Detecting selectional behavior of complex types in text
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Abstract

In this paper, we discuss some aspects of selectional lehafvilot objects, and present
an algorithm for clustering selector contexts for dot ncesraccording to the selected type.
The clustering algorithm is based on the notion of contdized similarity between selector
contexts and defines a similarity measure for contextual/atants of the target nominal.

1 Introduction

In the Generative Lexicon (GL) (Pustejovsky, 1995) knowledepresentation framework, complex
types (dot objects) are introduced to account for certgiedyof inherent polysemy. In this paper,
we discuss some aspects of selectional behavior of dottshjecorpus and present a method for
automatic detection of selector contexts specific to thepmrant types of the dot. We begin by
examining some of the relevant data. We then present anithigofor clustering selector contexts

for dot nominals according to the selected type. We conclittesome preliminary results.

2 GL Background & Data Analysis

Complex types are introduced in GL as a mechanism for deulitigselectional behavior of nouns
such agunch (EVENT - FooD) andnewspaper ((PHYS - INFO) - ORGANIZATION). The contexts in
which complex types occur may select for any of the simplesyjnat make up the complex type.

Q) a. | have mytunch in the backpack.HooD)
b. Yourlunch today was longer than usuak\ENT)

For a dot nominal, the senses that correspond to the simpés tsre connected in a regular
and well-defined manner. Some examples of complex typesiarra on Table 1. Complex types
typically allow multiple selection:

(2) We had aelicious (FoobD) leisurely (EVENT) lunch.



There also exist contexts that select specifically for themex type of each kind. Thus, for
some of the complex types there also seem to exist gatingcpted (Pustejovsky, 2007) whose
selectional specification may specify a transition betweensimple types that make up the com-
plex type. For example, food preparation predicates (pagch, steam, braise, cook) are gating
predicates for such complex types asIMAL - FOOD:

3) She wouldn’tpoach a chicken any other way.

Since some predicates select specifically for complex {yg@mse dot objects may function as
disambiguators for such predicates. Consider the dastate, which has two main senses: (1)
“verbalize to be recorded”, and (2) “control” (possibly isfhto “control” with animate subjects
and “serve as motivation for” with inanimate subjects). Tokowing nouns all occur as direct
objects with the first sense dictate:

(4) a. passage, story, letter, memoirs, novel
b. message, words, work, point

However, the nouns in (4a) are the "good” disambiguatoes (they can not be dictated in the
"control” sense). The nouns in (4b) are ambiguous. The gasadntbiguators are actually dot
objects of type NFo - PHYSOBJ, with dictate functioning as a gating predicate, which requires for
the information to be given physical form.

The use of complex types in text suggests that there is aménhasymmetry in the way dot
objects are used. This asymmetry is consistent with theesaic relation between the senses,
where each sense corresponds to one of the component typesexdmple, for the NIMAL -
FooD nominals, the subject position tends to disprefer tleedb sense, whereas in the object
position, such nominals occur both with the®D- and the AlIMAL -selecting predicates, as well
as with the gating predicates. In the object position, th@® selectors and the gating predicates
tend to dominate:

(5) chicken.n
subject
a. ANIMAL : peck, look, wander, come, cross, follow, die
object
a. ANIMAL : count, chase, kill, shoot, slaughter, skin, pluck, sa=ijfthrow
b. FoobD: eat, serve, prefer, turn, dip, stuff, carve, baste, raistmer
c. ANIMAL - FooD: poach, cook

A similar asymmetry can be seen with respect to differentirgnt positions for such dot types as
PROCESS- RESULT, EVENT - PROPOSITION etc. For example, adjectival modifiers famnstruc-
tion (PROCESS:- RESULT) tend to select for RSULT, whereas the predicates that takmstruction

as direct object tend to select forBCEss Similarly, forallegation (EVENT - PROPOSITION, the
PrRoPoOsITIONINterpretation is preferred in the object position.

(6) construction.n
object
EVENT: finance, oversee, complete, supervise, halt, permitmmagend enable, delay, stimulate
PHYsSOBJ: examine, build, inaugurate, photograph
adjectival modifier
PHYsSOBJ: logical, syntactic, passive, solid, all-metal, geoneethiybrid, rugged, sturdy, artificial, cultural, imagineti

1The data below is taken from the British National Corpus (BNC



Dot type Example

ACTION - PROPOSITION promise, allegation, lie, charge

STATE - PROPOSITION belief

ATTRIBUTE - VALUE temperature, weight, height, tension, strength

EVENT - INFO lecture, play, seminar, exam, quiz, test

EVENT - (INFO - SOUND) concert, sonata, symphony, song

EVENT - PHYSOBJ lunch, breakfast, dinner, tea

INFO - PHYSOBJ article, book, CD, DVD, dictionary, diary,
email, essay, letter, novel, paper

ORGANIZATION - (INFO - PHYSOBJ) newspaper, magazine, journal

ORGANIZATION - LoCc - HUMANGROUP university, city

EVENT - LOCATION - HUMAN GROUP class

APERTURE- PHYSOBJ door, window

PROCESS- RESULT construction, imitation, portrayal, reference,

decoration, display documentation, draw-
ing, enclosure, entry, instruction, invention,
simulation, illustration, agreement, approval,
recognition, damage, compensation, contri-
bution, discount, donation, acquisition, de-
duction, endowment, classification, purchase

PRODUCER- PRODUCT Honda, IBM, BMW

TREE- FRUIT / TREE- WOOD apple, orange, coffee / oak, elm, pine

ANIMAL - FooD anchovy, catfish, chicken, eel, herring, lamb,
octopus, rabbit, squid, trout

CONTAINER - CONTENTS bottle, bucket, carton, crate, cup, flask, keg,
pot, spoon

Table 1: Some examples of dot objects of different complg@esy as well as “pseudo-dots” that
exhibit dot-like behavior due to coercion.

(7) allegation.n
object
EVENT: face, fuel, avoid, deflect
PROPOSITION deny, refute, counter, contain, substantiate, rebutfironbelieve, corroborate, hear, dispute, broadcast,
prove

Generic asymmetry of use (i.e. the asymmetry across allhaggti positions) is also a common
property of some dot nominals. For example, sugDPESS- RESULT nominals asuilding, in-
vention, acquisition show a distinct preference for one of the types in all argurpesitions. For
building andinvention, the REsuLT/PHYSOBJ interpretation is much more frequent, whereas for
acquisition, the FROCES$EVENT interpretation dominates the use in all argument posititmés),

(9), and (10) below, we list the lexical items that tend t@sekach component type (or the dot type
itself) for these nouns in selected argument positions

(8) invention.n
object
a. REsULT: produce, explain, protect, adopt, develop, combinenpalieense, display, neglect, export, exploit
b. PROCESS welcome, avoid, stimulate, spark, trace, facilitate, dech

2Note that forbuilding, for exampleplan selects for the complex typeMENT - RESULT in the object position, while
abandon may select for either of the component types.



subject

a. ResuLT: simplify, impress, consist, popularize, appear, congpris
adjectival modifier

a. REsULT: finest, original, comic, successful, British, latest,gquaed, brilliant

(9) building.n
object
a. PHYsOBJ: erect, demolish, construct, occupy, restore, enter, erdnelesign, destroy, lease, own, renovate, surround,
damage, complete
b. EVENT: allow, finish, oppose, accelerate, initiate, halt, comeoegstop, undertake
c. EVENT - RESULT: plan
d. EVENT, RESULT: arrange, abandon
subject
a. PHYsOBuJ: house, stand, collapse, contain, survive, belong, remaarlook, surround, fall, replace, dominate
b. EVENT: begin, continue, commence
c. EVENT - PHYSOBJ: date
d. EVENT, PHYSOBJ: accompany

(10) acquisition.n
object
a. BvenT: finance, fund, complete, announce, authorize, commeaciitdte, oversee, control, approve, undertake
b. RESULT: identify, secure, seize, store, stalk
subject
a. BEVENT: occur, boost, result, strengthen, increase, depend, tak®, continue, affect, result
b. RESULT: turn out, offer, comprise, bore, allow
c. EVENT - RESULT: put, increase, mean, represent, complement

Subphrasal syntactic cues (e.g. plural/singular, definiefinite article) are often strong indicators
of the likely type selection:

(1)) a. He stored all his neacquisitions here. plural, RESULT)
b. The city authorized thacquisition of land to build the tunnel.s{ngular, EVENT)

(12) a. It was the most important development in radio sihednvention of the transistor.
(definite, EVENT)
b. Aninvention may be very beneficial, but it might also seriously undernainexisting
business. ifidefinite, RESULT)

However, the asymmetry inherent in a particular dot objeat masily overrule even the strong
contextual indicators. For exampbgquisition still tends to favor the EENT interpretation even in
plural, whereas even the use with an aspectual predicasenddeverride the preferencelmfilding
for the RESULT interpretation:

(13) a.Acquisitions have formed an important part of our strategy.
b. Thebuilding was nevecompleted.

3 Clustering Task

This complexity of selectional behavior makes it difficudt apply to dot objects the notion of
word sense as it is used in various automatic text procesasks. For example, multiple selection
(cf. (2)) makes it impossible to resolve the classificatioobtem of word sense disambiguation.
However, as illustrated in (9), (10), (7), (11), and (12)many cases, it is possible to tell which type
(or types) a particular individual selector prefers. Irsthiork, we address this task. Our goal in
these experiments is to obtain a clustering of all selectwadwords for all grammatical relations
a dot object is found in) according to the type it selects fthmcomplex type. Hence, founch,
we would like to obtain groupings such as:



(14) lunch.n
object
a. FoobD: eat, cook, enjoy, prepare, take, bring, etc.
b. EVENT: skip, finish, attend, miss, host, cancel, etc.
adjectival_modifier
a. FoouD: light, delicious, three-course, excellent, liquid, heommked, half-eaten, heavy, substantial, etc.
b. EVENT: leisurely, early, annual, celebratory, official, privatesekly, etc.

To address this problem, we developed a clustering metheedbancontextualized similarity.
We definecontextualized similarity as similarity between two lexical items with respect to aipar
ular context. In this work, context is defined as a single feed syntactic relation, in line with the
way context is typically defined in the distributional siarity literature (Grefenstette, 1994; Lin,
1998; Dagan, 2000; Pantel and Lin, 2002). For exanqaigk andprepare both occur in the context
(lunch, object™!) with a certain frequenc.

Whereas two lexical items may not be distributionally sanibverall, in a particular context
they may be essentially equivalent. This equivalence igims$ of the aspect of meaning they
select. For exampleancel andattend each have very different sets of senses, and their fregegenci
of occurrence do not have a similar distribution acrossexdat However, with respect to the
context (unch, object™!), they are quite similar: they both select for thee T interpretation. We
use the notion ofontextual equivalence to capture this intuition. A lexical itery; is acontextual
equivalent of lexical itemws with respect to a certain grammatical relatiBnf one of its senses
selects for the same aspect of meaning as one of the sensesrothe argument position defined
by R.

We use the following idea. Consider a bipartite graph wheie set of vertices corresponds to
headwords and the other to dependents, under a rel&ti&ach relation can be viewed as a function
mapping from headwords to dependents. The relation is defiyea set of tuplegw, R, w’),
wherew is the head, and’ is the dependent. The inverse of each relation is then a saplafs
(w', R~ w).

Clustering selector contexts for the target word accorttirtfe type they select (e.g. predicates
that select for the ZENT interpretation ofunch vs. those that select for theoBD interpretation)
can thus be induced by clusteringntextual equivalents of the target word - and vice veréa.

3.1 Contextualized Similarity

In the experiments described below, we apply the contaxaikimilarity metric to the contextual
equivalents of the target word. We proceed as follows:

1. Identify the set of selector contexts in which the targetdwvas found in corpus. For the
target contextt, R) = (lunch, object™1), this gives a set of verbs such as those listed in (14)
above.

2. Take the inverse image of the above set undefXhérelation (in this casepbject), which
gives a set of nouns which occur with selectors of the targetiwThese are candidates for
contextual equivalence for different senses of the targeth\icf. Fig 1). A noun is considered
a potential contextual equivalent only if it occurs in reatR with the specified number (or
percentage) of the target’s selectors. We used the thiéshel 5. These are the elements
selected for primary clustering.

30bject™! is the inverse of thebject relation that holds betweemepare andlunch.
4This graph representation is similar the one used in liteeatnore commonly for symmetric relations such as con-
junction or apposition (Widdows and Dorow, 2002).



3. For every word in the set of candidates for contextualwed@incy, we obtain a set of “good”
selectors:

(a) Take all the selector contexts in which both the targdttae contextual equivalent are
found. Compute two conditional probability scores for eaelectors: P(s|Rn) and
P(s|Rt), wheres is the selector context; is the potential contextual equivalent, and
is the target word. Notice that selectors are verbs foottject relation, adjectives for
thea modifier relation, and so on.

(b) Identify the “good” selectors, i.e. those that seleet $ame interpretation both for the
target noun and for potential contextual equivalent. Famgxe, forsandwich, given
the target wordunch, we would need to select verbs suchea cook, make, etc. The
“good” selectors will have relatively high conditional jabilities with both words. It's
important to understand that the conditional probabilityf depend on how frequent
the appropriate sense is for each of the two words. In therempets below, we used
the geometric mean to pick the “good” selectors. We comphwdegeometric mean of
the above conditional probabilities, and choose the toglctors that maximize it. In
the present experiments, we usgd= 20.

4. Compute the similarity matrix for the potential contedtaquivalents. We compute the sim-
ilarity measure as the sum of minima, which is effectivelvigglent to set-theoretic overlap
used in Jaccard and Dice measures. The contextualizedastynilor two potential contex-
tual equivalentsy; andws is computed as the sum of minima of conditional probabdifier
every “good” selector in the list obtained for;, andw,:

esimp (wy, wo, (t, R)) = Z min (P(s|Rwy), P(s|Rws2))

s€SE NS

wheret is the target wordR is the grammatical relation, arﬁ‘ﬁ , are the sets of top-K good
selectors that pick the same sensevaindt.

Unlike the standard numerical extensions of Jaccard and, Bie do not normalize the sum
of minima either by the size of the union, or by the average sizeach sef5; in order to
avoid high similarity scores for high-frequency words ampgotential contextual equiva-
lents. These are effectively promiscuous collocates thetiofrequently with all selectors,
including the “good” (i.e. reliable) selectors for eacharget word’s senses. The conditional
probabilities for them, however, are low due to their higbgitencies. Normalizing the sum
of minima by the sum of maxima, for example, as in Jaccard,bsithg the similarity value
up for high-frequency pairs: both words in the pair will haweghly equally low conditional
probability for all verbs in their respective selectordist

5. Perform agglomerative hierarchical clustering. We expented with the contextualized sim-
ilarity metric using both group-average and cluster cedtrmethods. The results reported
here were obtained using group-average clustering.

6. Compute Average Pairwise Similarity (APS) between tleeneints of each cluster. As we
proceed from the bottom of the dendrogram up, APS for thdalsislecreases. We compute
the percent decrease in APS (APS derivative) for everyeluserge point. The dendrogram
will be cut at the points that have high percent decrease i8,AB8 as to select the clusters
obtained prior to the APS-decreasing merge, as specifiesvbel



(a) (b)

Figure 1: Clustering contextual equivalents with inversage

7. Select a certain number sfed elements from the contextual equivalents with highest con-
textualized similarity to the target. Trace their mergeshi@ dendrogram, obtaining a trace
sequence of clusters) C ... C Cy,. for each seed, whereC} = {i}, andC}, is always the
top cluster.

(a) Sort the clusters in each trace sequence on the perazetde in APS obtained at the
next merge, and select the top-scorers.

(b) If a cluster is among the top-scorers for several seetisctsthat cluster to represent one
of the senses of the target.

8. For each of the target’s selectors s in grammatical oeidt, compute the following score for
each of the chosen clustets

assoc(s,C) = Z P(s|Rw)
weC

The resulting score indicates how likely selectos to pick the sense of the target associated
with C. The difference between the scores obtained for differemsas with a given selector
indicates how strongly that selector tends to prefer onke$enses. If the difference is small,
the selector must either (1) select for the complex typdfjtse (2) equally likely select for
either of the component types.

We used the Sketch Engine library (Kilgarriff et al., 200dektract and access populated gram-
matical relations from the British National Corpus. The t8keEngine parser extracts grammatical
relations using regular expressions over pos-tagged ferumber of patterns is defined for each
relation, so thesubject relation, for example, is extracted in both active and passMost of the
extracted binary relations, such alsject/object of, subject/subjectof, amodifier/modifies, etc.
are bidirectional.

In the current preliminary experiments, we ran the clusteprocedure for the following dot
object/argument positions pairsallggation.n, object of), (building.n, object of), (chicken.n, ob-
ject_of), (lecture.n, object of), (lecture.n, a_modifier), (lunch.n, object_of), (lunch.n, a_modifier),
(newspaper.n, object_of), (newspaper.n, a_modifier).



3.2 Results

Evaluation of unsupervised distributional clusteringoaitinms is typically done by comparing the
results to manually constructed resources such as Worddegiet's thesaurus, MRD definitions,
etc. (Grefenstette, 1994; Lin, 1998; Pantel and Lin, 200®jd&vs and Dorow, 2002). Thesaurus
entries against which the results are compared are typicass-checked against multiple resources
or frequency-filtered using semantically tagged corpo@n{® and Lin, 2002). This method of
evaluation is not suitable for the task of clustering selestsince the grouping obtained is only
valid with respect to the specified target context. Usingilti#sy clusters in a standard task such
as word sense disambiguation is also problematic, sinceegagged corpora typically assign a
single sense to one token, which makes it impossible to atdou multiple selection. We used
manual inspection of selected clusters to get an idea abewalidity of obtained clusters. We
illustrate below the outcome of different stages of the algm using the target contextR =
(lunch, object™).

Consider the best clusters obtained fardb- and EVENT-contextual equivalents fdunch used
in direct object position:

Cl uster 6290=5702+6230

[j uice-n, cocktail-n, al cohol -n, wi ne-n, al e-n, brandy- n, vodka- n, chanpagne- n, beer-n, pint-n
whi sky-n, gi n-n, sherry-n, strawn, corn-n, liver-n, cereal -n, goose-n, vegetabl e-n,rice-n
pasta-n, stuffing-n,di sh-n,tomato-n, pea-n, bean-n, ham n, turkey-n, nushroom n, pot at o-n

chi cken-n, carrot-n, bacon- n, cabbage-n, nut - n, appl e-n, orange-n, | ettuce-n, dessert-n, chi p-n
f ood- n, snack- n, buf f et - n, st eak- n, sal ad- n, sandw ch-n, di nner - n, neal - n, | unch-n, breakf ast-n
supper - n, beef - n, sweet - n, cri sp-n, chop-n, sausage- n, pi zza- n, neat - n, chocol at e- n, banana- n
spaghet ti-n, yoghurt-n,ice-creamn, doughnut-n, m nt-n, honey-n,jamn, soup-n,toast-n,tea-n
cof f ee- n, bread- n, cheese-n, cake- n, curry-n, bun-n, bi scui t-n, puddi ng-n, marmal ade-n,jelly-n
pi e-n, porridge-n,tart-n, pastry-n, stewn, sauce-n, hay-n, butter-n,roll-n, cream n]

Cl uster 6347=5673+6299

[t our nanment - n, cont est - n, out i ng- n, bar becue- n, exhi bi tion-n, festival -n, heari ng-n, sumit-n
tal k-n, bal l ot-n, el ection-n, referendumn, di sco-n, congress-n,inquest-n,fair-n,cerenony-n
reunion-n,rally-n, neeti ng-n, conference-n, sem nar-n, par ade- n, r ehear sal - n, dance-n, funeral -n
clinic-n,feast-n,cel ebration-n, session-n,workshop-n, demonstrati on-n, concert-n, briefing-n
| ecture-n, reception-n, banquet -n, | uncheon-n, weddi ng- n, gat heri ng- n, event - n, processi on- n]

Table 2 shows the soft selector assignment obtaineduoet{, object™!) using the above clus-
ters as described in step 8 in Section 3.1. Notice that thexteelsets for both senses are quite
heterogeneous. Nonetheless, the assigned selectorfsainisgs are correct with accuracy well
above the majority baseline. For example, out of all setsctmld gets assigned the highest asso-
ciation score with the ¥ENT sense. This may appear inaccurate, simae is quite polysemous
and one of its senses selects fer8OBJ. However, in all occurrences aifinch in the BNC,hold
is indeed found with the ¥ENT interpretation, actually confirming the accuracy of theigrssd
scoring.

A partial trace of the dendrogram obtained famgh, object™!), using the seedonference is
shown in Table 4. It is easy to see that semantically veryndistvords begin to cluster very early
in the trace, yet most of the elements in the initial mergescégarly good contextual equivalents
for the BEVENT sense ofunch. Table 3 illustrates the choice of selector lists based oitchvbon-
textualized similarity is computed (cf. steps 3 and 4 in BecB.1). The accuracy of the resulting
selector/sense assignment clearly depends on the suteashatage of the algorithm. The current
implementation seems to produce selector lists that are axmurate for verb-object selectors than
for adjectival modifiers.



Selector BOD EVENT Assignment | Selector ob EVENT Assignment
eat-v 0.089 0.002 food cancel-v 0.000 0.003 event
cook-v 0.024 0.003 food organise-v 0.000 0.034 event
serve-v 0.024 0.002 food include-v 0.013 0.011 food
skip-v 0.002 0.000 food order-v 0.008 0.001 food
finish-v 0.009 0.002 food grab-v 0.000 0.000 food
enjoy-v 0.006 0.016 event give-v 0.010 0.045 event
prepare-v  0.009 0.004 food spoil-v 0.000 0.000 food
attend-v  0.001 0.100 event share-v 0.004 0.002 food
miss-v 0.001 0.002 event hold-v 0.004 0.157 event
take-v 0.023 0.007 food pack-v 0.000 0.000 food
provide-v 0.007 0.010 event appreciate-v  0.000 0.000 food
get-v 0.064 0.014 food like-v 0.032 0.004 food
bring-v 0.011 0.003 food offer-v 0.006 0.003 food
buy-v 0.023 0.000 food plan-v 0.000 0.013 event
arrange-v  0.002 0.019 event supply-v 0.001 0.000 food
want-v 0.035 0.003 food make-v 0.083 0.016 food
host-v 0.000 0.010 event organize-v 0.000 0.011 event

Table 2: Selector assignment scores fan¢h, object™!)

| lunch-n | conference-n fair-n| | lunch-n | conference-n fair-n
attend-v | 0.020 | 0.125 0.066 | arrange-v | 0.011 | 0.002 0.011
hold-v 0.013 | 0.180 0.264 | host-v 0.005 | 0.016 0.033
tell-v 0.003 | 0.136 0.022 | follow-v 0.007 | 0.009 0.011
organise-v| 0.008 | 0.038 0.011 | organize-v| 0.003 | 0.013 0.011

Table 3: Conditional probabilitie®(s|Rn) for the overlap in top-K selector lists fmonference
andfair, with respect tol(inch, object™1)

4 Conclusions and Future Work

Despite the peculiar selectional behavior of dot objectscwvincludes occurring in multiple selec-
tion contexts as well as with dot-type-specific selectoms have shown that it is possible to derive
automatically sets of selectors for each of the componegrgstyusing the method we described.
The best clusters of contextual equivalents obtained fan eagument position in which the target
nominal occurs clearly correspond to the component typéseofiot. Examining the difference be-
tween the association scores obtained for each selectoredpect to the resulting clusters seems
to produce heterogeneous sets of “good” disambiguatorsaicin component type.

We avoid the common computational pitfalls in distribuabrsimilarity-based clustering by
computing clusters of short contextualized vectors. A tiarelation graph allows for mirror
clustering of the target's selectors and its contextuaivedgnts. It is also quite easy to consider
extended relation sets instead of single relation inverBless is clearly desirable in a standard WSD
task, where a particular aspect of meaning gets picked byrdbication of selectors in different
argument positions. Alternatively, itis also possibledombine the association scores from selectors
in different argument positions to disambiguate the target

The clustering results may potentially be improved by mgkininto an iterative procedure,
repeated in succession on both parts of the graph. Thisguoealso allows one to seed the clusters



Sep  Inter- Intra- APS Resulting cluster
cluster cluster % de
APS APS crease

1 0.445 0.445 0.00 | [conference-n] [sen nar-n]

2 0.430 0.435 0.02 | [meeting-n] [conference-n sem nar-n|

3 0.397 0.416 0.04 | [rally-n] [neeting-n conference-n sem nar-n]

4 0.342 0.387 0.07 | [reunion-n] [rally-n meeting-n conference-n sem nar-n|

5 0.314 0.363 0.06 | [cerenpny-n] [reunion-n rally-n nmeeting-n conference-n
semi nar - nj

6 0.295 0.332 0.09 | [inquest-n fair-n] [cerenpny-n reunion-n rally-n neeting-n
conference-n seminar-nj

7 0.267 0.318 0.04 | [congress-n] [inquest-n fair-n cerenpny-n reunion-n rally-n
neeting-n conference-n seminar-n

8 0.264 0.307 0.03 | [di sco-n] [congress-n inquest-n fair-n cerenmony-n reunion-n
rally-n nmeeting-n conference-n sem nar-n|

9 0.246 0.280 0.09 | [talk-n ballot-n election-n referendumn] [di sco-n congress-n

inquest-n fair-n cerenopny-n reunion-n rally-n neeting-n
conference-n seminar-nj

10 0.223 0.272 0.03 | [summit-n] [tal k-n ballot-n election-n referendumn disco-n
congress-n inquest-n fair-n cerenpny-n reunion-n rally-n
neeting-n conference-n seninar-n]

11 0.216 0.265 0.03 | [hearing-n] [summit-n talk-n ballot-n election-n referendumn
di sco-n congress-n inquest-n fair-n cerenobny-n reuni on-n
rally-n nmeeting-n conference-n sem nar-n|

12 0.197 0.224 0.15 | [hearing-n summit-n talk-n ballot-n el ection-n referendumn
di sco-n congress-n inquest-n fair-n cerenbny-n reuni on-n
rally-n neeting-n conference-n sem nar-n] [parade-n

rehearsal -n weddi ng-n funeral-n clinic-n feast-n

cel ebration-n session-n workshop-n denonstration-n concert-n
briefing-n |l ecture-n reception-n banquet-n | uncheon-n]

Table 4: Dendrogram trace for the tar§jetnch- n, seedcconf er ence- n.

manually, as it is done in some thesaurus constructionighgus (e.g. (Roark and Charniak, 1998)).
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