of the HCRF, HMM, and CRF models used in our experiments.

For each gesture class, we first trained a separate HCRF model to discriminate the gesture class

from other classes. For a given test sequence, we compared the probabilities given by each of the two-

class HCRFs, and the highest scoring model was selected as the recognized gesture. Next, we trained

a single joint multi-class HCRF to recognize all classes. Test sequences were run with this model

and the gesture class with the highest probability was selected as the recognized gesture. Finally, we

conducted experiments that incorporated different long range dependencies. To incorporate long range

dependencies in the CRF and HCRF models, we modify the potential function to include a window

parameter ω that defines the amount of past and future history to be used when predicting the state at

time t. (ω = 0 indicates only the current observation is used).

The HMM models were trained using maximum likelihood; the number of Gaussian mixtures and

states were set by minimizing the error on the training data; in general this parameters can be optimized

with a held out dataset, we didn’t use a held-out validation because we had a small dataset available
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Figure 5: Illustrations of the six gesture classes for the experiments. Below each image is the abbrevi-
ation for the gesture class. The green arrows are the motion trajectory of the fingertip and the numbers
next to the arrows symbolizes the order of these arrows

for training. The CRF was trained as a multi-way classifier where each state in the model represented

one gesture class. Six hidden states were used for the one-vs-all HCRFs, 12 for the multi-class HCRFS,

these states where shared among all the classes. For the HMM model we used 4 hidden states for each

class, these states were not shared among the different classes.

We ran experiments in two domains: arm and head gestures. In the arm gesture domain, we used a

dataset of gestures defined for a virtual manipulation task (see Figure 5). There were six gestures in the

dataset. In the Expand Horizontally (EH) arm gesture, the user starts with both arms close to the hips,

moves both arms laterally apart and retracts back to the resting position. In the Expand Vertically (EV)

arm gesture the arms move vertically apart and return to the resting position. In the Shrink Vertically

(SV) gesture both arms begin from the hips, move vertically together and back to the hips. In the Point

and Back (PB) gesture the user points with one hand and beckons with the other. In the Double Back

(DB) gesture, both arms beckon towards the user. Lastly in the Flip Back (FB) gesture, the user simulates

holding a book with one hand while the other hand makes a flipping motion, to mimic flipping the pages

of the book.

Users were asked to perform these gestures in front of a stereo camera. From each image frame, a

3D cylindrical body model, consisting of a head, torso, arms and forearms was estimated using a stereo-

tracking algorithm [4]. From these body models, both the joint angles and the relative co-ordinates of

the joints of the arms are used as observations for our experiments. Thirteen users were asked to perform
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Arm Gesture Avg. Accuracy(%)
HMM ω = 0 84.22
CRF ω = 0 86.03
CRF ω = 1 81.75

HCRF (one-vs-all) ω = 0 87.49
HCRF (multiclass) ω = 0 91.64
HCRF (multiclass) ω = 1 93.81
HCRF (multiclass) ω = 2 93.07
HCRF (multiclass) ω = 3 92.50

Table 1: Comparison of recognition performance (percentage accuracy) for body poses estimated from
image sequences on 6-way classification task.

these six gestures; an average of 90 gestures per class were collected.

Table 1 summarizes results for the arm gesture recognition experiments. In these experiments the CRF

performed better than HMMs at window size zero. At window size one, however, the CRF performance

was poorer; this may be due to overfitting when training the CRF model parameters. Both multi-class

and one-vs-all HCRFs perform better than HMMs and CRFs. The most significant improvement in

performance was obtained when we used a multi-class HCRF, suggesting that it is important to jointly

learn the best discriminative structure.

Figure 6 shows the distribution of states for different gesture classes learned by the best performing

model (multi-class HCRF). This graph was obtained by computing the Viterbi path for each sequence

(i.e. the most likely assignment for the hidden state variables) and counting the number of times that a

given state occurred among those sequences. As we can see, the model has found a unique distribution of

hidden states for each gesture, and there is a significant amount of state sharing among different gesture

classes.

From the results in table 1, we can see that incorporating some degree of long range dependencies

is important, since the HCRF performance improved when the window size was increased from 0 to 1.

However, we also see that further increasing the window size did not improve performance.

We also conducted experiments with a head gesture datase obtained using the pose tracking system

of [18]. The fast Fourier transform of the 3D angular velocities were used as input features. The
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Models Accuracy (%)
HMM ω = 0 65.33
CRF ω = 0 66.53
CRF ω = 1 68.24

HCRF (multi-class) ω = 0 71.88
HCRF (multi-class) ω = 1 85.25

Table 2: Comparison of recognition performance for head gestures.

Figure 6: Graph showing the distribution of the hidden states for each gesture class. The numbers in
each pie represent the hidden state label, and the area enclosed by the number represents the proportion.

data consisted of interactions between human participants and a robotic character [19]. A total of 16

participants interacted with a robot, with each interaction lasting between 2 to 5 minutes. A total of 152

head nods, 11 head shakes and 159 junk sequences were extracted based on ground truth labels. The

junk class had sequences that did not contain any head nods or head shakes during the interactions with

the robot. For all experiments in this paper, we separated the data such that the testing dataset had no

participants from the training set.

Table 2 summarizes the results for the head gesture experiments. The multi-class HCRF model per-

forms better than the HMM and CRF models at a window size of zero. The CRF has slightly better

performance than the HMMs for the head gesture task, and this performance improved with increased

window sizes. The HCRF multi-class model made a significant improvement when the window size was

increased, which indicates that incorporating long range dependencies was useful.

Notice that for the CRF model increasing the window size from 0 to 1 degrades its performance. This

seems surprising since one would expect that adding contextual features could never harm the predic-

tive power of the model. It is very likely that this degrade in performance is caused by over-fitting;
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since adding contextual features increases the complexity of the model. However, we do not observe

a performance drop for the HCRF model which would seem to suggest that this model is less suscep-

tible to over-fitting; perhaps the presence of local minima prevents the model from over-optimizing its

parameters.

4. Summary and Conclusions

We have developed a discriminative hidden-state model and demonstrated its utility on visual recognition

tasks. Our model combines the ability of CRFs to use dependent input features and the ability of HMMs

to learn latent structure; we train a single joint model which shares hidden states for all classes. Our

results have shown that our HCRFs outperform both CRFs and HMMs for certain gesture recognition

tasks. For arm gestures, the multi-class HCRF model outperforms HMMs and CRFs even when long

range dependencies are not used, demonstrating the advantages of joint discriminative learning. For

the object recognition dataset our results have shown that incorporating dependencies between latent

variables is important and that the minimum-spanning tree formulation can be a good approximation to

more highly connected models.
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