
Toward aMarketplace for Aerial Computing

Arjun Balasingam★, Karthik Gopalakrishnan★, Radhika Mittal†,
Mohammad Alizadeh★, Hamsa Balakrishnan★, Hari Balakrishnan★

★Massachusetts Institute of Technology †University of Illinois at Urbana-Champaign

ABSTRACT
The rapid proliferation of commodity drones has expanded inter-
est in building applications that acquire imagery, video, and sensor
data at scale. In addition, recent work on drone programming frame-
works have simplified the development of aerial computing apps
that gather this data. These advancements have popularized the
drones-as-a-service model, where large drone fleets serve multiple
apps simultaneously.

This paper proposes a marketplace for aerial computing, where
apps can gather aerial data on demand and providers can offer up
their drones for aerial computing.We introduceAerialis, a drones-as-
a-service platform that schedules tasks to drones by arbitrating bids
submitted by apps. Aerialis allows apps with different semantics and
spatiotemporal preferences to express howmuch they would like to
pay for each aerial computing task. It then aggregates requests across
apps, and schedules tasks on drones according to a marketplace pol-
icy (e.g., maximizing revenue or guaranteeing quality-of-service to
apps).Webuild a prototype ofAerialis, and implement urban sensing
apps tomonitorairpollution,measure road traffic,andprofilecellular
throughput. We discuss operational challenges in deploying Aeri-
alis, and show how the measurements collected from our real-world
experiments offer valuable insights for engineers and city planners.

CCS CONCEPTS
•Computer systemsorganization→ Sensornetworks;Robot-
ics;Real-time systemarchitecture; •Networks→Networkeconomics;
•Computingmethodologies→ Planning and scheduling.

KEYWORDS
aerial sensing, marketplace, optimization, incentives

ACMReference Format:
Arjun Balasingam, Karthik Gopalakrishnan, Radhika Mittal, Mohammad Al-
izadeh, Hamsa Balakrishnan, Hari Balakrishnan. 2021. Toward aMarketplace
for Aerial Computing. In The 7thWorkshop on Micro Aerial Vehicle Networks,
Systems, andApplications (DroNet) (Dronet ’21), June 24, 2021, Virtual,WI,USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3469259.3470485

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Dronet ’21, June 24, 2021, Virtual, WI, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8599-2/21/06.
https://doi.org/10.1145/3469259.3470485

Fit Gaussian  
process

Estimate  
uncertainty

Apps DronesAerialis Runtime

receive feedback & update

execute 
schedule

completed tasks

AQI

Traffic

iPerf

+

merged IM

Drone  
Scheduler

drone healthCyclic 
monitoring Marketplace 

Objective

Figure 1: Aerialis is an aerial computing marketplace that allows apps to
complete sensing and data acquisition tasks on demand.

1 INTRODUCTION
Consumer drones today come equippedwith a variety of commodity
sensors and standard communication capabilities [1, 2]. The versatil-
ity of these drones has generated an increased interest in the develop-
ment of aerial computing applications [6, 8, 12, 16], which gather and
analyze large amounts of data, such as imagery, video, air quality, etc.
Additionally, recent work has introduced general-purpose program-
ming languages [7, 9], which are aimed at supporting the variety of
complexities and constraints required by these sensing apps.

Emerging from this excitement around aerial computing is the
drones-as-a-service model, where apps are decoupled from drone
infrastructure. In these platforms, developers submit apps (which
specify tasks, e.g.,measureairquality, deliver apackage, recordvideo,
etc.) to a platform that then schedules these tasks on a fleet of drones.

A key benefit of a shared drone platform is the ability tomultiplex
apps with co-located tasks on the same fleet of drones, allowing
operators to amortize flight (energy) and hardware costs. For
example, a fleet of city-owned drones can simultaneously deliver
packages, gather data about air pollution [3], monitor parking
spots [4], measure road traffic, and identify dangerous incidents.
Such multiplexing is more efficient than each app using its own
drones, because an individual drone can reduce wasteful long flights
and focus on sensing data for multiple apps in nearby areas.

We envision a future where a shared economy of drones can
facilitate a marketplace for aerial computing. Much like cloud
computing (e.g., Amazon EC2, Google Cloud, Microsoft Azure),
app developers can acquire aerial data on demand, while drone
operators can profit by offering any idle time on their drones to
support these computing apps. However, to realize this vision, we
need amarketplace arbiter that can (i) ingest and synthesize requests
from a variety of apps and (ii) seamlessly coordinate a drone fleet
with heterogeneous sensing and computing capabilities. This is
challenging because apps could have a variety of spatiotemporal
requirements, and drone time is a scarce resource.

https://doi.org/10.1145/3469259.3470485
https://doi.org/10.1145/3469259.3470485


Dronet ’21, June 24, 2021, Virtual, WI, USA Balasingam, Gopalakrishnan, Mittal, et al.

In thispaper,we introduceAerialis, a drones-as-a-serviceplatform
that facilitates a marketplace for aerial computing. Aerialis’s design
is centered on the interest map, a narrow-waist abstraction that in-
terfaces apps with a drone scheduler. Through this interface, an app
expresses howmuch it would like to pay for each aerial computing
task. Interest maps allow apps to (i) specify atomic tasks, and (ii)
encode relative preferences amongst tasks, so the scheduler knows
what to prioritize when there is not a sufficient number of drones
to fulfill all tasks. After receiving interest maps from all subscribing
apps, Aerialis aggregates requests and preferences across apps and
computes a schedule for each drone according to a marketplace
objective (e.g., maximize total revenue, balance drone workload,
or guarantee a quality-of-service to apps). Aerialis replans drone
routes in response to updates in interest maps, drone availability,
and travel time uncertainty. Fig. 1 shows an overview of Aerialis.

In §2, we use an example to further illustrate the scheduling chal-
lenges that motivate the need for a modular and expressive platform
like Aerialis. §3 presents our design and implementation of Aerialis,
and highlights operational challenges in building a robust system.
Then, in §4, we describe our experience implementing three real-
world urban sensing apps atopAerialis. Finally, in §5,we discuss how
the framework Aerialis proposes can be extended to support more
marketplace objectives and incentive-compatible pricing schemes.

2 CHALLENGES ANDREQUIREMENTS
As a marketplace arbiter, Aerialis must match drone resources to
app requests, while maximizing drone utilization and exposing a
flexible interface to apps. This introduces several new challenges.

App Requirements
deliver – streaming requests
packages – some packages are prioritized
patrol – patrolling requires continuous tracking
traffic – tracking logic should be private
map – detect/sample high-traffic areas more

street parking – maintain fresh measurements
Table 1: Aerial computing apps have diverse requirements.

Challenge #1: App semantics and objectives. Table 1 lists some
requirements of three different aerial computing apps that may run
atop a shared drone computing platform. Notice that each app has
unique semantics: while the package delivery appmay request tasks
from several discrete locations, the traffic patrol app would want a
drone to track a vehicle along a waypath for a period of time. At the
same time, the traffic patrol app may not want to expose its tracking
code (e.g., model-based prediction) to the platform. Additionally,
since the platformmay not be able to immediately service all tasks
due to resource constraints, the package delivery app may want to
express a relative ordering amongst tasks.

Challenge #2: Resource constraints. Commodity drones typi-
cally have 30-minute flight times (on a single charge), and require an
expensive flight back home to recharge. Further, there are often far
more tasks than can be completed in this duration. A shared platform
should seek tominimizewasted flight time, in addition to optimizing
the marketplace objective (e.g., revenue or quality-of-service).

Challenge #3: Environment uncertainty. Drones could fail
mid-flight, and the platform should adapt and continue to service
subscribed apps. Additionally, apps could be volatile and change
their sensing preferences dynamically. A shared aerial computing
platformmust be robust to dynamic environments.

Aerialis addresses these challenges by exposing a narrow-waist,
expressive interface for apps. Each app can prioritize its tasks, and
add, cancel, and update tasks as needed. Aerialis’s abstraction allows
apps to participate in an aerial computing marketplace by placing
bids to acquire sensor data or complete amission at specific locations.
Aerialis then optimizes all incoming bids, applying a marketplace
objective, to allocate tasks to drones.

Related work.Aerialis is motivated by the popularity of acquiring
aerial data on demand. Priorworks propose programming primitives
to write aerial sensing apps and study onboard security for shared
drone computing; however, they do not address the scheduling
challenges that arise whenmultiple apps coexist in a marketplace.
For instance,AnDrone [15], a drones-as-a-service platform, provides
a framework to share onboard drone computing resources (i.e., CPU,
camera, sensors, etc.) in a manner that preserves privacy amongst
apps that the same drone simultaneously services. Voltron [9] is
a general-purpose programming interface for reactive sensing apps;
however, it assumes that apps have exclusive access to a drone fleet,
and thus does not allow apps the flexibility of expressing relative
preferences amongst tasks, which is valuable when apps contend for
resources in a shared platform. BeeCluster [7] predicts app demand
in order to boost the efficiency of a drone fleet. We believe this work
on security and programming interfaces is complementary to the
marketplace architecture proposed by Aerialis.

3 DESIGNOFAERIALIS
Aerialis exposes an abstraction, called an interest map, through
which apps can express and update their desired tasks in the form of
bids (e.g., a dollar value per task). As depicted in Fig. 1, at runtime,
Aerialis queries apps for interestmaps, computes a schedule for each
drone, and charges apps according to a pricing policy. Aerialis com-
putes schedules for a fixed horizon (e.g., every 15-minute round-trip
flight). However, it replans more frequently (e.g., every 5minutes) in
order to (i) allow apps to update their interestmaps based on changes
in preferences and (ii) respond to changes in drone availability and
travel time uncertainty.

3.1 Interest Maps
Aerialis interfaces appswith its scheduler via an abstraction called an
interest map. An interest map is a set of tasks that an app would like
the drone fleet to complete. At runtime, apps submit their respective
interest maps to Aerialis, which merges them prior to allocating
tasks to drones.

Attribute Definition
location GPS coordinate (i.e., lat, lon, altitude)

task executable (e.g., Python code) to run on drone
duration estimated duration for task
interest bid (e.g., in dollars) for task

Table 2: Attributes of an interest map entry.



Toward aMarketplace for Aerial Computing Dronet ’21, June 24, 2021, Virtual, WI, USA

Attributes.An interest map is a set of tasks that an app would like
to complete. Table 2 lists the attributes of each task. A location
could be theGPS coordinate for an air quality or trafficmeasurement,
or the start location for a video along a waypath. The task attribute
specifies any code to execute on the drone (e.g., collect PM2.5
measurement, record/analyze video, or take control of the drone)
once the drone reaches the desired location. duration states
the estimated time to execute a task. Finally, each task also has an
associated interest, which corresponds to the app’s dollar-value
for that particular task.1 This attribute allows an app to encode a
relative preference between tasks, which Aerialis uses to prioritize
tasks when the platform is resource-constrained.

Expressiveness. Interest maps are suitable abstractions for the
apps described in Table 1. For instance, each request in the package
delivery app corresponds to an interest map entry. Each interest
map entry in the traffic patrol app would specify a waypath (i.e.,
a sequence of locations to visit in order to complete the tracking
task); Aerialis’s scheduler only requires the start/end location and
the (estimated) duration of the task. Package delivery apps could
specify additional attributes like delivery time windows. The street
parking appmay use complexmodels to estimate traffic uncertainty;
however, since Aerialis supports frequent replanning, this app could
simply recompute new interest maps as needed. §4.2 describes our
implementation of three urban sensing apps, and further highlights
the versatility of interest maps.

Merging interestmaps.An interest map is a powerful abstraction
for multiplexing apps because it is lightweight and composable. In
order to multiplex apps, Aerialis merges interest maps, by simply
combining the sets of interest map entries submitted by all apps (see
Fig. 1). It combines coincident task entries (i.e., identical locations)
into a super task interest map entry, where the interest attribute is
the sum of the bids specified by the individual tasks; drones execute
tasks at such locations in parallel (unless multiple tasks require the
same sensor). In composing themerged interestmap,Aerialis also ap-
plies heuristics, such as clustering nearby tasks and collapsing them
into a single location (e.g., centroid of the cluster),where the radius of
the cluster is within the error tolerance of the subscribing apps. This
pre-processing step helps boost the efficiency of the platform: we
observed overmany flights andweather conditions that decelerating
to, hovering at, and accelerating from each distinct location drains
the battery more rapidly than cruising at a constant speed.

3.2 Implementation
Fig. 1 provides anoverviewonanAerialis deployment.Aerialis’s run-
time gathers interest maps from its apps, computes a schedule, and
dispatches the drones. We implement Aerialis in Go; our software
consists of three components, shown in Fig. 2: (i) Aerialis runtime,
which is deployed on a cloud server, aggregates app requests, and
computes a schedule; (ii) a dashboard exposing flight statistics, drone
health, and app progress for the platform operator; and (iii) an on-
board software stack that interfaceswith the drone’s flight controller
and sensors.

1Computing monetary value for a task is non-trivial; we explore some options in §4.2
and §5.

Aerialis  
Runtime

View dashboard on laptop.

Track drone health and 
populate dashboard.

Emergency  
manual control.

RPi

LTE

DJI F450 
Frame

GoPro

GPS

N3 Flight 
Controller

PM2.5 
Sensor

LTE

LTE / WiFi

DJI 
radio

drone status

task assignment

Drone Hardware

Operator

Figure 2: Aerialis runs on a cloud server, which (i) communicates with DJI
F450 drones via a cellular link and (ii) updates drone health and app progress
to a web dashboard.

Drone hardware. Our drones use the DJI F450 frame [2]; we cus-
tomize theonboardelectronics to supportmore sensors andprogram-
ming flexibility. We mount a Raspberry Pi as our onboard computer,
a PM2.5 sensor to gather air qualitymeasurements, aGoPro to collect
aerial videos, and an LTE dongle to communicate with the Aerialis
runtime process. We use the DJI N3 flight controller, which comes
with a C library for low-level flight control. Aerialis automates drone
orchestration by issuing commands to the flight controller. However,
we implement two failsafes to intervene in emergency situations:

• The drone regularly pings an iPerf server to probe the
available cellular bandwidth.When themeasured throughput
is below 1Mbps, the flight controller disengages fromAerialis
and allows the operator to regain manual control.

• When the drone battery is low (i.e., < 10% remaining), the
flight controller disengages from Aerialis, and automatically
navigates the drone back to its takeoff site.

Whenever a drone “leaves”, Aerialis simply adapts its schedule to
use the remaining drones. Similarly, when new drones become
available, Aerialis simply recomputes schedules incorporating the
surge in available resources. Aerialis’s dashboard describes the
real-time status of each drone (Fig. 2), so an operator can take over
when a drone’s flight controller triggers manual control.

Aerialis runtime. Aerialis relies on a centralized scheduling
framework that orchestrates the drone fleet in unison. It aggregates
the interest maps submitted by each app and computes a schedule
according to its marketplace policy (examples described in §4.2).
Aerialis computes schedules for a fixed time horizon based on
resource constraints (e.g., one 15-minute round-trip flight) and
specifies an ordered list of waypoints (and tasks) for each drone to
complete. To compute these schedules,Aerialis uses standard vehicle
routing solvers that maximize a weighted sum of fulfilled tasks.

We deploy the Aerialis runtime module (Fig. 1) on an Amazon
EC2 t2.micro instance. At boot time, each drone automatically
establishes an HTTP connection with this server (via LTE), which
allows (i) the server to notify the drone of its next assigned task and
(ii) the drone to update the server of its health (i.e., battery status,
location, current task) every second. Additionally, the server hosts
a web dashboard to allow an operator to monitor drone health and
app progress; Fig. 2 shows a snapshot from this dashboard.

Aerial computing apps.As described in §3.1, sensing apps inter-
face with Aerialis via interest maps. App developers can customize
their implementations to leverage complex modeling techniques



Dronet ’21, June 24, 2021, Virtual, WI, USA Balasingam, Gopalakrishnan, Mittal, et al.

Ground Truth 
PM2.5 Measurements

Initial Interest Map 
(exploration)

Interest Map 
(after GP fit)

R
eq

ue
st

ed
 ta

sk
  

(e
qu

al
 in

te
re

st
)

Figure 3: Snapshots from our implementation of an air quality mapping
applications in Aerialis. This app uses a Gaussian Process to navigate the
tradeoff between exploring the region of interest and collecting more useful
measurements in the vicinity of the plume.

(examples in §4.1) that interpret any gathered and decide on the next
set of tasks to request of Aerialis. Apps run as standalone processes
and simply post interestmap updates to theAerialis runtime process.

4 AMARKETPLACE FORURBAN SENSING
We evaluate Aerialis on three urban sensing apps deployed in Cam-
bridge, MA. Fig. 1 overlays the approximate sensing locations for
each app on a map, and Table 3 summarizes their characteristics. In
§4.1, we describe howwe implemented each app atop Aerialis, and
sharesome insights fromdatawegatheredonthefield. §4.2quantifies
the performance of Aerialis under different marketplace objectives.
We tested our implementation of Aerialis using a fleet of 2 drones.
However, to systematically compare app performance under differ-
ent marketplace policies (§4.2), we also collect ground-truth traces
for each app and evaluate Aerialis with a trace-driven emulation.

App # of Tasks Task time Update Logic
AQI 40 20 sec with time

Traffic 11 30 sec with time and meas.
iPerf 100 10 sec every meas. cycle

Table 3: Characteristics of our three urban sensing apps.

4.1 Sensing Apps
Monitoring air quality. The AQI App seeks to estimate the
geographical dispersion of a smoke plume quickly. However,
since resource constraints are stringent and the app pays for each
measurement, a simple grid search over the entire domain of
interest would be expensive and inefficient. Atmospheric chemists
approximate the dispersion of a plume using a Gaussian Plume
Model [13]. Our app applies this model by using a Gaussian Process
(GP) [10] with a Radial-Basis Function kernel; the GP estimates the
plume PM2.5 concentration at each query location as a Gaussian
distribution𝐺 ∼ (𝜇,𝜎), with mean 𝜇 and standard deviation 𝜎 . Fig. 3
shows the PM2.5 concentration of a real plume that we measured
near a freeway ramp during rush hour.

We derive relative preferences amongst sensing locations from
the output of a GP model, and encode them via interest maps.
Upon initialization, the app submits an interest map with sensing
locations spaced out evenly over a grid (see “Initial Interest Map” in
Fig. 3). To navigate the exploration-exploitation tradeoff, we model
this search as a multi-armed bandit problem. For each potential
measurement location, we set the interest proportional to 𝜇+2𝜎 ;
this allows the app to express that it would like to favor exploration
(i.e., greater preference on more uncertain locations), but still be

AB

C
D

E

F

G H I

J

K

100 meter

Location A, green traffic light Location A, red traffic light

8 m/s 0 m/s

time = 𝒕𝟏 time = 𝒕𝟐
𝒕𝟏 𝒕𝟐

Figure 4:We collected traffic videos using drones at 11 locations labelled𝐴-𝐾
(left). Our car detection and tracking algorithm computes average speeds,
which show cyclic patterns near intersections depending on the state of the
traffic light.

guided in the direction of high expected PM2.5 concentration (i.e.,
preference toward high 𝜇)2. Initially, 𝜎 is high everywhere, and the
app prefers to explore. Fig. 3 shows the GP fit after several initial
samples are gathered; notice that the interest starts to drift toward
the fringes of the plume. Aerialis thus provides a simple interface
for sensing apps to leverage a complex model (privately), while still
allowing apps to express fine-grained preferences amongst tasks.

Sensing road traffic. The Traffic Appmeasures traffic congestion
using aerial videos from 11 sites in a neighborhood, as shown in the
map in Fig. 4. It estimates the average vehicular speeds through a sim-
ple video analytics pipeline, where it (i) identifies cars using a YOLO
object detector [11], (ii) tracks each car using a Kernel Correlation
Filter, and (iii) correlates identities of cars across frames based on a
nearest-neighbor heuristic. Fig. 4 shows examples of the trajectories
computed by the app. Aerial traffic monitoring offers the potential
to obtain accurate, real-time data at a finer granularity (e.g., lane-
level speed, blocked bike path, etc.) than possible with conventional
GPS-trace based approaches. For example, in our experiments,weob-
served that when the traffic light at the edge of location𝐴 is red, cars
tend to build up over the entire bridge (as confirmed by ourmeasure-
ments at location𝐵), and spill over to thenext traffic light. Suchobser-
vations offer valuable insights to city planners and traffic engineers.

If sufficient drones are available (and the app developer was will-
ing to pay for continuous drone time), Aerialis can schedule a drone
over each of the desired locations. However, in practice, the appmay
want to prioritize certain measurement locations. Two competing
factors govern this choice: (i) drones should prioritize and visit
locations where the measurements are stale (i.e., last measured 10
minutes ago), and (ii) drones shouldvisit locationswhichhave shown
high uncertainty 𝜎 in speeds (e.g., near intersections). Thus, the app
uses the following rule to compute the interest 𝐼𝑙 at location 𝑙 :

𝐼𝑙 ∝
{
102 , if ≤ 3meas. at 𝑙 in last 10 min
𝜎 [Meas. at 𝑙 in last 10 min] , otherwise

The app then recomputes an interest map whenever there is a new
measurement, or when old measurements time out.

Profiling cellular throughput. The iPerf App aims to profile
cellular throughput over an urban area; this data is valuable for
autonomous drone operations that require robust aerial 5G commu-
nications. Fig. 5 shows some highlights from our measurements on
2This is known as the Upper Confidence Bound in the multi-armed bandit problem.



Toward aMarketplace for Aerial Computing Dronet ’21, June 24, 2021, Virtual, WI, USA

Evening 
~ 5 P.M.

Morning 
~ 11 A.M.

60 meters 75 meters 100 meters

Figure 5: We implemented an app to profile cellular throughput in an ur-
ban area, in order to determine the viability of cellular communications to
coordinate a shared fleet of drones.

Max Revenue

1 3 5 10 15 20 25 30

0

10

20

# of drones

R
ev

en
ue

 ($
/m

in
)

Max Revenue

1 3 5 10 15 20 25 30

0

10

20

# of drones

Th
ro

ug
hp

ut
 (t

as
ks

/m
in

)

Tokens ($30)

1 3 5 10 15 20 25 30

0

5

10

15

# of drones

R
ev

en
ue

 ($
/m

in
)

Tokens ($30)

1 3 5 10 15 20 25 30

0

10

20

# of drones

Th
ro

ug
hp

ut
 (t

as
ks

/m
in

)

0

1

2

3

4

Max
Revenue

Tokenized
Payments

Av
g.

 T
pu

t
(ta

sk
s 

/ m
in

)
AQI Traffic iPerf

0

1

2

3

4

Max
Revenue

Tokenized
Payments

Av
g.

 T
pu

t
(ta

sk
s 

/ m
in

)

AQI Traffic iPerf

0

1

2

3

4

Max
Revenue

Tokenized
Payments

Av
g.

 T
pu

t
(ta

sk
s 

/ m
in

)

AQI Traffic iPerf

Max Revenue Tokens ($30 / app / 5-min round)

fairunfair

Figure 6: Aerialis can enforce different marketplace policies to control an
app’s contribution to the marketplace revenue.

the field, gatherednear theCharles River at different times of day and
at different altitudes. Interestingly,we found that average bandwidth
was low (< 5 Mbps) during the 5 P.M. rush hour, likely because more
cars are present on the roads. We also observed that, at altitudes
of 60-75 meters, cellular throughput was sufficient for practical use
cases; however, availability became more spotty at 100 meters.

While the iPerf app is not time-sensitive, it would like measure-
ments from significantly more locations than the Traffic or AQI
apps. Since the iPerf app is indifferent to location, it submits an
interest map with identical interest values at all locations. In
order to build a profile of bandwidth over time, this app resubmits
the interest map after completing each cycle of 100 iPerf tasks.

4.2 Marketplace Policies
As described in §3, the interest map allows Aerialis to enforce
different marketplace policies. In this section, we show howAerialis
schedules the three urban sensing apps described in §4.1 under
two policies. We configure Aerialis to re-compute schedules every
5 minutes (so that it is sufficiently reactive to the apps), while
returning to its takeoff location every 15 minutes to recharge.
We also simulate drone fleets of different sizes. We consider two
evaluation metrics: (i) revenue generated by Aerialis (in dollars
earned per min) and (ii) throughput (in tasks completed per min).
Fig. 6 summarizes our results.

Maximizing revenue. First, we consider a marketplace that
maximizes total revenue. We assume for simplicity that each
app places a baseline bid of $1 for each sensing task, with slight
variations—proportional to their interest update rules—to capture
sensing preferences. Fig. 6 shows Aerialis consistently favors the
iPerf app, since each iPerf measurement is easy to gather (i.e.,
10 seconds/task). By contrast, the Traffic app only has 11 tasks,
and each task is more expensive to complete, so Aerialis does not
prioritize it and instead fulfills its tasks when it completes nearby

Aerialis Marketplace 
(arbiter)

Drone Providers 
(sellers)

Pricing Mechanism

Compensate  
for infrastructure 

(i.e., drone 
battery time)

Charge for 
completed tasks, 
while amortizing 

when possible for 
nearby tasks

Interest maps Drones 

Marketplace 
Objectives

Optimize for 
fairness, 

revenue, etc.
Ensure incentive 

compatibility

Apps 
(buyers)

Figure 7: Aerialis can be extended to build out an aerial computing market-
place, with new platform objectives and pricing mechanisms.

iPerf tasks. In this example, we assume that all apps value each task
at roughly $1; however, if one app places a significantly higher bid,
Aerialis would prioritize it to maximize revenue.

Issuing tokens. To provide apps a more equitable share of drone
resources, we can allocate tokens (artificial currency) to apps, in
order to constrain each app’s bidding budget. This helpsmitigate the
effects of a “richer” app having amonopoly on drone resources. Fig. 6
shows the marketplace throughput and revenue when each app is
allotted a pool of tokens worth $30 in every 5-minute round. We
find that when Aerialis enforces this policy, the Traffic and AQI apps
begin to occupy larger shares of both marketplace throughput and
revenue. Since theTrafficapponlyhas atmost 11 sensing tasks at any
given time, each of its tasks has a higher value than a single iPerf task.

Note that this token scheme does not necessarily prioritize apps
with fewer tasks; instead, it gives the same “purchasing power” to
all apps. So, an app with more tasks (e.g., iPerf) can choose to put
its tokens on a smaller subset of high-priority tasks in order to be
competitive in obtaining drone time. Additionally, unused tokens
can roll over to future scheduling intervals.

Expandingdronefleet.Thebenefitsprovidedby interestmapsand
Aerialis’s support for differentmarketplace policies aremost evident
when the shared drone platform is resource-constrained (i.e., more
tasks than drones can fulfill). Fig. 6 indicates that both revenue and
throughput saturate as the drone fleet gets larger (starting around
20 drones), because the platform is no longer resource-constrained.

5 DISCUSSION
Fig. 7 lays out how Aerialis could be extended to build out a mar-
ketplace for aerial computing. In this section, we elaborate on some
of our limiting assumptions and outline some ongoing and future
work.

Marketplace objectives. Our evaluation (§4.2) covers scenarios
where the overall objective was to maximize the revenue collected.
However, as a marketplace arbiter, Aerialis may also want to satisfy
other objectives. For instance, Mobius [5] proposes a scheduling
algorithm for mobility platforms with the objective of providing
provably good fairness over time.We are interested in supporting
Mobius and other marketplace objectives, such as load balancing
across vehicles and app service-level agreements.

Value estimation. This paper shows how apps can express relative
preferences amongst their tasks, but assumes that apps know how



Dronet ’21, June 24, 2021, Virtual, WI, USA Balasingam, Gopalakrishnan, Mittal, et al.

to place an absolute monetary value on each task. However, just
like the value of popular services such as cloud computing and
ad auctions were only discovered with time, we believe that, as an
aerial data marketplace matures, apps will be able to better estimate
the value of a task.

Truthful bidding. While we assume for this paper that apps
using Aerialis bid truthfully, in practice, they may be strategic in
reporting their preferences. For example, after discovering that
most drones are far away from a desired location, an app could
first place a very high bid (e.g., $1000) near the region of interest,
forcing at least one drone to move toward that location (assuming
a revenue-maximizing scheduler). Then, just before that task
is serviced, it could lower its bid on that task (e.g., 1¢), and the
scheduler will still likely fulfill the task for a much lower price. A
simple fix to this problem is to charge an app for a task once it is
added to a schedule, instead of when the task gets fulfilled. However,
this may hurt truthful apps that are volatile and cancel/change
requests after gaining initial knowledge about the environment (e.g.,
traffic sensing or air pollution apps in §4.1). Thus, Aerialis would
benefit from a pricing mechanism that incentivizes truthful bidding.

Pricing schemes. Currently, Aerialis simply charges each app the
exact amount it bids. As a marketplace arbiter, Aerialis should also
be able discount its price to account for the benefit from spatial
multiplexing of nearby tasks from different apps (i.e., only charge
for the amortized flight time). Future work includes developing
heuristics to compute amortized cost. This is nontrivial because
traveling 6 minutes to app𝐴 and then 3 minutes to app 𝐵 does not
mean that app𝐴 should be charged 2×more than app 𝐵, since app
𝐴 is responsible for the short travel to app 𝐵.

Security. Data privacy is a concern in any drones-as-a-service
deployment. AnDrone [15] provides a method to containerize
onboard sensor logic, but does not conceal the location of the drone.
However, in this marketplace setting, malicious apps could flood the
systemwith thousands of cheap (e.g., 1¢) tasks spread everywhere
to draw inferences about the spatiotemporal demand patterns and
bidding strategies of other apps using the platform.We would like
to extend Aerialis to be robust to these settings.

Heterogeneous drone fleets.At city-scale or larger, drone fleets
may be heterogenous in their flight and sensing capabilities. For
instance, only some operators may have drones equipped with AQI
sensors, while others may only have cameras. Similarly, a fleet could
consist of drones with different flight (battery) times. We hope to en-
hance Aerialis’s capabilities by integrating more sophisticated VRP
solvers [14] to handle constraints imposed by heterogeneous fleets.

Scope of interest maps. Interest maps cannot encode continuous
monitoring tasks or support combinatorial constraints (e.g.,
complete any 2 tasks from a set of 4 tasks).Wewould like to leverage
complementary work from general-purpose drone programming
frameworks [7, 9] to expose a broader set of primitives to apps.

6 CONCLUSION
This paper proposed Aerialis, an aerial computing marketplace,
where apps can complete aerial tasks on demand and providers offer

up their drone computing services.We characterized the diverse spa-
tiotemporal requirements of aerial computing apps, and identified
the resulting scheduling challenges when amarketplacemultiplexes
several apps on the same fleet of drones. We implemented three real
urban sensing apps atop Aerialis, demonstrated that it can support
different marketplace policies, and proposed methods improve the
flexibility and robustness of Aerialis. We hope to generalize the
ideas that underpin Aerialis to build out a marketplace for acquiring
data using mobility platforms.

ACKNOWLEDGMENTS
We thank Ahmed Saeed, Venkat Arun, and Akila Saravanan for help-
ful discussions and for assisting with data collection. We thank the
anonymous MobiSys reviewers for their thoughtful feedback. This
research was supported in part by the NSF under Graduate Research
Fellowship grant #2389237. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Sci-
ence Foundation. The NASA University Leadership Initiative (grant
#80NSSC20M0163) provided funds to assist the authors with their
research, but this article solely reflects the opinions and conclusions
of its authors and not any NASA entity.

REFERENCES
[1] https://www.parrot.com/us/drones.
[2] https://www.dji.com/.
[3] https://www.ee.ucla.edu/mapping-air-pollution-from-a-drone/.
[4] http://datafromsky.com/news/smart-parking-using-drones/.
[5] A. Balasingam, K. Gopalakrishnan, R. Mittal, V. Arun, A. Saeed, M. Alizadeh,

H. Balakrishnan, and H. Balakrishnan. Throughput-fairness tradeoffs in mobility
platforms. https://www.dropbox.com/s/w3uzfzbiwkmilku/mobius-tr.pdf, 2021.

[6] A. Dhekne, A. Chakraborty, K. Sundaresan, and S. Rangarajan. Trackio: Tracking
first responders inside-out. In 16th USENIX Symposium on Networked Systems
Design and Implementation, NSDI ’19. USENIX Association, 2019.

[7] S. He, F. Bastani, A. Balasingam, K. Gopalakrishnan, Z. Jiang, M. Alizadeh,
H. Balakrishnan, M. J. Cafarella, T. Kraska, and S. Madden. Beecluster: drone
orchestration via predictive optimization. InMobiSys, pages 299–311, 2020.

[8] W. Mao, Z. Zhang, L. Qiu, J. He, Y. Cui, and S. Yun. Indoor follow me drone.
In Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’17. ACM, 2017.

[9] L. Mottola, M. Moretta, K. Whitehouse, and C. Ghezzi. Team-level programming
of drone sensor networks. In Proceedings of the 12th ACMConference on Embedded
Network Sensor Systems, SenSys ’14. ACM, 2014.

[10] C. E. Rasmussen. Gaussian processes in machine learning. In Summer School on
Machine Learning. Springer, 2003.

[11] J. Redmon. Darknet: Open source neural networks in c. http :
//pjreddie.com/darknet/, 2013–2016.

[12] C. Suduwella, A. Amarasinghe, L. Niroshan, C. Elvitigala, K. De Zoysa, and
C. Keppetiyagama. Identifying mosquito breeding sites via drone images. In
Proceedings of the 3rd Workshop on Micro Aerial Vehicle Networks, Systems, and
Applications, DroNet ’17. ACM, 2017.

[13] O. G. Sutton. A theory of eddy diffusion in the atmosphere. Proceedings of the
royal society of London. Series A, Containing papers of a mathematical and physical
character, 1932.

[14] P. Toth and D. Vigo. The vehicle routing problem. SIAM, 2002.
[15] A. Van’t Hof and J. Nieh. Androne: Virtual drone computing in the cloud. In

Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ’19. ACM, 2019.
[16] D. Vasisht, Z. Kapetanovic, J.-h. Won, X. Jin, R. Chandra, A. Kapoor, S. N. Sinha,

M. Sudarshan, and S. Stratman. Farmbeats: An iot platform for data-driven
agriculture. In Proceedings of the 14th USENIX Conference on Networked Systems
Design and Implementation, 2017.

https://www.parrot.com/us/drones
https://www.dji.com/
https://www.ee.ucla.edu/mapping-air-pollution-from-a-drone/
http://datafromsky.com/news/smart-parking-using-drones/
https://www.dropbox.com/s/w3uzfzbiwkmilku/mobius-tr.pdf
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

	Abstract
	1 Introduction
	2 Challenges and Requirements
	3 Design of Aerialis
	3.1 Interest Maps
	3.2 Implementation

	4 A Marketplace for Urban Sensing
	4.1 Sensing Apps
	4.2 Marketplace Policies

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

