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Abstract
In this paper, we explore different strategies for implementing a crowdsourcing methodology for a single-step construction of an
empirically-derived sense inventory and the corresponding sense-annotated corpus. We report on the crowdsourcing experiments
using implementation strategies with different HIT costs, worker qualification testing, and locale restrictions. We describe multiple
adjustments required to ensure successful HIT completion, given significant changes within the crowdsourcing community over the past
three years.

Keywords: word sense disambiguation, crowdsourcing, sense inventory development

1. Introduction
Word sense disambiguation (WSD) is an essential com-

ponent of many natural language processing (NLP) appli-
cations. However, defining a discrete inventory of word
senses can be a difficult task. Historically, this task has
required extensive labor by human experts, and the end re-
sult nonetheless usually contained many sense distinctions
that were ad hoc and very often not well supported by cor-
pus data. The procedure followed by the lexicographers
in creating dictionaries warranted this situation and, as all
resource creation, was slow and costly. Furthermore, the
resulting resources are not always sufficient for addressing
the dynamic nature of sense definition or quantitatively cap-
turing how components from several meanings of a word
can be activated simultaneously (Hanks, 2000; Rumshisky,
2008; Pustejovsky, 1995). A number of efforts have been
undertaken to address this situation, including the efforts
to re-organize and merge existing sense inventories or cre-
ate them from scratch using corpus-based methods (Hovy
et al., 2006; Hanks and Pustejovsky, 2005; Navigli, 2006;
Palmer et al., 2007).

In this paper, we describe a method of creating ro-
bust word sense inventories from scratch that is relatively
cheap and fast using Amazon’s Mechanical Turk (MTurk)
(http://aws.amazon.com/mturk/). In recent years, much at-
tention in the NLP community has been given to the sub-
ject of using crowdsourcing services such as MTurk to cre-
ate low cost, high-quality data resources (C. and Dredze,
2010; Snow et al., 2008; Ipeirotis et al., 2010; Akkaya et
al., 2010). In this paper, we attempt to extend that research
to the specific sub-problem discussed above of creating a
robust lexical resource, and will focus on the methodolog-
ical and experimental considerations that we have had to
take into account to build a working data collection system
on top of MTurk.

2. Overview of Methodology
Mechanical Turk, a division of the Amazon Web Ser-

vices, provides an application programming interface and
user interface that allows a requester to create a set of Hu-

man Intelligence Tasks (HITs) to be filled out by workers
(henceforth, MTurkers) for a reward. This allows a large
audience to access HITs and complete work at a minimal
cost.

We used boto (http:boto.s3.amazonaws.com), the Python
interface to AWS, to build an application capable of cre-
ating and publishing HITs, collecting results and creating
sense clusters. The resulting word sense inventories con-
tain precise consistency ratings and distance measurements
between different clusters of word senses. We extend the
technique we proposed previously (Rumshisky et al., 2009;
Rumshisky, 2011) and which we have developed to explore
the quality control mechanisms in preparation for a large-
scale lexical development effort.

Our approach to creating new sense inventories relies on
the linguistic intuition of non-expert native English speak-
ers, who provide the core judgments used to define word
sense clusters. Multiple MTurkers are asked to compare
pairs of example sentences that use the same word, and
make a judgment on whether they think the word in con-
sideration is being used in the same sense, in a different
sense, or if the distinction between the two is unclear.

Target
Sentence

A United Nations conference on wip-
ing out organized crimeopensTues-
day in Sicily.

Comparison
Sentence 1

The enclave wasopened to the out-
side world more than 300 years before
Hong Kong.

Comparison
Sentence 2

It was perfectly correct for the front
airbag not toopen, because the front
of the car was not damaged at all.

Comparison
Sentence 3

Chancellor Kohl, meanwhile, has in-
vited Mr. Krenz toopen discussions
with Bonn on a wide range of subjects.

Table 1: Example HIT using OntoNotes data for the word
open

The resulting data lends itself to an undirected graph rep-



resentation in which nodes are example sentences, edges
are judgments between pairs of sentences, and intercon-
nected clusters of nodes correspond to different senses for
a word (see Figure 1).

Figure 1: Similarity judgment graph.

Ideally, comparisons between every pair of example sen-
tences, i.e. full-pairwise comparisons, for a word would
be collected, populating the complete graph. However, this
leads to a number of comparisons that is quadratic in order,
and therefore prohibitively expensive. To circumvent this
issue, on top of collecting full-pairwise comparisons, we
have implemented an alternative prototype-based method-
ology that populates a partial graph while explicitly cre-
ating sense clusters. Both methodologies employ control
mechanisms to ensure high quality annotations.

In the prototype based framework, the annotation task is
designed as a sequence of rounds, with each round resulting
in a cluster corresponding to one sense of a word. To be-
gin, a prototype sentence is selected at random from the list
of unclustered sentences. HITs are then created in which
every remaining unclustered sentence is compared to the
prototype sentence.

When all of the corresponding judgments are returned,
all of the sentences that were judged as similar to the proto-
type get clustered together, and the round is complete. This
process is repeated until all sentences are placed in a clus-
ter. The full-pairwise methodology works similarly, how-
ever, there is no need to select prototype sentences as every
sentence gets compared to every other sentence, and clus-
ters are created using clustering algorithms after all com-
parisons have been collected.

3. Crowdsourcing Considerations
Much of our methodological experimentation has re-

volved around determining precisely what it takes to attract
high-quality workers on a service like MTurk to complete
complex linguistic tasks such as our own. Previous work
on this subject point out useful guidelines and best prac-
tices (C. and Dredze, 2010; Snow et al., 2008), but due
to the flexibility and dynamic nature of MTurk as a data
building resource, we found that much of the design and
data collection process for our WSD task has required ex-
perimentation beyond these best practices. Section 4 of this
paper discusses in more detail the experiments we ran with
different system configurations.

3.1. Determining Worker Quality

Unfortunately, crowdsourcing services like MTurk are
often subject to malicious workers who attempt to take ad-
vantage of the system, and as a result submit answers of
a low quality. This problem stems from the fact that re-
sult verification is often very difficult. In general, it is not
enough to analyse the accuracy of a worker against gold
standard data. For example, if 80% of the data in a cate-
gorization task falls into one category, than a worker who
places everything into that category automatically has 80%
accuracy, despite the fact that they are not providing any
meaningful input to the results.

Our WSD task in particular exhibits the sort of skewed
distribution described above. In general, the words we are
interested in have a high degree of polysemy, and therefore
it is more likely that two different examples of a word in
context will come from different senses.

While the MTurk API recently introduced some features
to make worker analysis easier, the burden is placed upon
task designers to determine the best way of filtering re-
sults and identifying good and bad workers. We use an
open-source tool developed by Panos Ipeirotis that takes
as input a list of worker labels and a corresponding list of
gold standard data (if available), and outputs a scalar score
representing worker quality (http://code.google.com/p/get-
another-label/). One advantage of this software is that it
uses but does not require gold standard data, and can es-
timate worker quality without any gold standard data by
comparing worker results to worker-quality weighted ma-
jority votes.

3.2. HIT Design

The HIT design that was used to successfully obtain
good quality annotation in Rumshisky et al. Rumshisky
et al. (2009) gave the workers $.02 for 10 similarity judg-
ments, and the HITs required to sort 350 concordance lines
were completed in under two hours. However, the experi-
ments run with the same parameters today do not lead to
either fast completion or quality annotation. Below, we
describe the issues that arise in running such HITs in the
crowdsourcing community as it exists today.

3.2.1. Qualifications and Restricting the Workforce
The MTurk API provides several built in ways to restrict

the workforce that is allowed to work on HITs that you cre-
ate. The most relevant built in restrictions to linguistic and



language resource development are: location (the country
where workers must be based in order to complete HITs),
the number of HITs previously completed, and the percent
of previous HITs worked on that got approved.

Best practices suggest using some combination of these
restrictions to reduce the risk of malicious workers intro-
ducing noise into your data. We found that in particular the
location restriction can have a dramatic impact on the qual-
ity of results. We observed a significant increase in inter-
annotator agreement and data quality when we restricted lo-
cale to the US only. This increase in quality came at a cost,
however, namely that it took significantly longer for our
HITs to complete, and that we had to pay more in general
to attract worker attention in locale restricted experiments.

3.2.2. Payment Options and Maintaining a High
Position in the HIT Search Space

Workers sort potential HITs to work on by the size of the
reward and by the number of HITs available for them to
complete. There are a broad range of language tasks avail-
able to workers on MTurk, from translation and transcrip-
tion tasks that pay upwards of $20 per HIT and only have a
few HITs available, to classification tasks such as our own,
that pay only a few cents per HIT but have thousands of
HITs posted.

Amongst all this variation, we found that since our task
has a relatively small reward for a relatively small amount
of work per HIT, it is important for us to take steps to inflate
the number of HITs we post in order to stay high in the HIT
search space and get our HITs completed. More difficult to
control is the psychological component of how workers will
perceive the amount of work you are asking them to do per
HIT. Before workers accept a HIT, they have an opportu-
nity to review a randomly selected sample of the work and
determine if it is a task they will enjoy or think to be worth
their effort. In order to make a good first impression on
workers, it is important that HIT design is clean, and that
instructions for your task are clear and concise.

3.3. Other Considerations

Due to the fact that requestors have the ability to reject
work with impunity, which can result in the abuse of legit-
imate workers, several resources have been developed that
MTurkers use to communicate with each other (turkopti-
con.com, turkernation.com). These resources make it im-
portant for requestors to stay in good standing with the
community, and we have found that paying workers as
promptly as possible and being able to respond quickly to
worker questions and feedback is important for sustaining
worker participation.

4. Experiments
In seeking out the optimal system configuration we con-

ducted a series experiments, varying restrictions and quality
control mechanisms. Our early efforts focused on fast and
cheap prototype-style data collection which failed to yield
satisfactory results.

Because our task is an English language task, the first
built in MTurk qualification requirement we decided to ex-
plore was the locale restriction, which requires workers to

be based in a specific country. Unfortunately, the built in
locale restriction mechanism for MTurk only allows HIT
creators to restrict worker locale to a single country. We
ran prototype experiments with the locale restricted to the
US, India, and some with no locale restrictions. Our re-
sults indicate that restricting to the US produced the high-
est quality data set for our task. Other work on this subject
indicates that it is possible to more precisely restrict thelo-
cale of workers allowed to complete your HITs by looking
at the IP addresses of workers or asking for workers to re-
port their country of origin (Rand, 2011).

In the US local restricted prototype experiments, which
were run with the compensation of $.01 for five judgments,
the HITs failed to complete. With only a small amount of
HITs visible (initially 30), our HITs were also very low in
the MTurk search space. For our next set of experiments we
posted a series of full-pairwise HITs, which greatly boosted
the number of HITs visible to workers since all the HITs for
a full-pairwise graph can be generated at the start of the ex-
periment as opposed to the prototype framework which re-
quires that HITs be generated dynamically after each round.
The additional benefit of collecting full-pairwise data is the
complete data set allows us to run prototype and clustering
simulations, generating results using subsets of edges.

For the full-pairwise HITs we introduced a few of the
quality control mechanisms described in section 3 above,
namely using worker quality testing software and introduc-
ing two built in MTurk qualification requirements to our
HITs. These requirements mandated that only workers who
had greater than an 85% previous HIT approval rate and
who had completed at least 200 HITs were eligible to com-
plete our HITs, an initial filter against bots and chronic
spammers.

Lastly, the final experiments we ran tested the effect of
increasing the reward per HIT while also increasing the
number of comparisons made per HIT, and offering to pay
out bonuses to the best workers.

The configuration that we found to work the best was
paying 3 cents per 10 judgments in single HIT, allowing a
maximum worker error rate of 27%, restricting locale to the
US only, requiring workers to have at least an 85% previous
HIT approval rate and having completed at least 200 previ-
ous HITs, and offering bonuses to the top workers. This
configuration yielded a kappa score of 0.69 and an F-score
of 0.72. One interesting thing to point out is that this op-
timal configuration seems to be rather different from our
findings in 2009, when similar HITs with more work could
be completed at a fraction of the price (Rumshisky, 2009)–
evidence that the MTurk marketplace is rapidly changing.

Table 2 shows a summary of all the experiments run un-
der different system configurations.

5. Evaluation

There is a wide variety of evaluation metrics available for
determining the quality of clusters compared against a gold
standard. Among them we use set matching measurements,
pairwise evaluation measures, and entropy/mutual informa-
tion measurements. For simplicity, we only report f-scores
here.



Cost Comps Max # Total
# of Pairwise / per HIT per Locale Error HITs Cost Actual

Word Source Examples Prototype ($) HIT Restriction Rate Completed ($) Kappa Agreement F-score
shut CPA 150 Prototype 0.01 5 None None 68 Yes 3.40 0.17 0.58 0.27
open Ontonotes 150 Prototype 0.01 5 None None 95 Yes 4.75 0.12 0.50 0.41
swell CPA 150 Prototype 0.01 4 None None 89 Yes 4.45 0.08 0.51 0.36
lose Ontonotes 150 Prototype 0.02 5 US None 30 29 HITs 2.96 0.17 0.76 –
lose† Ontonotes 150 Prototype 0.02 5 None None 30 0 HITs 0.00 – – –
lose Ontonotes 150 Prototype 0.02 5 India None 222 222 22.20 0.04 0.50 –
shine CPA 84 Pairwise 0.01 6 None 33% 616 Yes 30.80 0.07 0.67 0.54
shine∗ CPA 84 Prototype 0.01 6 None 33% 580 – 29.00 0.07 0.65 0.54
open Ontonotes 100 Pairwise 0.01 5 US 33% 1030 941 HITs 49.84 0.20 0.71 0.55
open∗ Ontonotes 100 Prototype 0.01 5 US 33% 657 – 32.85 0.22 0.68 0.48
rain CPA 79 Pairwise 0.03 10 US 27% 344 Yes 51.60 0.68 0.84 0.72
rain∗ CPA 79 Prototype 0.03 10 US 27% 172 – 26.25 0.63 0.71 0.79

Table 2: Summary of experiments run under different system configurations.
∗ Indicates that experiment was simulated based on full-pairwise results.
† This experiment was run with a custom made qualification requirement that nobody completed

5.1. F-scores

The F-score (Zhao et al., 2005; Agirre et al., 2007) is a
set-matching measure. Precision, recall, and their harmonic
mean (van Rijsbergens F-measure) are computed for each
cluster/sense class pair. Each cluster is then matched to the
class with which it achieves the highest F-measure. The F-
score is computed as a weighted average of the F-measure
values obtained for each cluster.

For full-pairwise results, we performed a series of ex-
periments using Markov Clustering (MCL) to produce final
clusters from the data. The MCL algorithm takes as input a
graph encoded as a series of nodes and weighted edges be-
tween them, and runs flow simulations to prune the graph
and generate hard clusters (Van Dongen, 2000).

The key parameter in MCL is the inflation value,
which affects cluster granularity. We ran MCL
(http://micans.org/mcl/) across a range of inflation values
for several of the pairwise judgment graphs. Another pa-
rameter is the initial edge weights between pairs of sen-
tences. We initialized edges between all sentences to a
value of 1 and then added 1.5 to an edge for each worker
who judged two sentences as similar, subtracted 1 from
edge weights when workers judged two sentences as dif-
ferent, and added 0.25 for unclear judgments. This setting
yielded better results than some of the other configurations
(such as initializing all edge weights to 0, weighting same
or different judgments equally, and varying the weight of
unclear judgments).

Table 2 shows the f-scores of the runs that generated the
results closest to the gold standard. Inflation values achiev-
ing best f-scores varied between different targets, which is
expected, given that the granularity of senses also varies.
However, as one can see from the overall kappa and agree-
ment values, as well as the f-scores obtained in prototype
simulations for the same targets, the quality of the annota-
tion in some experiments was relatively poor, and the noise
in the annotation may also partially account for the discrep-
ancy in the best inflation value. Forshine-v, the best f-score
of .54 was achieved with inflation value 5.1. Foropen-v, the
best f-score of .55 was achieved with an inflation value of

4.03. Forrain-v, the best f-score of .72 was achieved with
an inflation value of 2.35.

5.2. Worker Error Rates

As mentioned in section 3.1, worker error rates are esti-
mated using software that attempts to separate out true error
rate from biases that some workers exhibit. The main pro-
cedure to estimate worker cost runs as follows: for each
worker, prior probabilities of assigning a labeli to an ob-
ject are computed. Next, for each assignment, the best pos-
sible estimate for the true label of the assignment is com-
puted. Given the true label, the expected cost of a worker
assigning that label is calculated. Finally, knowing how of-
ten the worker assigns a label and the expected cost, the
average misclassification cost of each worker is calculated,
a scalar value for which perfect workers have costs of zero
and random workers or spammers have high expected costs
(Ipeirotis et al., 2010).

6. Source Data

Our methodology does not presume the existence of a
gold standard sense-annotated corpus. HITs can be created
for any word as long as there are a sufficient number of ex-
ample sentences that can be used to populate a comprehen-
sive graph. However, in the present experiments, our HITs
are populated with gold standard sense-annotated sentences
from the OntoNotes and CPA (CPA, 2009). Typically, these
sources have too many example sentences across the vari-
ous senses of a single word to facilitate fast and inexpensive
MTurk annotation. To keep trials inexpensive and consis-
tent, for every word, a subset of is sampled from the gold
standard source, to be run through MTurk. In the initial
prototype-style experiments, 150 sentences were used. In
pairwise experiments, 80 sentences were sampled. The tar-
get sentences are chosen to preserve the original distribu-
tion of senses present in the gold standard corpus, with a
minimum threshold below which example sentences for a
sense are not removed.



7. Conclusion
The set of experiments we conducted suggest that there

has been a significant change in the crowdsourcing market-
place since its early days just a few short years ago. How-
ever, preliminary results indicate that it is possible to cre-
ate a high-quality word sense inventories using the sense-
crowdsourcing methodology outlined above without signif-
icant modification to the HIT structure and cost. In a large-
scale lexical development effort, however, even a small ad-
justment to the per-HIT pay would be costly.

There is also a great deal of flexibility in HIT structure
for the MTurk marketplace. Determining the exact HIT lay-
out that is best for this task is more of an art than a science,
requiring a balance between user-friendliness, cost consid-
erations, and the cognitive limitations of MTurkers.
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