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Abstract

In this paper, we discuss some aspects of selectional behavior of dot objects, and present
an algorithm for clustering selector contexts for dot nominals according to the selected type.
The clustering algorithm is based on the notion of contextualized similarity between selector
contexts and defines a similarity measure for contextual equivalents of the target nominal.

1 Introduction

In the Generative Lexicon (GL) (Pustejovsky, 1995) knowledge representation framework, complex
types (dot objects) are introduced to account for certain types of inherent polysemy. In this paper,
we discuss some aspects of selectional behavior of dot objects in corpus and present a method for
automatic detection of selector contexts specific to the component types of the dot. We begin by
examining some of the relevant data. We then present an algorithm for clustering selector contexts
for dot nominals according to the selected type. We concludewith some preliminary results.

2 GL Background & Data Analysis

Complex types are introduced in GL as a mechanism for dealingwith selectional behavior of nouns
such aslunch (EVENT · FOOD) andnewspaper ((PHYS · INFO) · ORGANIZATION). The contexts in
which complex types occur may select for any of the simple types that make up the complex type.

(1) a. I have mylunch in the backpack. (FOOD)
b. Your lunch today was longer than usual. (EVENT)

For a dot nominal, the senses that correspond to the simple types are connected in a regular
and well-defined manner. Some examples of complex types are given in Table 1. Complex types
typically allow multiple selection:

(2) We had adelicious (FOOD) leisurely (EVENT) lunch.



There also exist contexts that select specifically for the complex type of each kind. Thus, for
some of the complex types there also seem to exist gating predicates (Pustejovsky, 2007) whose
selectional specification may specify a transition betweentwo simple types that make up the com-
plex type. For example, food preparation predicates (e.g.poach, steam, braise, cook) are gating
predicates for such complex types as ANIMAL · FOOD:

(3) She wouldn’tpoach a chicken any other way.

Since some predicates select specifically for complex types, some dot objects may function as
disambiguators for such predicates. Consider the verbdictate, which has two main senses: (1)
“verbalize to be recorded”, and (2) “control” (possibly split into “control” with animate subjects
and “serve as motivation for” with inanimate subjects). Thefollowing nouns all occur1 as direct
objects with the first sense ofdictate:

(4) a. passage, story, letter, memoirs, novel
b. message, words, work, point

However, the nouns in (4a) are the ”good” disambiguators (i.e. they can not be dictated in the
”control” sense). The nouns in (4b) are ambiguous. The good disambiguators are actually dot
objects of type INFO · PHYSOBJ, with dictate functioning as a gating predicate, which requires for
the information to be given physical form.

The use of complex types in text suggests that there is an inherent asymmetry in the way dot
objects are used. This asymmetry is consistent with the systematic relation between the senses,
where each sense corresponds to one of the component types. For example, for the ANIMAL ·
FOOD nominals, the subject position tends to disprefer the FOOD sense, whereas in the object
position, such nominals occur both with the FOOD- and the ANIMAL -selecting predicates, as well
as with the gating predicates. In the object position, the FOOD selectors and the gating predicates
tend to dominate:

(5) chicken.n
subject
a. ANIMAL : peck, look, wander, come, cross, follow, die
object
a. ANIMAL : count, chase, kill, shoot, slaughter, skin, pluck, sacrifice, throw
b. FOOD: eat, serve, prefer, turn, dip, stuff, carve, baste, roast,simmer
c. ANIMAL · FOOD: poach, cook

A similar asymmetry can be seen with respect to different argument positions for such dot types as
PROCESS· RESULT, EVENT · PROPOSITION, etc. For example, adjectival modifiers forconstruc-
tion (PROCESS· RESULT) tend to select for RESULT, whereas the predicates that takeconstruction
as direct object tend to select for PROCESS. Similarly, for allegation (EVENT · PROPOSITION), the
PROPOSITIONinterpretation is preferred in the object position.

(6) construction.n
object
EVENT: finance, oversee, complete, supervise, halt, permit, recommend enable, delay, stimulate
PHYSOBJ: examine, build, inaugurate, photograph
adjectival modifier
PHYSOBJ: logical, syntactic, passive, solid, all-metal, geometric, hybrid, rugged, sturdy, artificial, cultural, imaginative

1The data below is taken from the British National Corpus (BNC)



Dot type Example
ACTION · PROPOSITION promise, allegation, lie, charge
STATE · PROPOSITION belief
ATTRIBUTE · VALUE temperature, weight, height, tension, strength
EVENT · INFO lecture, play, seminar, exam, quiz, test
EVENT · (INFO · SOUND) concert, sonata, symphony, song
EVENT · PHYSOBJ lunch, breakfast, dinner, tea
INFO · PHYSOBJ article, book, CD, DVD, dictionary, diary,

email, essay, letter, novel, paper
ORGANIZATION · (INFO · PHYSOBJ) newspaper, magazine, journal
ORGANIZATION · LOC · HUMAN GROUP university, city
EVENT · LOCATION · HUMAN GROUP class
APERTURE· PHYSOBJ door, window
PROCESS· RESULT construction, imitation, portrayal, reference,

decoration, display documentation, draw-
ing, enclosure, entry, instruction, invention,
simulation, illustration, agreement, approval,
recognition, damage, compensation, contri-
bution, discount, donation, acquisition, de-
duction, endowment, classification, purchase

PRODUCER· PRODUCT Honda, IBM, BMW
TREE · FRUIT / TREE · WOOD apple, orange, coffee / oak, elm, pine

ANIMAL · FOOD anchovy, catfish, chicken, eel, herring, lamb,
octopus, rabbit, squid, trout

CONTAINER · CONTENTS bottle, bucket, carton, crate, cup, flask, keg,
pot, spoon

Table 1: Some examples of dot objects of different complex types, as well as “pseudo-dots” that
exhibit dot-like behavior due to coercion.

(7) allegation.n
object
EVENT: face, fuel, avoid, deflect
PROPOSITION: deny, refute, counter, contain, substantiate, rebut, confirm, believe, corroborate, hear, dispute, broadcast,
prove

Generic asymmetry of use (i.e. the asymmetry across all argument positions) is also a common
property of some dot nominals. For example, such PROCESS· RESULT nominals asbuilding, in-
vention, acquisition show a distinct preference for one of the types in all argument positions. For
building and invention, the RESULT/PHYSOBJ interpretation is much more frequent, whereas for
acquisition, the PROCESS/EVENT interpretation dominates the use in all argument positions. In (8),
(9), and (10) below, we list the lexical items that tend to select each component type (or the dot type
itself) for these nouns in selected argument positions2.

(8) invention.n
object
a. RESULT: produce, explain, protect, adopt, develop, combine, patent, license, display, neglect, export, exploit
b. PROCESS: welcome, avoid, stimulate, spark, trace, facilitate, demand

2Note that forbuilding, for example,plan selects for the complex type EVENT · RESULT in the object position, while
abandon may select for either of the component types.



subject
a. RESULT: simplify, impress, consist, popularize, appear, comprise
adjectival modifier
a. RESULT: finest, original, comic, successful, British, latest, patented, brilliant

(9) building.n
object
a. PHYSOBJ: erect, demolish, construct, occupy, restore, enter, convert, design, destroy, lease, own, renovate, surround,
damage, complete
b. EVENT: allow, finish, oppose, accelerate, initiate, halt, commence, stop, undertake
c. EVENT · RESULT: plan
d. EVENT, RESULT: arrange, abandon
subject
a. PHYSOBJ: house, stand, collapse, contain, survive, belong, remain, overlook, surround, fall, replace, dominate
b. EVENT: begin, continue, commence
c. EVENT · PHYSOBJ: date
d. EVENT, PHYSOBJ: accompany

(10) acquisition.n
object
a. EVENT: finance, fund, complete, announce, authorize, commence, facilitate, oversee, control, approve, undertake
b. RESULT: identify, secure, seize, store, stalk
subject
a. EVENT: occur, boost, result, strengthen, increase, depend, form, take, continue, affect, result
b. RESULT: turn out, offer, comprise, bore, allow
c. EVENT · RESULT: put, increase, mean, represent, complement

Subphrasal syntactic cues (e.g. plural/singular, definite/indefinite article) are often strong indicators
of the likely type selection:

(11) a. He stored all his newacquisitions here. (plural , RESULT)
b. The city authorized theacquisition of land to build the tunnel. (singular, EVENT)

(12) a. It was the most important development in radio sincethe invention of the transistor.
(definite, EVENT)
b. An invention may be very beneficial, but it might also seriously underminean existing
business. (indefinite, RESULT)

However, the asymmetry inherent in a particular dot object may easily overrule even the strong
contextual indicators. For example,acquisition still tends to favor the EVENT interpretation even in
plural, whereas even the use with an aspectual predicate does not override the preference ofbuilding
for the RESULT interpretation:

(13) a.Acquisitions have formed an important part of our strategy.
b. Thebuilding was nevercompleted.

3 Clustering Task

This complexity of selectional behavior makes it difficult to apply to dot objects the notion of
word sense as it is used in various automatic text processingtasks. For example, multiple selection
(cf. (2)) makes it impossible to resolve the classification problem of word sense disambiguation.
However, as illustrated in (9), (10), (7), (11), and (12), inmany cases, it is possible to tell which type
(or types) a particular individual selector prefers. In this work, we address this task. Our goal in
these experiments is to obtain a clustering of all selectors(headwords for all grammatical relations
a dot object is found in) according to the type it selects fromthe complex type. Hence, forlunch,
we would like to obtain groupings such as:



(14) lunch.n
object
a. FOOD: eat, cook, enjoy, prepare, take, bring, etc.
b. EVENT: skip, finish, attend, miss, host, cancel, etc.
adjectival modifier
a. FOOD: light, delicious, three-course, excellent, liquid, home-cooked, half-eaten, heavy, substantial, etc.
b. EVENT: leisurely, early, annual, celebratory, official, private, weekly, etc.

To address this problem, we developed a clustering method based oncontextualized similarity.
We definecontextualized similarity as similarity between two lexical items with respect to a partic-
ular context. In this work, context is defined as a single populated syntactic relation, in line with the
way context is typically defined in the distributional similarity literature (Grefenstette, 1994; Lin,
1998; Dagan, 2000; Pantel and Lin, 2002). For example,cook andprepare both occur in the context
(lunch, object−1) with a certain frequency.3

Whereas two lexical items may not be distributionally similar overall, in a particular context
they may be essentially equivalent. This equivalence is in terms of the aspect of meaning they
select. For example,cancel andattend each have very different sets of senses, and their frequencies
of occurrence do not have a similar distribution across contexts. However, with respect to the
context (lunch, object−1), they are quite similar: they both select for the EVENT interpretation. We
use the notion ofcontextual equivalence to capture this intuition. A lexical itemw1 is acontextual
equivalent of lexical itemw2 with respect to a certain grammatical relationR if one of its senses
selects for the same aspect of meaning as one of the senses ofw2 in the argument position defined
by R.

We use the following idea. Consider a bipartite graph where one set of vertices corresponds to
headwords and the other to dependents, under a relationR. Each relation can be viewed as a function
mapping from headwords to dependents. The relation is defined by a set of tuples(w,R,w′),
wherew is the head, andw′ is the dependent. The inverse of each relation is then a set oftuples
(w′, R−1, w).

Clustering selector contexts for the target word accordingto the type they select (e.g. predicates
that select for the EVENT interpretation oflunch vs. those that select for the FOOD interpretation)
can thus be induced by clusteringcontextual equivalents of the target word - and vice versa.4

3.1 Contextualized Similarity

In the experiments described below, we apply the contextualized similarity metric to the contextual
equivalents of the target word. We proceed as follows:

1. Identify the set of selector contexts in which the target word was found in corpus. For the
target context(t, R) = (lunch, object−1), this gives a set of verbs such as those listed in (14)
above.

2. Take the inverse image of the above set under theR−1 relation (in this case,object), which
gives a set of nouns which occur with selectors of the target word. These are candidates for
contextual equivalence for different senses of the target word (cf. Fig 1). A noun is considered
a potential contextual equivalent only if it occurs in relation R with the specified number (or
percentage) of the target’s selectors. We used the threshold σ = 5. These are the elements
selected for primary clustering.

3Object−1 is the inverse of theobject relation that holds betweenprepare andlunch.
4This graph representation is similar the one used in literature more commonly for symmetric relations such as con-

junction or apposition (Widdows and Dorow, 2002).



3. For every word in the set of candidates for contextual equivalency, we obtain a set of “good”
selectors:

(a) Take all the selector contexts in which both the target and the contextual equivalent are
found. Compute two conditional probability scores for eachselectors: P (s|Rn) and
P (s|Rt), wheres is the selector context,n is the potential contextual equivalent, andt

is the target word. Notice that selectors are verbs for theobject relation, adjectives for
thea modifier relation, and so on.

(b) Identify the “good” selectors, i.e. those that select the same interpretation both for the
target noun and for potential contextual equivalent. For example, forsandwich, given
the target wordlunch, we would need to select verbs such aseat, cook, make, etc. The
“good” selectors will have relatively high conditional probabilities with both words. It’s
important to understand that the conditional probability will depend on how frequent
the appropriate sense is for each of the two words. In the experiments below, we used
the geometric mean to pick the “good” selectors. We compute the geometric mean of
the above conditional probabilities, and choose the top-K selectors that maximize it. In
the present experiments, we usedK = 20.

4. Compute the similarity matrix for the potential contextual equivalents. We compute the sim-
ilarity measure as the sum of minima, which is effectively equivalent to set-theoretic overlap
used in Jaccard and Dice measures. The contextualized similarity for two potential contex-
tual equivalentsw1 andw2 is computed as the sum of minima of conditional probabilities for
every “good” selector in the list obtained forw1 andw2:

csimK(w1, w2, (t, R)) =
∑

s∈SK
w1,t∩SK

w2,t

min (P (s|Rw1), P (s|Rw2))

wheret is the target word,R is the grammatical relation, andSK
w,t are the sets of top-K good

selectors that pick the same sense ofw andt.

Unlike the standard numerical extensions of Jaccard and Dice, we do not normalize the sum
of minima either by the size of the union, or by the average size of each setSi in order to
avoid high similarity scores for high-frequency words among potential contextual equiva-
lents. These are effectively promiscuous collocates that occur frequently with all selectors,
including the “good” (i.e. reliable) selectors for each of target word’s senses. The conditional
probabilities for them, however, are low due to their high frequencies. Normalizing the sum
of minima by the sum of maxima, for example, as in Jaccard, will bring the similarity value
up for high-frequency pairs: both words in the pair will haveroughly equally low conditional
probability for all verbs in their respective selector lists.

5. Perform agglomerative hierarchical clustering. We experimented with the contextualized sim-
ilarity metric using both group-average and cluster centroid methods. The results reported
here were obtained using group-average clustering.

6. Compute Average Pairwise Similarity (APS) between the elements of each cluster. As we
proceed from the bottom of the dendrogram up, APS for the clusters decreases. We compute
the percent decrease in APS (APS derivative) for every cluster merge point. The dendrogram
will be cut at the points that have high percent decrease in APS, so as to select the clusters
obtained prior to the APS-decreasing merge, as specified below.



Figure 1: Clustering contextual equivalents with inverse image

7. Select a certain number ofseed elements from the contextual equivalents with highest con-
textualized similarity to the target. Trace their merges inthe dendrogram, obtaining a trace
sequence of clustersCi

0 ⊂ ... ⊂ Ci
ni

for each seedi, whereCi
0 = {i}, andCi

ni
is always the

top cluster.

(a) Sort the clusters in each trace sequence on the percent decrease in APS obtained at the
next merge, and select the top-scorers.

(b) If a cluster is among the top-scorers for several seeds, select that cluster to represent one
of the senses of the target.

8. For each of the target’s selectors s in grammatical relationR, compute the following score for
each of the chosen clustersC:

assoc(s,C) =
∑

w∈C

P (s|Rw)

The resulting score indicates how likely selectors is to pick the sense of the target associated
with C. The difference between the scores obtained for different senses with a given selector
indicates how strongly that selector tends to prefer one of the senses. If the difference is small,
the selector must either (1) select for the complex type itself, or (2) equally likely select for
either of the component types.

We used the Sketch Engine library (Kilgarriff et al., 2004) to extract and access populated gram-
matical relations from the British National Corpus. The Sketch Engine parser extracts grammatical
relations using regular expressions over pos-tagged text.A number of patterns is defined for each
relation, so thesubject relation, for example, is extracted in both active and passive. Most of the
extracted binary relations, such asobject/object of, subject/subject of, a modifier/modifies, etc.
are bidirectional.

In the current preliminary experiments, we ran the clustering procedure for the following dot
object/argument positions pairs: (allegation.n, object of), (building.n, object of), (chicken.n, ob-
ject of), (lecture.n, object of), (lecture.n, a modifier), (lunch.n, object of), (lunch.n, a modifier),
(newspaper.n, object of), (newspaper.n, a modifier).



3.2 Results

Evaluation of unsupervised distributional clustering algorithms is typically done by comparing the
results to manually constructed resources such as WordNet,Roget’s thesaurus, MRD definitions,
etc. (Grefenstette, 1994; Lin, 1998; Pantel and Lin, 2002; Widdows and Dorow, 2002). Thesaurus
entries against which the results are compared are typically cross-checked against multiple resources
or frequency-filtered using semantically tagged corpora (Pantel and Lin, 2002). This method of
evaluation is not suitable for the task of clustering selectors, since the grouping obtained is only
valid with respect to the specified target context. Using resulting clusters in a standard task such
as word sense disambiguation is also problematic, since sense-tagged corpora typically assign a
single sense to one token, which makes it impossible to account for multiple selection. We used
manual inspection of selected clusters to get an idea about the validity of obtained clusters. We
illustrate below the outcome of different stages of the algorithm using the target contexttR =
(lunch, object−1).

Consider the best clusters obtained for FOOD- and EVENT-contextual equivalents forlunch used
in direct object position:

Cluster 6290=5702+6230:
[juice-n,cocktail-n,alcohol-n,wine-n,ale-n,brandy-n,vodka-n,champagne-n,beer-n,pint-n,
whisky-n,gin-n,sherry-n,straw-n,corn-n,liver-n,cereal-n,goose-n,vegetable-n,rice-n,
pasta-n,stuffing-n,dish-n,tomato-n,pea-n,bean-n,ham-n,turkey-n,mushroom-n,potato-n,
chicken-n,carrot-n,bacon-n,cabbage-n,nut-n,apple-n,orange-n,lettuce-n,dessert-n,chip-n,
food-n,snack-n,buffet-n,steak-n,salad-n,sandwich-n,dinner-n,meal-n,lunch-n,breakfast-n,
supper-n,beef-n,sweet-n,crisp-n,chop-n,sausage-n,pizza-n,meat-n,chocolate-n,banana-n,
spaghetti-n,yoghurt-n,ice-cream-n,doughnut-n,mint-n,honey-n,jam-n,soup-n,toast-n,tea-n,
coffee-n,bread-n,cheese-n,cake-n,curry-n,bun-n,biscuit-n,pudding-n,marmalade-n,jelly-n,
pie-n,porridge-n,tart-n,pastry-n,stew-n,sauce-n,hay-n,butter-n,roll-n,cream-n]

Cluster 6347=5673+6299:
[tournament-n,contest-n,outing-n,barbecue-n,exhibition-n,festival-n,hearing-n,summit-n,
talk-n,ballot-n,election-n,referendum-n,disco-n,congress-n,inquest-n,fair-n,ceremony-n,
reunion-n,rally-n,meeting-n,conference-n,seminar-n,parade-n,rehearsal-n,dance-n,funeral-n,
clinic-n,feast-n,celebration-n,session-n,workshop-n,demonstration-n,concert-n,briefing-n,
lecture-n,reception-n,banquet-n,luncheon-n,wedding-n,gathering-n,event-n,procession-n]

Table 2 shows the soft selector assignment obtained for (lunch, object−1) using the above clus-
ters as described in step 8 in Section 3.1. Notice that the selector sets for both senses are quite
heterogeneous. Nonetheless, the assigned selector/sensepairings are correct with accuracy well
above the majority baseline. For example, out of all selectors, hold gets assigned the highest asso-
ciation score with the EVENT sense. This may appear inaccurate, sincehold is quite polysemous
and one of its senses selects for PHYSOBJ. However, in all occurrences oflunch in the BNC,hold
is indeed found with the EVENT interpretation, actually confirming the accuracy of the assigned
scoring.

A partial trace of the dendrogram obtained for (lunch, object−1), using the seedconference is
shown in Table 4. It is easy to see that semantically very distinct words begin to cluster very early
in the trace, yet most of the elements in the initial merges are clearly good contextual equivalents
for the EVENT sense oflunch. Table 3 illustrates the choice of selector lists based on which con-
textualized similarity is computed (cf. steps 3 and 4 in Section 3.1). The accuracy of the resulting
selector/sense assignment clearly depends on the success at each stage of the algorithm. The current
implementation seems to produce selector lists that are more accurate for verb-object selectors than
for adjectival modifiers.



Selector FOOD EVENT Assignment
eat-v 0.089 0.002 food
cook-v 0.024 0.003 food
serve-v 0.024 0.002 food
skip-v 0.002 0.000 food
finish-v 0.009 0.002 food
enjoy-v 0.006 0.016 event
prepare-v 0.009 0.004 food
attend-v 0.001 0.100 event
miss-v 0.001 0.002 event
take-v 0.023 0.007 food
provide-v 0.007 0.010 event
get-v 0.064 0.014 food
bring-v 0.011 0.003 food
buy-v 0.023 0.000 food
arrange-v 0.002 0.019 event
want-v 0.035 0.003 food
host-v 0.000 0.010 event

Selector FOOD EVENT Assignment
cancel-v 0.000 0.003 event
organise-v 0.000 0.034 event
include-v 0.013 0.011 food
order-v 0.008 0.001 food
grab-v 0.000 0.000 food
give-v 0.010 0.045 event
spoil-v 0.000 0.000 food
share-v 0.004 0.002 food
hold-v 0.004 0.157 event
pack-v 0.000 0.000 food
appreciate-v 0.000 0.000 food
like-v 0.032 0.004 food
offer-v 0.006 0.003 food
plan-v 0.000 0.013 event
supply-v 0.001 0.000 food
make-v 0.083 0.016 food
organize-v 0.000 0.011 event

Table 2: Selector assignment scores for (lunch, object−1)

lunch-n conference-n fair-n
attend-v 0.020 0.125 0.066
hold-v 0.013 0.180 0.264
tell-v 0.003 0.136 0.022
organise-v 0.008 0.038 0.011

lunch-n conference-n fair-n
arrange-v 0.011 0.002 0.011
host-v 0.005 0.016 0.033
follow-v 0.007 0.009 0.011
organize-v 0.003 0.013 0.011

Table 3: Conditional probabilitiesP (s|Rn) for the overlap in top-K selector lists forconference
andfair, with respect to (lunch, object−1)

4 Conclusions and Future Work

Despite the peculiar selectional behavior of dot objects, which includes occurring in multiple selec-
tion contexts as well as with dot-type-specific selectors, we have shown that it is possible to derive
automatically sets of selectors for each of the component types using the method we described.
The best clusters of contextual equivalents obtained for each argument position in which the target
nominal occurs clearly correspond to the component types ofthe dot. Examining the difference be-
tween the association scores obtained for each selector with respect to the resulting clusters seems
to produce heterogeneous sets of “good” disambiguators foreach component type.

We avoid the common computational pitfalls in distributional similarity-based clustering by
computing clusters of short contextualized vectors. A bipartite relation graph allows for mirror
clustering of the target’s selectors and its contextual equivalents. It is also quite easy to consider
extended relation sets instead of single relation inverses. This is clearly desirable in a standard WSD
task, where a particular aspect of meaning gets picked by a combination of selectors in different
argument positions. Alternatively, it is also possible to combine the association scores from selectors
in different argument positions to disambiguate the target.

The clustering results may potentially be improved by making it into an iterative procedure,
repeated in succession on both parts of the graph. This procedure also allows one to seed the clusters



Step Inter-
cluster
APS

Intra-
cluster
APS

APS
% de-
crease

Resulting cluster

1 0.445 0.445 0.00 [conference-n] [seminar-n]
2 0.430 0.435 0.02 [meeting-n] [conference-n seminar-n]
3 0.397 0.416 0.04 [rally-n] [meeting-n conference-n seminar-n]
4 0.342 0.387 0.07 [reunion-n] [rally-n meeting-n conference-n seminar-n]
5 0.314 0.363 0.06 [ceremony-n] [reunion-n rally-n meeting-n conference-n

seminar-n]
6 0.295 0.332 0.09 [inquest-n fair-n] [ceremony-n reunion-n rally-n meeting-n

conference-n seminar-n]
7 0.267 0.318 0.04 [congress-n] [inquest-n fair-n ceremony-n reunion-n rally-n

meeting-n conference-n seminar-n]
8 0.264 0.307 0.03 [disco-n] [congress-n inquest-n fair-n ceremony-n reunion-n

rally-n meeting-n conference-n seminar-n]
9 0.246 0.280 0.09 [talk-n ballot-n election-n referendum-n] [disco-n congress-n

inquest-n fair-n ceremony-n reunion-n rally-n meeting-n
conference-n seminar-n]

10 0.223 0.272 0.03 [summit-n] [talk-n ballot-n election-n referendum-n disco-n
congress-n inquest-n fair-n ceremony-n reunion-n rally-n
meeting-n conference-n seminar-n]

11 0.216 0.265 0.03 [hearing-n] [summit-n talk-n ballot-n election-n referendum-n
disco-n congress-n inquest-n fair-n ceremony-n reunion-n
rally-n meeting-n conference-n seminar-n]

12 0.197 0.224 0.15 [hearing-n summit-n talk-n ballot-n election-n referendum-n
disco-n congress-n inquest-n fair-n ceremony-n reunion-n
rally-n meeting-n conference-n seminar-n] [parade-n
rehearsal-n wedding-n funeral-n clinic-n feast-n
celebration-n session-n workshop-n demonstration-n concert-n
briefing-n lecture-n reception-n banquet-n luncheon-n]

... ...

Table 4: Dendrogram trace for the targetlunch-n, seedconference-n.

manually, as it is done in some thesaurus construction algorithms (e.g. (Roark and Charniak, 1998)).
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