
Detecting if LTE is the Bottleneck with BurstTracker

Arjun Balasingam⋆, Manu Bansal⋆, Rakesh Misra†, Kanthi Nagaraj⋆,
Rahul Tandra†, Sachin Katti⋆, Aaron Schulman∞

⋆Stanford University †Uhana Inc. ∞UC San Diego

ABSTRACT

We present BurstTracker, the first tool that developers can
use to detect if the LTE downlink is the bottleneck for their
applications. BurstTracker is driven by our discovery that
the proprietary LTE downlink schedulers running on LTE
base stations allocate resources to users in a way that reveals
if a user’s downlink queue runs empty during a download.
We demonstrate that BurstTracker works across Tier-1

cellular providers and across a variety of network conditions.
We also present a case study that shows how application
developers can use this tool in practice. Surprisingly, with
BurstTracker, we find that the LTE downlink may not be the
bottleneck for video streaming on several Tier-1 providers,
even during peak hours at busy locations. Rather, transparent
TCP middleboxes deployed by these providers lead to down-
link underutilization, because they force Slow-Start Restart.
With a simple workaround, we improve video streaming
bitrate on busy LTE links by 35%.

CCS CONCEPTS

• Networks → Application layer protocols; Network

measurement; Mobile networks.

KEYWORDS

Cellular; Bottleneck Detection; Scheduling; Middlebox
ACM Reference Format:

Arjun Balasingam, Manu Bansal, Rakesh Misra, Kanthi Nagaraj,
Rahul Tandra, Sachin Katti, Aaron Schulman. 2019. Detecting if LTE
is the Bottleneck with BurstTracker. In The 25th Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCom
’19), October 21–25, 2019, Los Cabos, Mexico. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3300061.3300140

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6169-9/19/10. . . $15.00
https://doi.org/10.1145/3300061.3300140

1 INTRODUCTION

When developers work on improving the performance of
an application, they need to know where the bottlenecks
are. For mobile applications, one of the key bottlenecks is
the cellular network, namely, the LTE downlink from the
base station to the user [12]. This is why the 3GPP1 requires
base stations to collect a metric that captures how often the
downlink is the bottleneck for a user [1]. Unfortunately, this
metric is only available for internal use by providers; it has
never been available to developers2.
In this paper, we present BurstTracker, a tool for mo-

bile application developers to detect if the bottleneck is the
LTE downlink—and thus out of the developers’ control—or
somewhere else that could be within the developers’ control.
BurstTracker identifies bursts within a prolonged transfer
on the LTE downlink. Bursts are contiguous periods of a
transfer during which the user’s queue at the base station is
nonempty; therefore, when an application has a burst, the
downlink is the bottleneck.

The primary insight behind BurstTracker is the following:
the LTE downlink scheduling algorithms running on base
stations [4] allocate radio resources to users in a pattern
that reveals when the user’s downlink queue at the base
station is nonempty. In each downlink time slot, schedulers
prefer to allocate a large number of downlink resources to
a small number of users. Therefore, a user can determine
that its queue at the base station has run empty when the
scheduler only allocates a small number of resources (just
enough to empty out what remains in the user’s queue).
In Section 3.2.3, we show that this behavior exists across
providers and network conditions.
BurstTracker is a client-side tool: it finds bursts in local

traces of a user’s downlink resource allocations (collected by
MobileInsight or QXDM [25, 29, 32]). We demonstrate that
BurstTracker can accurately detect the duration of bottle-
neck periods during a transfer with a median error of 7% by
comparing against ground truth from a test base station.
To evaluate how useful BurstTracker is in practice, we

investigated if LTE is the bottleneck for video streaming
applications.We chose to study video streaming performance

1The 3rd Generation Partnership Project (3GPP) is the standards organization
behind LTE (4G) and its successor NR (5G).
2More in Section 2.2.

https://doi.org/10.1145/3300061.3300140
https://doi.org/10.1145/3300061.3300140

because it is an area that has received significant attention
recently [10, 26, 34, 36–38]. In essence, we wanted to see
if BurstTracker can identify a previously unknown issue
affecting video streaming performance on LTE networks.
Surprisingly, BurstTracker indicated that often the LTE

downlink was not the bottleneck, even when the link was
congested. Instead, we found that three Tier-1 U.S. providers
(AT&T, Verizon, and T-Mobile) appear to be operating trans-
parent split-TCP middleboxes that impact the performance
of video streaming. Specifically, the middleboxes of two
providers (AT&T and Verizon) appear to be the bottleneck, by
forcing Slow-Start to occur frequently during video stream-
ing. This phenomenon is known as Slow-Start Restart (SSR) [2].
SSR is known to cause video streaming applications to

underestimate available bandwidth on congested links [27].
In addition, we demonstrate that SSR forces the application
to enter a negative feedback loop that leads to persistent
resource underutilization. With only a simple workaround
to disable SSR, we observed video streaming bitrate improve
by up to 35%, even on busy LTE links.

In summary, we make the following contributions:

(1) We observe that the scheduling patterns of LTE base
stations reveal the status of each user’s downlink queue
(Section 3). We also demonstrate that these scheduling
patterns are not specific to a base station’s operator
(Verizon, AT&T, and T-Mobile) or traffic characteristics
(unloaded and busy).

(2) We describe an algorithm for determining when the
LTE link is the bottleneck, and we use it to implement
a client-side LTE bottleneck estimator called Burst-
Tracker (Section 3). We demonstrate that BurstTracker
can estimate the time periods that the LTE downlink
is the bottleneck with 93% accuracy.

(3) With BurstTracker, we discovered that many Tier-1
providers in the U.S. appear to operate middleboxes
that perform SSR on HTTP and HTTPS flows (Sec-
tions 4 & 5).

(4) We observed that SSR causes video streaming applica-
tions to underutilize the LTE downlink due to a nega-
tive feedback loop in bitrate selection (Section 5).

2 MOTIVATION AND REQUIREMENTS

The inspiration for this work came from a surprising obser-
vation we made while streaming video on a smartphone (LG
G3) connected to an LTE base station in a busy downtown
location. We instrumented Google’s ExoPlayer [13] to re-
port the downlink throughput measured across each video
segment while streaming a two-minute video. In this envi-
ronment, the average throughput measured by ExoPlayer

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

0

2

4

6

0 50 100 150 200
time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

speed test
average

speed test
average

video streaming

Figure 1: On a busy LTE network, we observed that

a video stream had an average throughput of only

3.8 Mbps, while speed tests before and after averaged

5.4 and 5.2 Mbps

was 3.8 Mbps3. Fifteen seconds4 before and after the video,
we ran Ookla speed tests [28], and they reported 5.4 Mbps
and 5.2 Mbps respectively (Figure 1).
This disparity in video and speed test throughputs left

us wondering: if application developers are faced with this
scenario, can they conclusively say whether or not the LTE
downlink is the bottleneck for their application? In the above
experiment, it is possible that the LTE downlink was indeed
the bottleneck for ExoPlayer: there might have been a tran-
sient rise in congestion and/or drop in signal quality during
the video session, or the speed test might have been given
special treatment as was reported to occur in T-Mobile’s net-
work in 2014 [6]. Conversely, it is also possible that the LTE
downlink was not the bottleneck: instead, the video server
might have been congested, or middleboxes in the cellular
provider’s core network might have treated video differently
than speed test (as was described by Kakhki et al. [21]).

Knowing whether or not the cellular downlink is the bot-
tleneck is of paramount importance to mobile application de-
velopers; it guides them to where they should focus their de-
velopment efforts. Like we described above, the fact that the
application throughput is lower than the speed test through-
put does not conclusively reveal if the cellular downlink is
the bottleneck.

2.1 Requirement: knowing the status of

per-device queues at the base station

Conclusively determining if the cellular downlink is the bot-
tleneck for a user requires knowing if the downlink queue
for the user5 at the cellular base station remains nonempty
during an application data transfer (e.g., downloading a video
segment). Therefore, application developers need a metric
that indicates how often their users’ queues at the base stations
are nonempty. The 3GPP specifications for LTE describe a
3This does not include any idle time between two consecutive segments.
4Cellular radio bearers usually time out after 10 seconds, so this pause
ensures that a new radio bearer is used for each application instance.
5LTE base stations maintain a separate queue per user.

metric that captures this information called throughput
time [1]. LTE base station vendors typically implement this
metric and make it available to providers.

2.1.1 Background: throughput time.

The throughput time of an application transfer is the num-
ber of milliseconds6 where the queue for the user at the
base station is nonempty for the entirety of each millisecond.
More precisely, as illustrated in Figure 2, for every burst of
data that arrives in a user’s queue starting at A○— the mil-
lisecond where the data arrives at the base station—the base
station computes the throughput time of the burst as the
time from the start of the millisecond where the burst is first
transmitted B○ to (but not including) the millisecond where
the queue runs empty C○. If the downlink is not the bottle-
neck for the user, its queue will frequently run empty during
a transfer; in other words, there will be multiple bursts of
data for the same application-layer transfer. In this case, the
Throughput time of the entire application transfer is the
sum of throughput times of the individual bursts.
For the rest of the paper, we refer to the following states

of a user’s queue at the base station (depicted in Figure 2):
Activemillisecond: Queue is nonempty and traffic is be-

ing transmitted to the user.
Contention millisecond: Queue is nonempty but traffic

is not transmitted to the user because other users were
assigned the resources.

Last Activemillisecond: Queue is nonempty at the start,
but the remaining traffic is transmitted to the user and
the queue runs empty.

Underflow millisecond: Queue is empty.
In this terminology, Throughput Time is the count of Ac-

tive and Contention milliseconds in a time window while
excluding all Last Active and Underflow milliseconds.

2.1.2 Throughput time reveals if LTE is the bottleneck.

If mobile application developers had access to the through-
put times corresponding to their application transfer time
windows, they can conclusively determine if the cellular
downlink is the bottleneck. Specifically, they can apply the
following rule: if throughput time closely matches the
application transfer time (i.e., if the transfer time window
largely consists of only Active and/or Contention mil-
liseconds), then the downlink is the bottleneck. On the other
hand, if Throughput Time is smaller than the application-
level transfer time (i.e., the transfer time window consists
of a significant number of Last Active and/or Underflow
milliseconds), then the downlink is not the bottleneck.
Moreover, when the cellular downlink is not the bottle-

neck, correlating fine-grained burst information (i.e., burst
boundaries and lengths) with application-level information,
6LTE schedules transmissions in one millisecond time intervals.

Traffic arrives to
empty user queue
A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(3 msec)

Throughput Time
[Burst 2]

(5 msec)

Throughput Time
[Burst 1]

(12 msec)
Total download time for video segment

Time
(msec)

First transmission to user

User queue runs empty

B

C

Traffic arrives again
to empty queue

D

E Download complete

Active msec Last Active msec Contention msec Underflow msec

User scheduled:

Queue empty at start:

Queue empty at end:

Count to throughput time:

*

*

*Contention msecs before
burst transmissions do not
count to Throughput Time

Figure 2:ThroughputTime is the total number of Ac-

tive and Contention milliseconds. It measures the

time during which a user’s queue at the base station is

nonempty.

can sometimes reveal exactly where the bottleneck is. We
demonstrate an instance of this in our case study in Section 4.

It is important to note that queues at base stations are per-
user, not per-application; therefore, Throughput Time is
easiest to interpret when users are only running one network-
intensive application at a time. We expect this to be the
common case for mobile devices. Although, even if there
are multiple applications performing simultaneous transfers,
Throughput Time can still reveal if the downlink is not the
bottleneck. However, if the downlink is the bottleneck, the
developer will not be able to determine if the downlinkwould
still be a bottleneck if only one application were running.

2.2 Reality: the status of base station

queues is not available to developers

Base station vendorsmake throughput timemeasurements
available only to cellular providers in order to help them
debug performance of their base stations on the field. Unfor-
tunately, these measurements are not exposed to developers
as it may potentially reveal the proprietary scheduling algo-
rithms of the base stations. With device-based debugging
tools [25, 29], an application developer can access logs from
a user’s modem to determine which milliseconds the device
was scheduled to receive traffic (Active milliseconds). How-
ever, if a user was not scheduled in a millisecond, the devel-
oper does not know whether it was because its queue at the
base station ran empty (Underflowmillisecond), or because
it simply lost its turn to other competing users (Contention

millisecond). As a result, application developers today can-
not disambiguate a bottleneck due to downlink congestion
(the downlink is the bottleneck) from a bottleneck elsewhere
in the network (the downlink is not the bottleneck).

3 ESTIMATING THROUGHPUT TIME

In this section, we describe BurstTracker, the first tool for
estimating Throughput Time with only client-side data,
making it possible for anyone, including application devel-
opers, to know if a mobile application’s performance is bot-
tlenecked at the base station. We start by discussing the
challenges that make it difficult to determine if the LTE
downlink is a bottleneck, with only local information. Then
we describe how cellular traces collected locally at a device
have hidden information that enables developers to infer
whether or not a device’s queue at the base station is empty.
We then present the implementation of BurstTracker, and
evaluate its accuracy by comparing its Throughput Time
estimates with ground truth from a test base station.

3.1 Challenge: Classifying milliseconds

Recall that LTE downlink resources are scheduled in 1 mil-
lisecond transmission intervals. Also, recall that finding the
burst boundaries during an application-level transfer re-
quires knowledge of the device’s queue status at the base sta-
tion; specifically, the bursts correspond to the transmission
intervals during which the queue is continuously nonempty.
During consecutive scheduling intervals when a user is

receiving traffic (Active milliseconds), the user knows for
certain that its queue at the base station is nonempty, and
therefore it is receiving a burst. However, for intervals where
the user is not scheduled to receive traffic, a user cannot
determine when the burst has ended. The problem is that a
user does not know if their queue at the base station is empty
(Underflow millisecond), or if it is nonempty but another
user is being scheduled instead (Contention millisecond).
Differentiating between Underflow milliseconds and

Contention milliseconds requires knowledge of the sta-
tus of the user’s queue at the base station. Without being
able to distinguish between these categories, it is not possible
to compute Throughput Time, and therefore not possible
to determine if the network bottleneck is at the base station.

3.2 Opportunity: Scheduling patterns

The primary contribution of BurstTracker is an algorithm for
locally differentiating between a user’s Contention and Un-
derflow milliseconds. This algorithm works by analyzing
the information hidden in the patterns of resource assign-
ments in Active milliseconds. These patterns reveal how
a user can differentiate between the locally unobservable
Contention and Underflow milliseconds.

We developed this algorithm by observing the behavior
of downlink schedulers running on Tier-1 U.S. provider base
stations. Studying the behavior of LTE downlink schedulers
is an untapped, but exciting opportunity to learn about the
hidden state of a base station. Downlink scheduling is left
out of the LTE specification (similar to how rate control is
not specified in the WiFi specification [35]), leaving it up
to each vendor to create their own scheduling algorithm,
each of which may leak information about the state of a base
station.

Our hypothesis was that the downlink scheduler behaves
differently when it transitions from scheduling a user to not
scheduling it—depending on the status of the user’s queue
at the base station. Restated, we suspected there are patterns
in the way the base station’s downlink scheduler allocates
resources that reveal why the user was not scheduled to
receive traffic in milliseconds following an Active period.

3.2.1 Schedulers assign one user per millisecond.

To test this hypothesis, we setup an LG G3 smartphone to
run a persistent application-level transfer of a large file. The
smartphone was connected to a macro-base station of a
Tier-1 provider located in a populated metropolitan area.
Simultaneously, we captured a trace of the LTE downlink
control channel with an SDR-based LTE sniffer (similar to
LTEye [23]). The sniffer allowed us to observe the downlink
schedule across all users being served by a base station. Fig-
ure 3 shows an example of the downlink scheduler behavior
that we observed. Our persistent transfer user is “User 1”,
and another user on the base station that was performing a
competing transfer is “User 2”.
Surprisingly, in nearly every millisecond, the base sta-

tion allocates all of the radio resources to a single user. At
first blush, it appears like the downlink scheduler may be
overly simple: one of the unique features of LTE’s OFDMA
downlink is that multiple users can be scheduled in the same
millisecond. Yet, the macro-base station only appears to use
this feature for a small number of milliseconds.

3.2.2 The scheduler reveals the queue status.

The scheduler’s preference to assign all of the resources to
a single user makes it feasible to infer the state of a user’s
queue at the base station. Recall that a burst starts in the
first transmission millisecond during which a user has traffic
enqueued at the base station (Active millisecond). A burst
continues for subsequent milliseconds (Active and Con-
tention milliseconds) until the user’s queue runs empty
(Underflow millisecond). This means that the difficulty lies
in identifying the end of a burst, namely when the Under-
flow millisecond occurs.
A user knows how many resources it was allocated in

Active milliseconds. It is exactly this information—the num-
ber of resources scheduled during an Active millisecond

Time (msec)

R
es

ou
rc

e
B

lo
ck

 (R
B

)

Begin
End

BurstUser
1
Likely 1
2

Figure 3: The base station downlink scheduling pattern indicates the status of the user’s downlink queue at the

base station. In this experiment, user 1 is performing a persistent download of a large file, and user 2 is another

user being served by the same base station.

of a burst—that reveals the status of a user’s queue at the
base station. Recall that the base station prefers to assign all
resources in a millisecond to a single user. Therefore, in a
given millisecond, if the scheduler allocates the user fewer
than the maximum available resources and does not schedule
that user any resources in the next millisecond, it is likely
because there was not enough traffic enqueued at the base
station to completely fill all resources in that last millisecond.
So, the millisecond following the partially allocated Active
millisecond must be an Underflow millisecond, indicating
the end of a burst. Therefore, the other locally unobserv-
able milliseconds in the middle of a burst are Contention
milliseconds.
In summary, we discovered a way to infer the state of

a user’s burst by inferring Contention and Underflow
milliseconds using only that user’s own resource allocation
patterns (and without information from the base station and
other users connected to the network). BurstTracker’s rules
for identifying the beginning and end of a burst from a user’s
local trace of its resource allocations in Active milliseconds
are as follows:

• Begin burst: Active millisecond with more than 90%
of resources allocated to the user.

• End burst: Unobservable millisecond following an
Active millisecond with less than 40% of resources
allocated to the user.

For example, we marked the burst boundaries for the two
competing users in Figure 3. The downlink scheduler starts
both of User 2’s bursts by allocating 100% of the resources
to it, and ends both bursts by allocating less than 40% of
the resources. Our persistent transfer does not encounter an

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Fraction of scheduled RBs in a millisecond

C
um

ul
at

ive
 P

ro
ba

bi
lit

y Burst StartBurst End

Figure 4: Selecting burst start and end thresholds,

based on 60,000 msec of scheduling data. Bursts start

in milliseconds where the user is scheduled most of

the resources; bursts end in milliseconds where a user

is scheduled very few resources.

Underflow millisecond, so its burst continues through the
entire duration shown in Figure 37.
We selected burst start and end thresholds based on the

resource allocation patterns of the base stations we tested.
Figure 4 shows a CDF of the fraction of resources scheduled
to each user in each millisecond. We obtained this data with
an LTE sniffer, over a period of 1 minute (60,000 msecs)
within a peak usage hour of a Tier-1 provider’s macro-base
station in a downtown area. The distribution of fractional
resource assignment is bimodal: the scheduler prefers to

7All LTE sniffer traces can have errors. The yellow user is likely User 1
because its ID# is only one bit off of User 1’s. Additionally, the idle msecs are
unlikely to have actually been idle; they were likely control channel decode
failures. Bui et al. observed that the only open-source sniffer, LTEye, failed
to identify the correct user for up to 20% of the radio resources traced [7].

AT&T

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200

RBs in a millisecond

C
um

ul
at

ive
 P

ro
ba

bi
lit

y

busy TCP
busy UDP
idle TCP
idle UDP

1 Mbps

SISO MIMO Carrier Agg.

Verizon

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100 125

RBs in a millisecond

C
um

ul
at

ive
 P

ro
ba

bi
lit

y

busy TCP
busy UDP
idle TCP
idle UDP

1 Mbps

MIMO Carrier Agg.SISO

T–Mobile

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

RBs in a millisecond

C
um

ul
at

ive
 P

ro
ba

bi
lit

y

busy TCP
idle TCP

1 Mbps

SISO MIMO

Figure 5: LTE schedulers prefer to schedule slow transfers (1 Mbps) in bursts that consumemany radio resources.

assign users either most or very few of the resources to a
particular user in any given millisecond.
Since a burst can be denoted as a pair of start and end

milliseconds, a good choice of thresholds should account
for roughly similar fractions of Active milliseconds. In this
experiment, starting a burst at a millisecond during which a
user was scheduled > 90% of resources accounts for 35% of
Active milliseconds. Ending a burst at a millisecond during
which a user was scheduled < 40% of resources accounts for
40% of Activemilliseconds. The middle 25%may correspond
to decoding errors from the LTE sniffer, or the users’ traffic
might have only been enough to create a single-millisecond
burst. It may also be possible that in certain uncommon
conditions, the scheduler will split resources in a millisecond
between users. We later verify against ground-truth data that
the accuracy of BurstTracker is not sensitive to the precise
values of these thresholds.

3.2.3 Compatibility across providers and workloads.

Next, we set out to evaluate if BurstTracker can be applied
to all Tier-1 U.S. providers. Our algorithm is based on the
assumption that LTE downlink schedulers prefer to allocate a
large number of resources to a small number of users in each
millisecond. Therefore, we designed an experiment to test
if a provider exhibits this behavior, even across transport
protocols and load conditions. Our hypothesis was, if we
perform a slow transfer on the downlink, then the scheduler
will prefer to allocate a large number of resources over a
short duration, rather than a small number of resources over
a long duration.
To test this hypothesis, we initiated a series of five one

minute slow transfers (1 Mbps) over iperf from a server
on AWS to a client on a Google Pixel smartphone. During
these transfers, we collected the client’s downlink resource
allocation trace with MobileInsight [25]. We repeated this
for all three Tier-1 U.S. providers, in two locations with a
range of load conditions. The first location was a busy cell
at the “cell phone waiting lot” of a major airport during the
peak flight arrival time, and the second location was an idle
cell near an empty parking lot in the middle of the night
(1 a.m.). We also performed the transfers with both TCP and

UDP (except on T-Mobile because their NAT blocks UDP), to
see if the transport protocol affects the scheduler’s behavior.
Figure 5 shows the results of these experiments as CDFs

of the number of resources allocated to the client during the
milliseconds that they received traffic (Active milliseconds).
Interestingly, across all providers and protocols, even when
the cell is idle, schedulers schedule the slow transfers in large
bursts. On AT&T, more than 50% of these bursts consumed
100% of the Single-Input Single-Out (SISO) resources of the
base station. On Verizon and T-Mobile, more than 50% of the
idle cell bursts used so many resources that they were sent
on several Multiple Input Multiple Output (MIMO) channels.
For the loaded cells, the distribution of allocations in each
millisecond also tended to have more than 50% of scheduled
milliseconds consuming half or more of the SISO resources,
but also theywere utilizingMIMO aswell as Carrier Aggrega-
tion (bonding of multiple LTE channels). We did not observe
a significant difference between the scheduling behavior for
TCP and UDP traffic.

In summary, even for the slowest flows, the LTE down-
link schedulers of all Tier-1 U.S. providers prefer to assign
most resources to a user in each millisecond, confirming our
hypothesis. Different providers may require different thresh-
olds, but the thresholds we selected in the previous section
are already quite conservative—many resources are required
to start a burst, but only less than half are required to end it.

Why do downlink schedulers prefer bursts? Schedulers likely
prefer to allocate a small number of users in each millisecond
for two reasons. First, bursting saves spectrum resources by
reducing control channel overhead. Scheduling an additional
user in a timeslot increases the control channel overhead
because it requires transmitting additional control informa-
tion for each additional user [8]. Specifically, the LTE con-
trol channel occupies between 7% and 21% of the downlink
radio resources in each millisecond [23]. Second, bursting
improves a user device’s battery life by increasing the time a
user’s radio can enter a low-power mode. Specifically, trans-
mitting downlink traffic every millisecond in a fraction of the
available resources requires users to continuously operate
their radios with their receive circuitry powered on [16].

3.3 Implementation

BurstTracker’s implementation consists of a set of scripts
that estimate Throughput Time by analyzing an LTE mo-
dem’s MAC-layer traces. The code is open source and can
be found at https://github.com/arjunvb/bursttracker. In this
section, we describe the implementation in detail.

An LTE device’s modem has a debug interface that records
a trace of resource allocation during Active milliseconds.
BurstTracker uses the following information from each Ac-
tive millisecond in these traces: (a) the global index iden-
tifying the current millisecond at the base station, (b) the
number of radio resources allocated to the user in that mil-
lisecond, and (c) the timestamp in the device’s clock domain,
so base station scheduler information can be aligned in time
with the application-level transfer logs.

BurstTracker provides two modes of operation for applica-
tion developers. In the offline mode, an application developer
runs their application, and simultaneously collects the LTE
modem’s resource allocation traces with QXDM [29] or Mo-
bileInsight [25]. Then the developer runs BurstTracker with
these traces as input to identify if LTE is the bottleneck link,
and also to produce fine-grained estimates of the bandwidth
offered by the base station to the client device. The offline
implementation consists of a set of MATLAB and R scripts.
In the online mode, the application developer runs Burst-

Tracker in real-time, while running their application and
collecting MAC-layer traces with MobileInsight [25]8. This
can be useful during field tests, where the developer might be
interested in testing particular scenarios and environments
where their mobile application is underperforming. The on-
line implementation is a Python script that processes the
modem traces in real-time using the MobileInsight API.
If the developer uses QXDM to capture physical layer

logs, then the mobile device running the application must be
connected over USB to a host computer, which runs all of the
required software. If the developer uses MobileInsight, then
BurstTracker can run entirely the mobile device. However, a
current limitation of MobileInsight is that the mobile device
must be rooted, but this is unlikely to be a problem for an
application developer.

3.4 Evaluation

In this section, we evaluate how accurately BurstTracker is
able to locally estimate Throughput Time. First, we per-
form a rigorous evaluation of BurstTracker’s accuracy by
comparing its estimates of Throughput Time to ground
truth measurements from a test base station. We also eval-
uate BurstTracker’s estimates against a baseline estimator,
which takes as input the same Active milliseconds traces as

8The QXDM software interface does not expose real-time logs of MAC-layer
messages.

BurstTracker, but does not infer Contention milliseconds
when estimating Throughput Time.

We find that BurstTracker is able to accurately estimate
ground truth Throughput Time measurements from a test
base station under challenging conditions; this significantly
increases our confidence in the soundness of the algorithm.

Experiment setup. Weevaluate the accuracy of BurstTracker’s
ThroughputTime estimateswith two commonmobilework-
loads: (1) large file downloads, and (2) HTTP video streams.
Each of these high-throughput workloads will put different
aspects of BurstTracker to the test. A 20 MB File download
will produce one large burst that will only end when the
download ends. This workload tests if BurstTracker ends
bursts too early, especially when there is congestion. A 2 min
DASH video stream (10 bitrates from 200 kbps–12 Mbps) will
produce many short bursts that will end when each segment
download ends, and the burst sizes will change over time
depending on the network congestion and the segment sizes
selected by the ABR algorithm. This workload tests how ac-
curately BurstTracker detects the beginning and end of the
many short bursts.

We ran the workloads on a LG G3 smartphone, and simul-
taneously collected Throughput Time estimates from Burst-
Tracker and ground-truth Throughput Timemeasurements.
Both workloads were implemented within a JavaScript client
and ran within a Google Chrome browser; this allowed us to
collect the same client-side metrics in order to compare the
performance of both workloads. BurstTracker’s Through-
put Time estimates were generated by offline scripts with
QXDM traces as input (described in Section 3.3).

We conducted 100 runs of each of the workloads on a sin-
gle test base station, from which we were provided ground-
truth Throughput Time data. Our experiment setup was
stationary in order to ensure that the device remained con-
nected to the same base station. We also interleaved the
workloads so they experienced a similar distribution of net-
work conditions.

We evaluated the accuracy of BurstTracker in both typical
and adverse network conditions. To test typical network con-
ditions, we ran experiments with mid-range signal strength
and sporadic competing users. To create adverse conditions,
we reduced the signal strength at the smartphone by placing
it inside a metal container. We also introduced competing
file downloads from five other smartphones to saturate the
base station’s downlink. Across all network conditions that
we tested, the throughput available to the workloads ranged
from 2–12.5 Mbps.

3.4.1 BurstTracker is accurate. In Table 1, we present the
25th, 50th (median), and 75th percentiles of the Absolute
Percent Error of BurstTracker estimates when compared
with the ground-truth. BurstTracker performs consistently

https://github.com/arjunvb/bursttracker

Application

Throughput Time Absolute Error (%)

(% of application time) BurstTracker Active Time

25 pct 50 pct 75 pct 25 pct 50 pct 75 pct 25 pct 50 pct 75 pct
File Download 83.3 94.1 98.4 4.3 7.2 12.1 50.8 60.2 66.9
Video Streaming 62.3 73.4 82.2 3.1 6.9 15.2 54.6 59.9 65.9

Table 1: BurstTracker locally estimates Throughput Time accurately for file download and video streaming—

two applications with different kinds of burst patterns (i.e. video streaming is more “bursty” than file download).

BurstTracker estimates are evaluated against ground-truth measurements of Throughput Time.

well for both file download and video streaming, achieving
a Median Absolute Percent Error (MAPE) of 7%. This indi-
cates that BurstTracker is robust to applications of varying
burstiness, quantified by the fraction of application transfer
time during which the downlink is the bottleneck. We also
found that the baseline estimator, Active Time, performs
poorly, with a MAPE of ∼60% under the same conditions.
The improvement in error over the baseline Active Time
lies in BurstTracker’s ability to: (i) count time slots where
the user had a nonempty queue, but was not scheduled for
transmission, and (ii) discount time slots where the user was
scheduled for transmission, but had a queue that ran empty.

3.5 Is BurstTracker future proof?

Will BurstTracker be needed in future generations of mobile
networks? We expect that in New Radio (the 5G successor
to 4G LTE) and beyond, the need to detect if the radio link
is the bottleneck for an application will remain. Bandwidth-
intensive applications such as augmented reality, virtual re-
ality, and autonomous vehicles will continue to drive appli-
cation developers to investigate cellular bottlenecks.
Will the BurstTracker algorithm continue to work in fu-

ture generations of cellular networks? The core insight of
BurstTracker is that it is possible to infer if the radio link is
the bottleneck by observing how the base station allocates
resources to its users. We believe that this core insight will
likely continue to remain true in future generations. How-
ever, we acknowledge that the algorithm that we outlined in
Section 3.2 is specific to LTE scheduling.

4 CASE STUDY: VIDEO STREAMING

We demonstrate the power of BurstTracker by using it to
investigate and explain the gap between speed test through-
put and video streaming performance (following up with
the experiment in Section 2). We focus on video streaming
because it is one of the most widely deployed and thoroughly
understood mobile applications. With BurstTracker, we were
able to uncover a new, previously-unidentified bottleneck
affecting video streams on U.S. cellular networks.

We start the investigation with the following question: is
the bottleneck the LTE downlink, or somewhere upstream?

As we discussed previously, this question is difficult for de-
velopers to answer with confidence. Without a metric like
Throughput Time, which captures how frequently an appli-
cation’s queue at the base station is nonempty, application
developers do not know if the poor performance an applica-
tion experiences is outside of the developer’s control (e.g.,
congestion), or something within the developer’s control
(e.g., the application not requesting enough data).

BurstTracker proves instrumental in explaining the gap
between speed test and video streaming in three ways. First,
BurstTracker conclusively distinguishes between the two
sides of the base station to reveal that the source of the
problem is not the radio network, but somewhere upstream.
This eliminates uncertainty about the behavior of base sta-
tion schedulers that sometimes deters application developers
from investigating further. Second, BurstTracker exposes a
pattern of growing burst lengths during video segment down-
loads, which points to TCP Slow-Start Restart (SSR) as the
root cause. And third, BurstTracker verifies that queue un-
derruns are eliminated with connection settings designed to
bypass middleboxes, indicating that a transparent middlebox
in the cellular network is likely responsible for forcing SSR.

In this section, we demonstrate that BurstTracker’s ability
to track the status of a user’s queue at the base station is
the key to determining the root cause of the gap between
speedtest and video streaming; namely, that it is not due to
the LTE link. Additionally, we show that developers can solve
this problem with a simple change to the application, which
will lead to significant improvements in the performance of
mobile video streaming.

4.1 Experiment setup

To run controlled experiments that exposed all of the rele-
vant client and server-side metrics for this case study, we
set up an AWS machine running an HTTP Apache2 server.
We ran a nodejs server on our AWS instance to record the
various client-side metrics that were being POSTed by the
client device. We used the same DASH video and 20 MB file
download setup described in Section 3.4. We instrumented
the JavaScript-based DASH client to record the start time,
end time, and volume downloaded for each video segment

streamed by the player. For the file download, we collected
client-side metrics by implementing a JavaScript client—
identical to the one streaming the DASH video—to fetch
the file via a basic XMLHTTPRequest. We instrumented the
client to record the timestamps at which the first and last
bytes of the file are downloaded, as well as the total volume
downloaded. We disabled TCP Slow-Start Restart (SSR) on
our server9, following the HTTP/2 deployment recommen-
dations [17], and because SSR impacts the performance of
video streaming [27].

Our physical setup consisted of a stationary LG G3 An-
droid smartphone on AT&T’s network and locked to one
LTE band. We ran the video and file download benchmark
applications in Google Chrome. In addition to obtaining the
client-side metrics described above, we also collected radio-
layer logs from the phone’s modem using QXDM [29], and
ran our offline implementation of BurstTracker to compute
Throughput Time estimates for every application transfer.

4.2 Is LTE the bottleneck?

Using the instrumentation described in Section 4.1, we now
investigate the root cause for the poor video streaming per-
formance that we observed in the motivating experiment
(Figure 1). We first ask the following question: was the video
application bottlenecked by congestion at the base station, or
was there some other inefficiency that selectively inhibited
the performance of video but not the speed test?

Link demand metric. In order to compare how often
the downlink is a bottleneck across different applications
and network conditions, we normalize Throughput Time to
create a new metric that we call link demand. Link demand is
the ratio of Throughput Time to the duration of an applica-
tion transfer. Intuitively, the link demand indicates whether
there is congestion at the base station, or whether there is a
bottleneck elsewhere. When the link demand is close to 100%,
the application must have kept the queue at the base station
nonempty most of the time, indicating that congestion at
the base station was the bottleneck. Conversely, when the
link demand is low, we can conclude that the queue at the
base station frequently ran empty over the duration of the
session, suggesting that there is a bottleneck elsewhere.
We compute the link demand for both file download and

video streaming applications. BurstTracker estimatesThrough-
put Time, and we use client-side timestamps recorded dur-
ing each application-level transfer to calculate the transfer
duration. Note that for video streaming, we only consider
the total time spent downloading video segments, and omit
any idle periods spent between segment downloads, because
these periods of inactivity are intentionally introduced by

9This can be done by setting net.ipv4.tcp_slow_start_after_idle to
0 on a Linux kernel.

●
●

● ●●●

●

●
●

●
●

● ●●

●
●

●

●
● ●●

●

●

●●

●

●● ●●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●
● ●

●
●● ●

●

●
● ●

●

●

●

●

●●
●

●●

●

●●●
●

● ●
●

●
●

●

●

● ● ●

●

● ●●
●

●

●●

●
●

●●

● ●

● ●
●

●

●

0

25

50

75

100

2.5 5.0 7.5 10.0 12.5

Link Throughput (Mbps)

L
in

k
 D

e
m

a
n
d
 R

a
ti
o
 (

%
)

Application
● File Download

Video Streaming

Figure 6:While file downloads consistently keep their

queues nonempty, video streaming applications keep

their queues nonempty only 50–75% of the time.

the application. By ignoring these inter-segment idle times,
the video streaming transfer effectively becomes a stream of
continuous smaller file downloads, and hence, it can be be
compared with a larger file download.

Link throughput metric.We compute the link through-
put as the ratio of application volume and Throughput
Time. This metric tells us how much bandwidth the base sta-
tion was offering the application, and provides a measure of
the severity of the congestion during the application transfer.

4.2.1 Experiment and results. To investigate the disparity
we identified between file download and video streaming
performance, we conducted 100 experiment runs on a base
station of a Tier-1 U.S. provider in a downtown area at differ-
ent times of day (morning, lunch hours, late night). Each run
consisted of the following sequence of events: download a
20 MB file, wait 15 seconds, stream a DASH video. For each
run, we use BurstTracker to estimate the link demand for
the file download and the video stream. A video stream is a
series of file downloads, so it is natural to expect that a video
stream would register a similar link demand as a large file
download.
Surprisingly, we find that there is a significant gap in

utilization between the file download and video transfers.
In Figure 6, we plot the link demand for each application
transfer against the link throughput observed for that partic-
ular run. Over a wide range of throughput conditions (2–12
Mbps), file downloads spend 95% of their time in bursts,
while video streaming sees a much larger variance, keeping
their queues nonempty 65–70% of the time, on average. Ad-
ditionally, the disparity becomes more significant as the link
congestion intensifies (lower link throughputs), suggesting
that video streaming applications are less efficient under
more congested settings.

0

50

100

150

0 10 20 30 40

time (msec)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

(a) TCP sender throughput

0.00

0.25

0.50

0.75

1.00

0 200 400 600
time (msec)

Fr
ac

tio
n

of
 R

Bs

Burst Start Burst EndRBs/msec

(b) Time series of Resource Block (RB) allocation for a single DASH segment

Figure 7: Data releases from the server’s TCP sender within 25 ms, implying a throughput of more than 100 Mbps.

However, the client receives the data over 700 ms, indicating that the bottleneck is not at the video server.

Our findings indicate that the queue frequently runs empty
at the base station for a video stream, while it rarely does for
a large file download. Further, the 25–30% difference in link
demand approximately matches the difference in application
throughputs that we observed in the original motivating
scenario. This explains a majority of the performance gap.
We can also conclude that the gap is not caused by the LTE
downlink, but rather by another inefficiency that prevents
the video application from enqueuing at the base station.
This points us upstream from the base station to continue
our investigation.

4.3 Is the server the bottleneck?

After ruling out the LTE downlink as the source of video
streaming underutilization, we suspect that either the appli-
cation or the TCP sender on the server is the bottleneck. This
is because the link between the server and the base station
is unlikely to be the bottleneck at the moderate throughput
we are observing.

In order to isolate the behavior of the server-side, we
conducted controlled experiments on an idle macro-base
station. Specifically, we ran the DASH video stream on a
macro-base station at 1 A.M. local time, when the base station
is likely to be idle (i.e., not serving competing traffic). This
factors out congestion on the cellular downlink, which we
have already concluded is not responsible for poor video
performance. During the experiment, we collected tcpdump
traces at the server and client to measure the dynamics at the
transport layer. Simultaneously, we collectedQXDM traces to
observe the resource allocation patterns. We processed these
traces with BurstTracker to identify the burst boundaries.

Figure 7a plots TCP throughput at the server (from tcpdump)
for a single video segment downloaded during a DASH video,
and Figure 7b shows a time series of LTE resource alloca-
tion (and bursts from BurstTracker) for the same segment.
Each bar corresponds to a millisecond and the height of the
bar corresponds to the fraction of resources scheduled in

that millisecond. Burst start and end boundaries, identified
by BurstTracker, are marked with dashed and solid lines,
respectively.
A comparison of the two time series charts shows that

data gets released from the server very quickly at very high
effective throughput, while it takes much longer to be re-
ceived by the client. This indicates that the application or
the server (TCP sender) is not limiting the flow of data. This
mismatch between the two time series suggests that the
transport between the server and base station is the root
cause.

4.4 It is Slow-Start Restart

The mismatch between the timespan over which the server
transmits data and the duration over which the client re-
ceives data is revealing: if data drains out from the server
faster than it drains into the client, then it must end up in a
mid-network queue. However, the base station queue runs
empty frequently, as we discussed in Section 4.2, so it must
be queuing upstream. At the same time, the base station back-
haul link is faster than the rate at which the mid-network
link is draining, as indicated by the throughput of the file
download (and speed test).

To make sense of these observations, we took a closer look
at the data. Figure 7b reveals that the duration of bursts in-
creases over the entire video segment transfer. This indicates
that the video application’s queue tends to run empty at the
beginning of the segment transfer, and as the download pro-
gresses, the application’s queue at the base station remains
nonempty for much longer.

The increase in the duration of bursts contained within a
single video segment transfer is characteristic of TCP Slow-
Start. However, such behavior is not expected in our setup
(after the first segment), because we disabled SSR on the
server. Usually, the sender’s TCP window clarifies TCP be-
havior; however, in this case, the server’s TCPwindow shows
no relation with the client-side observations.

Following this lead, we investigate the TCP throughput
over time measured by running tcpdump on the client for
three video consecutive DASH video segments (Figure 8a).
We observe that the throughput grows exponentially, from a
very low value to the perceived network capacity, for each
segment download. The behavior appears to be SSR for every
video segment.

4.5 SSR is being added by a TCP middlebox

After ruling out the LTE downlink and server as the bottle-
necks, we dig deeper to identify the cause of the SSR effect.
We investigate the only remaining possibility—the link be-
tween the server and the base station—however unlikely it
may seem. We consider the possibility of a middlebox in the
cellular network. Prior work [39] suggested that middleboxes
are typically deployed as transparent split-TCP proxies that
terminate the TCP connection, process or shape the traffic,
and accordingly deliver the data to the client. The presence of
such a middlebox would explain both the mismatch between
server and client TCP traces, and the presence of SSR despite
it being disabled on the server. With a split-TCP proxy, the
effective sender to the client is the middlebox, which may
have SSR enabled.

Transparent middleboxes are difficult or impossible to de-
tect by directly probing. However, they can be detected indi-
rectly.Moreover, they can be bypassed by using non-standard
ports, as they typically only act on HTTP and HTTPS traf-
fic [39], which is delivered over TCP ports 80 and 443. If
changing the port eliminates the SSR behavior, it is a strong
indicator of the middlebox adding SSR, and therefore the
middlebox is the bottleneck.

To confirm that a cellular middlebox is responsible for forc-
ing SSR on video segment downloads, we repeat the DASH
video segment downloads conducted on an idle cell, but this
time using port 7777, which is unreserved. In Figure 8b, we
plot the TCP throughput traces from tcpdump on the client.
Indeed, we do not see the growth in throughput characteris-
tic of SSR. Each chunk download starts at throughput close
to the stable capacity, which is proportional to the cwnd it
learned from the last packet sent over the connection. Impor-
tantly, the cwnd does not appear to reset to its initial value in
response to the idle time between chunk downloads. There-
fore, it is evident that the video segments downloaded on
port 7777 were not subject to SSR.
In summary, using BurstTracker, we have shown that a

cellular middlebox is indeed responsible for forcing SSR on
the application transfer. We reached this conclusion by first
using the link demand computed with BurstTracker to rule
out the cellular downlink as the bottleneck for mobile video
streaming; then, we used BurstTracker along with other
data sources (e.g., tcpdump traces at the server and client) to

0

20

40

60

0 2 4 6 8
time (sec)

Th
ro

ug
hp

ut
 (M

bp
s) TCP slow-start

CWND growth DASH
video segments

(a) TCP throughput for 3 video segments over port 80

0

20

40

60

0 2 4 6 8
time (sec)

Th
ro

ug
hp

ut
 (M

bp
s) No TCP

slow-start DASH
video segments

(b) TCP throughput for 3 video segments over port 7777

Figure 8: A transparent TCP proxy forces SSR on port

80, but not over an unreserved port (e.g. 7777).

pinpoint a split-TCP proxy adding SSR, as the root cause of
the performance gap (identified in Figure 6). SSR is especially
detrimental to video streaming on congested links, because
it forces ABR algorithms to select lower bitrates (smaller
video segment sizes). Consequently, the smaller segment
downloads spend a significant portion of time in the Slow-
Start phase, where their throughputs are artificially limited.

5 SSR MIDDLEBOXES

In Section 4, we discovered that a Tier-1 carrier had an SSR-
forcing middlebox in its network. In this section, we first
explore how prevalent SSR middleboxes are on all U.S. Tier-1
cellular carriers. Then, we characterize the impact of SSR on
mobile video streaming.

5.1 Middleboxes are widely deployed

We compared the performance of DASH video streaming
on three Tier-1 U.S. carriers—AT&T, T-Mobile, and Verizon—
served over HTTP (port 80), HTTPS (port 443), and an un-
reserved port (port 7777). We used the same DASH video
setup described in Section 4.1, and repeat 25 times for each
combination of port and carrier, amounting to a total of 225
data points. To ensure that the video streams being compared
were subject to similar network conditions, we downloaded
the video over ports 80, 443, and 7777 in succession. We con-
ducted these experiments during peak hours (lunch hours)
in a densely-populated metropolitan area, on a congested
base station belonging to each of the carriers. We focused

0

25

50

75

100

AT&T T−Mobile Verizon

L
in

k
 D

e
m

a
n

d
 R

a
ti
o

 (
%

)

HTTP (80) HTTPS (443) unreserved (7777)

(a) Comparison across ports and carriers

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●

●

●●

●

●

●

● ●

●

2

4

6

0 100 200 300
Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

scheme
●

●

port 7777
port 80

●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●
●
●
●●●●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●●

●

●●●

●

●●

●●●

●●●●
●●

4

6

8

10

12

0 100 200 300
Time (s)

Bu
ffe

r L
en

gt
h

(s
)

scheme
●

●

port 7777
port 80

app throughput
bitrate

(b) Video streamed over ports 80 and 7777

0

10

20

30

40

50

bitrate stalls switches

M
e

d
ia

n
 I

m
p

ro
ve

m
e

n
t

(%
)

(c) QoE improvements

Figure 9: SSR at the middlebox impacts video streamed over HTTP (port 80) and HTTPS (port 443) on AT&T and

Verizon. Bypassing the middlebox on all three providers (port 7777) yields 40% more link utilization. On AT&T’s

network, we observed that streaming video without SSR at the middlebox improves the video bitrate by 35% on

average.

on congested links because our results in Figure 6 indicated
that the video streaming link demand was especially low for
highly congested links (with sub-8 Mbps throughput). Dur-
ing these experiments, we simultaneously ran BurstTracker
to observe the link demand ratio.
Our results are shown in Figure 9a. Each bar shows the

average link demand for a particular combination of port and
cellular carrier. For all three Tier-1 U.S. carriers, videos served
over HTTP and HTTPS achieve lower link demand ratios
(50–70% average utilization) compared to their counterparts
streamed over port 7777 (80+% average utilization). This
experiment reveals that split-TCP middleboxes are likely
deployed on all major U.S. carriers. We manually inspected
tcpdump traces taken during these experiments to determine
what the middleboxes are doing to throttle the traffic. We
observed that the AT&T and Verizon middleboxes appear to
be forcing SSR (we only saw this on AT&T in Section 4). The
T-Mobile middlebox appeared to be throttling video streams
the standard ports, but it did not look like SSR.

5.2 SSR is detrimental to video streaming

Next, we explore the impact of SSR on the bitrates selected
by mobile video streaming algorithms. We show how by-
passing cellular middleboxes not only improves link demand,
but also allows ABR algorithms to stream at higher bitrates
for the same link conditions. We repeated a similar set of
experiments described in Section 5.1. In addition to the link
demand and application throughput metrics, we also col-
lected video streaming performance metrics, namely bitrate
and stalls. We conducted 20 runs of a DASH video on port
80 followed by a DASH video streamed on port 7777, all on
a congested AT&T base station during peak hours. We show

the client-side metrics from a single run of this experiment
in Figure 9b. Figure 9c shows a summary over all 20 runs.

On the top pane of Figure 9b, we show the bitrate the ABR
algorithm selected for each segment (solid line) along with
the application throughput measurements (dotted line). On
the lower pane, we plot the length of the video buffer on the
client device. The video streamed over port 7777 is able to sus-
tain a higher bitrate on average, because its ABR algorithm
observes high application throughput from the previously
downloaded video segments. In contrast, the video streamed
on port 80 measures a lower throughput in each consecu-
tive segment, due to a feedback loop from SSR. As the ABR
lowers the bitrate, the video segments are smaller in size,
and therefore downloads spend an increasing proportion of
their time in Slow-Start, reducing their throughputs. This
effect is especially pronounced at the low throughputs char-
acteristic of a congested cellular link. The flow on port 7777
also makes better use of its buffer. The buffer rarely fills to
capacity (lower pane of Figure 9b), allowing the video to
sustain the bitrate of 2.5 Mbps for much longer than the port
80 video stream which always keeps its buffer full.
In Figure 9c, we quantify the overall improvements in

Quality-of-Experience (QoE) that we observe after eliminat-
ing the effects of SSR introduced by the middlebox. We plot
the average percent improvement in QoE across all 20 runs.
We observe a median of 35% improvement in video quality,
50% shorter stall durations, and 10% fewer switches in bitrate.
Notably, the improvement in bitrate aligns closely with the
∼35–40% capacity gap observed for AT&T (Figure 9a).

5.3 A simple way to disable SSR

These experiments demonstrate that middleboxes can be by-
passed by moving video streams to operate over an uncom-
mon TCP port (e.g., 7777). However, this is not a deployable
solution, because it would require significant modifications
to both clients and server infrastructure [14].

We devised a simple way to that requires a minor modifi-
cation to existing video streaming client software. Our solu-
tion comes from the observation that Slow-Start is restarted
when a TCP connection goes idle for a duration exceeding a
timeout period. Therefore to avoid restarting Slow-Start,
we modified the video client to perform frequent micro-
fetches (i.e., download 1-byte files) whenever the application
is idle between downloading video segments. We verified
that this “chatty” video streaming application effectively dis-
ables middlebox-forced SSR.

6 RELATEDWORK

LTE capacity estimation

Systems such as LoadSense [9], CLAW [37], and piStream [36]
have demonstrated that it is possible for a user to passively
and locally determine the total downlink resources allocated
to all users on an LTE base station. These systems provide
limited bottleneck detection capability during an application
transfer. Specifically, if they detect that the base station has
unallocated resources, they will accurately conclude that
LTE is not the bottleneck. However, if all of the resources
are allocated, for instance when there are competing users,
these systems will not reveal if LTE is the bottleneck. This
is because they can not differentiate between the following
two reasons why a user is not receiving traffic in a particular
millisecond: (a) the user’s queue at the base station is empty
so there is no traffic to send (LTE downlink is not the bottle-
neck), and (b) the user’s queue is non-empty, but other users
are being scheduled ahead of the user (LTE downlink is the
bottleneck). BurstTracker can infer the state of the user’s
queue at the base station, so it works even in the scenario
where multiple users are receiving traffic.

Detecting if the LTE downlink is the bottleneck has been
considered so difficult that several proposals suggested adding
explicit indications of where the bottleneck is into network
traffic. For example, engineers from Google, Nokia, and Va-
sona Networks proposed adding a TCP option where LTE
base stations can specify the bandwidth available for a user [19].
Also, Xu et al. [38] suggested injecting timing and sequence
information about network socket calls into packets in or-
der to improve estimates of cellular network performance.
BurstTracker does not require any modifications to network
traffic in order to detect if LTE is the bottleneck.

Network bottleneck estimation

BurstTracker detects whether or not a specific link—the cellu-
lar downlink—is the bottleneck link. This is different than es-
timating the bandwidth of the bottleneck link, which is one of
the primary goals of congestion control algorithms [5, 18, 22].
However, it is similar to the goal of per-link Internet measure-
ment tools such as pathchar [11]. These tools can observe
the bandwidth and latency at each link between a source and
destination. However, they are active measurement tools, so
they require transmitting significant additional traffic. There-
fore, they can not be used to detect if an application’s traffic
is bottlenecked by the LTE downlink.
QProbe [3] is an active probing tool that can determine

if there is congestion at the LTE downlink, or elsewhere in
the network. Similar to BurstTracker, QProbe is driven by
the insight that a base station’s scheduler produces bursty
transfers. Unlike BurstTracker, QProbe requires active prob-
ing (with TTL-limited load packets). Therefore, users can
run QProbe before and after an application transfer, but not
during one. QProbe has the same limitation as speed tests: it
can not determine if an application has poor network perfor-
mance because LTE is the bottleneck. Instead, QProbe can
determine how often there is more congestion on the LTE
downlink, than there is elsewhere in the network.

Sundaresan et al. [31] proposed techniques to detect bottle-
necks in home networks, but their approach relies on steady
inter-arrival times that do not appear in OFDMA-based cel-
lular networks.

Transport protocols can be optimized for performance on
LTE networks [15]. BurstTracker can be helpful during the
testing and development of these protocols to ensure that
they are making full use of the LTE downlink.

Application-layer measurements

Prior work has used application-layer throughput measure-
ments to estimate future network performance [20, 30, 34].
BurstTracker can complement these approaches by provid-
ing real-time, accurate measurements of available cellular
downlink capacity.

Cellular middleboxes

BurstTracker complements existing tools to characterize cel-
lular middleboxes. NetPiculet [33] is a network monitoring
tool that exposes the NAT and firewall policies affecting
mobile applications on cellular networks. Through a series
of measurements, this work explores how these policies af-
fect the performance, energy consumption, and security of
mobile applications. Xu et al. [39] and Li et al. [24] present
automated techniques for discovering policies enforced by
transparent TCP proxies. By adding BurstTracker’s bottle-
neck detection to these tools, we believe that these tools

can discover more middlebox policies that affect applica-
tion performance, particularly in congested networks. For
example, we confirmed that the LTE downlink was not the
bottleneck for video streams on congested links. This lead us
to investigate middlebox-forced TCP behavior, and discover
that middleboxes are forcing SSR (Section 4).

7 CONCLUSION

The key insight behind BurstTracker is that a base station’s
hidden state (e.g., queue length) can be estimated based on
patterns in the output of their proprietary downlink schedul-
ing algorithms. We believe that the behavior of these sched-
ulers may be a new opportunity to reveal other hidden infor-
mation that may be useful to application developers as well
as researchers.

Even though we designed BurstTracker with the objective
of simply determining if the cellular downlink is the bottle-
neck for applications, we were able to use BurstTracker to
discover a significant issue that affects video streaming in
most Tier-1 U.S. cellular networks and also identify the cause
of the issues (namely, middlebox-forced Slow-Start Restart).
Based on BurstTracker’s findings, we also believe that there
is an easy fix for this issue—transferring small packets peri-
odically between larger application transfers. We believe that
a tool like BurstTracker opens up possibilities into discov-
ering other similar inefficiencies that may be plaguing user
experience on cellular networks, and we look forward to the
community (and us) trying using BurstTracker to investigate
the performance of more high-throughput applications like
interactive video and virtual/augmented reality streaming.

ACKNOWLEDGMENTS

We thank our shepherd Chunyi Peng and the anonymous
reviewers for their insightful comments. We also thank Alex
Snoeren for his valuable feedback.

REFERENCES

[1] 3rd Generation Partnership Project (3GPP). Telecommunication man-
agement; Key Performance Indicators (KPI) for Evolved Universal
Terrestrial Radio Access Network (E-UTRAN): Definitions. https:
//www.3gpp.org/DynaReport/32450.htm.

[2] M. Allman and V. Paxson. TCP congestion control. RFC 5681, IETF,
September 2009.

[3] N. Baranasuriya, V. Navda, V. N. Padmanabhan, and S. Gilbert. QProbe:
locating the bottleneck in cellular communication. In Proc. ACMConfer-
ence on emerging Networking EXperiments and Technologies (CoNEXT).
ACM, 2015.

[4] A. Biernacki and K. Tutschku. Comparative performance study of LTE
downlink schedulers. Wireless Personal Communications, 74, 2014.

[5] J.-C. Bolot. Characterizing end-to-end packet delay and loss in the
Internet. Journal of High Speed Networks, 2(3):305–323, July 1993.

[6] J. Brokdin. T-Mobile forced to stop hiding slow speeds from throttled
customers. https://arstechnica.com/information-technology/2014/11/
t-mobile-forced-to-stop-hiding-slow-speeds-from-throttled-customers/.

[7] N. Bui and J. Widmer. OWL: a reliable online watcher for LTE control
channel measurements. In Proc. Workshop on All Things Cellular:
Operations, Applications and Challenges, 2016.

[8] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda. Downlink
packet scheduling in LTE cellular networks: Key design issues and a
survey. IEEE Communications Surveys Tutorials, 15(2):678–700, 2013.

[9] A. Chakraborty, V. Navda, V. N. Padmanabhan, and R. Ramjee. Coor-
dinating cellular background transfers using LoadSense. In Proc. ACM
Conference on Mobile Computing and Networking (MobiCom), 2013.

[10] M. C. Chan and R. Ramjee. TCP/IP performance over 3G wireless
links with rate and delay variation. In Proc. ACM Conference on Mobile
Computing and Networking (MobiCom), 2002.

[11] A. B. Downey. Using pathchar to estimate internet link characteristics.
In Proc. ACM SIGCOMM, 1999.

[12] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas. LTE-
Advanced: Next-generation wireless broadband technology [invited
paper]. IEEE Wireless Communications, 17(3):10–22, June 2010.

[13] Google. Google ExoPlayer. https://github.com/google/ExoPlayer.
[14] Google. HTTPS encryption on the web. https://transparencyreport.

google.com/https/overview?hl=en.
[15] P. Goyal, M. Alizadeh, and H. Balakrishnan. Rethinking congestion

control for cellular networks. In Proc. Workshop on Hot Topics in
Networks (HotNets), 2017.

[16] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A
close examination of performance and power characteristics of 4G LTE
networks. In Proc. ACM Conference on Mobile Systems, Applications,
and Services (MobiSys), 2012.

[17] IETF HTTP Working Group. HTTP/2 specifications. https://github.
com/http2/http2-spec/wiki/Ops.

[18] V. Jacobson. Congestion avoidance and control. In Proc. ACM SIG-
COMM, 1988.

[19] A. Jain, A. Terzis, H. Flinck, N. Sprecher, S. Arunachalam, K. Smith,
V. Devarapalli, and R. B. Yanai. Mobile throughput guidance inband
signaling protocol. Internet-draft, IETF, 2017.

[20] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and sta-
bility in HTTP-based adaptive video streaming with FESTIVE. In Proc.
ACM Conference on emerging Networking EXperiments and Technologies
(CoNEXT), 2012.

[21] A. M. Kakhki, A. Razaghpanah, A. Li, H. Koo, R. Golani, D. Choffnes,
P. Gill, and A. Mislove. Identifying traffic differentiation in mobile
networks. In Proc. ACM Internet Measurement Conference (IMC), 2015.

[22] S. Keshav. A control-theoretic approach to flow control. In Proc. ACM
SIGCOMM, 1991.

[23] S. Kumar, E. Hamed, D. Katabi, and L. E. Li. LTE Radio analytics made
easy and accessible. In Proc. ACM SIGCOMM, 2014.

[24] F. Li, A. Razaghpanah, A. M. Kakhki, A. A. Niaki, D. Choffnes,
P. Gill, and A. Mislove. lib•erate,(n): A library for exposing (traffic-
classification) rules and avoiding them efficiently. In Proc. ACM Internet
Measurement Conference (IMC), 2017.

[25] Y. Li, C. Peng, Z. Yuan, J. Li, H. Deng, and T. Wang. MobileInsight: Ex-
tracting and analyzing cellular network information on smartphones.
In Proc. ACM Conference on Mobile Computing and Networking (Mobi-
Com), 2016.

[26] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren, and A. Terzis. CQIC:
Revisiting cross-layer congestion control for cellular networks. In Proc.
International Workshop on Mobile Computing Systems and Applications
(HotMobile), 2015.

[27] H.Mao, R. Netravali, andM. Alizadeh. Neural adaptive video streaming
with Pensieve. In Proc. ACM SIGCOMM, 2017.

[28] Ookla. Speedtest by Ookla. http://www.speedtest.net/.
[29] Qualcomm. eXtensible diagnostic monitor. https://tinyurl.com/

yc4e9dcy.

https://www.3gpp.org/DynaReport/32450.htm
https://www.3gpp.org/DynaReport/32450.htm
https://arstechnica.com/information-technology/2014/11/t-mobile-forced-to-stop-hiding-slow-speeds-from-throttled-customers/
https://arstechnica.com/information-technology/2014/11/t-mobile-forced-to-stop-hiding-slow-speeds-from-throttled-customers/
https://github.com/google/ExoPlayer
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
https://github.com/http2/http2-spec/wiki/Ops
https://github.com/http2/http2-spec/wiki/Ops
http://www.speedtest.net/
https://tinyurl.com/yc4e9dcy
https://tinyurl.com/yc4e9dcy

[30] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and B. Sinopoli.
CS2P: Improving video bitrate selection and adaptation with data-
driven throughput prediction. In Proc. ACM SIGCOMM, 2016.

[31] S. Sundaresan, N. Feamster, and R. Teixeira. Locating throughput
bottlenecks in home networks. In Proc. ACM SIGCOMM, 2014.

[32] N. Vallina-Rodriguez, A. Auçinas, M. Almeida, Y. Grunenberger, K. Pa-
pagiannaki, and J. Crowcroft. RILAnalyzer: A comprehensive 3G mon-
itor on your phone. In Proc. ACM Internet Measurement Conference
(IMC), 2013.

[33] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An untold story of
middleboxes in cellular networks. In Proc. ACM SIGCOMM, 2011.

[34] K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic forecasts
achieve high throughput and low delay over cellular networks. In Proc.
Symposium on Networked Systems Design and Implementation (NSDI),
2013.

[35] S. H. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust rate adaptation
for 802.11 wireless networks. In Proc. ACM Conference on Mobile
Computing and Networking (MobiCom), 2006.

[36] X. Xie, X. Zhang, S. Kumar, and L. E. Li. piStream: Physical layer
informed adaptive video streaming over LTE. In Proc. ACM Conference
on Mobile Computing and Networking (MobiCom), 2015.

[37] X. Xie, X. Zhang, and S. Zhu. Accelerating mobile web loading using
cellular link information. In Proc. ACM Conference on Mobile Systems,
Applications, and Services (MobiSys), 2017.

[38] Q. Xu, S. Mehrotra, Z. M. Mao, and J. Li. PROTEUS: Network per-
formance forecast for real-time, interactive mobile applications. In
Proc. ACM Conference on Mobile Systems, Applications, and Services
(MobiSys), 2013.

[39] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govindan.
Investigating transparent web proxies in cellular networks. In Proc.
Passive and Active Measurement Conference (PAM), 2015.

	Abstract
	1 Introduction
	2 Motivation and Requirements
	2.1 Requirement: knowing the status of per-device queues at the base station
	2.2 Reality: the status of base station queues is not available to developers

	3 Estimating Throughput Time
	3.1 Challenge: Classifying milliseconds
	3.2 Opportunity: Scheduling patterns
	3.3 Implementation
	3.4 Evaluation
	3.5 Is BurstTracker future proof?

	4 Case Study: Video Streaming
	4.1 Experiment setup
	4.2 Is LTE the bottleneck?
	4.3 Is the server the bottleneck?
	4.4 It is Slow-Start Restart
	4.5 SSR is being added by a TCP middlebox

	5 SSR Middleboxes
	5.1 Middleboxes are widely deployed
	5.2 SSR is detrimental to video streaming
	5.3 A simple way to disable SSR

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

