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ABSTRACT
Domain-specific knowledge is often recorded by experts in
the form of unstructured text. For example, in the medical
domain, clinical notes from electronic health records contain
a wealth of information. Similar practices are found in other
domains. The challenge we discuss in this paper is how
to identify and extract part names from technicians repair
notes, a noisy unstructured text data source from General
Motors’ archives of solved vehicle repair problems, with the
goal to develop a robust and dynamic reasoning system to
be used as a repair adviser by service technicians.

In the present work, we discuss two approaches to this prob-
lem. We present an algorithm for ontology-guided entity
disambiguation that uses existing knowledge sources such
as domain-specific ontologies and other structured data. We
illustrate its use in automotive domain, using GM parts on-
tology and the unit structure of repair manuals text to build
context models, which are then used to disambiguate men-
tions of part-related entities in the text. We also describe
extraction of part names with a small amount of annotated
data using Hidden Markov Models (HMM) with shrinkage,
achieving an f-score of approximately 80%. Next we used
linear-chain Conditional Random Fields (CRF) in order to
model observation dependencies present in the repair notes.
Using CRF did not lead to improved performance, but a
slight improvement over the HMM results was obtained by
using a weighted combination of the HMM and CRF models.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval; I.2.6 [Computing Methodologies]: Learning

General Terms
Algorithms

Keywords
Text Analysis, Language Models, Information Extraction,
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1. INTRODUCTION
In many specialized areas, domain knowledge is often cod-
ified in the form of specialized lexicons and ontologies. At
the same time, working domain experts often keep records
of their actions in the form of unstructured notes. Using
domain knowledge recorded in such form presents a seri-
ous problem, since annotating large amounts of unstructured
text for machine learning algorithms with domain concepts
and semantic types requires extensive human labor.

For example, such is the situation with clinical notes from
the electronic patient records. Despite some recent efforts
[12], there is a distinct lack of annotated corpora for un-
structured medical text. At the same time, a number of
lexicons and ontologies are available in the medical domain.
For example, the National Library of Medicine maintains a
Unified Medical Language System (UMLS) which provides
both taxonomy in the form of network of semantic types, and
metathesaurus defining and linking relevant concept struc-
tures; a SNOMED nomenclature of clinical terms is available
from the College of American Pathologists.

A similar situation exists in many manufacturing companies
which often maintain relevant ontologies and thesauri for
their products. The challenge we discuss in this paper is how
to identify and extract part names from technicians repair
notes, a noisy unstructured text data source from General
Motors’ archives of solved vehicle repair problems, with the
goal to develop a robust and dynamic reasoning system to
be used as a repair adviser by service technicians.

This extraction problem is alleviated by the presence of
a comprehensive and actively maintained ontology, which
contains a lot of semantic and lexical clues to disambiguat-
ing the said notes. We proceed from the assumption that



the writer abbreviates (and the reader therefore interprets)
the notes based on a shared conceptual context, and that the
same context is expressed in the ontology. This allows us to
build and compare context models derived from both text
units and the ontology, and base semantic disambiguation
on an information-theoretic basis, as described in Section 3.

General Motors has numerous structured knowledge sources
that are maintained for various purposes; in particular, a
taxonomy of part names organized by functional subsump-
tion, which we use as the ontology. The unstructured text
data we use comes from GM’s massive archives of service
technicians’ notes on solved repair problems. The overall
goal of the project described in this paper is to use these
archives and resources to develop robust, dynamic Textual
Case-Based Reasoning (TCBR) systems [1, 5] that can be
used as repair advisers by service technicians and others. A
core challenge is in the taxonomic indexing of repair text
archives, so that smart search, e.g., ontology-guided search
(OGS), can be used to match the description of the symp-
toms of a new problem with those of solved problems in the
archive. Since classifying and disambiguating text are key
elements of the indexing process, it includes a strong ele-
ment of natural language processing (NLP) and information
extraction. For example, “GAS CAP”and“FUEL CAP”are
synonyms and should be classified together, but “GAS” by
itself requires disambiguation, because it has three distinct
meanings in the context of three distinct subsystems: the
powertrain (as fuel for the engine), the heating and cooling
system (as refrigerant for the air conditioning), and the fuel
cell power system, where hydrogen gas is used to generate
electricity. Clearly, two kinds of methods must be devel-
oped: (1) methods to classify text by locating key phrases
on lexical taxonomies, and (2) methods to disambiguate the
text by using context to determine which regions of the tax-
onomies are more likely to be most relevant.

The types of solved-problem archives we have in mind con-
sist of a few structured attributes along with technicians’
notes in free text. Existing collections of text annotated by
parts of speech, such as the Penn TreeBank, are of little use
in analyzing this kind of text. It has a specialized vocabulary
and abbreviations. The text blocks are brief, and commonly
they do no obey the rules of standard English spelling or
grammar. Therefore, certain standard NLP techniques have
not been fruitful, and domain- specific alternatives seem nec-
essary. However, we do not have the resources to hand-
annotate domain-specific text in some domain-specific way.
Since the text consists of ungrammatical fragments with no
sentence boundaries for each fragment, it is doubtful if an-
notating parts of speech would be the right approach. For
example, consider the following actual sample from these
notes:

CUST STATES THE RIGHT SIDE OF

THE HOOD IS SITTING

HIGHER THENA FOUND RT SIDE

OF HOOD LOOSE TIGHTEN

HOOD BOLT

For a domain expert, this segment yields the following sen-
tences:

1. CUST STATES THE RIGHT SIDE OF THE HOOD

IS SITTING HIGHER

2. THENA FOUND RT SIDE OF HOOD LOOSE

3. TIGHTEN HOOD BOLT

There is a number of anomalies in this segment, in addition
to the absence of sentence boundaries. Notice that unstruc-
tured notes in different domains carry their own peculiar-
ities. Consider the following excerpt from a free-text note
taken from an electronic medical record:

At 8:30am SBP 80 and dopamine gtt increased

to 9.5mg/kg. PA catheter placed under fluro

with opening # PA 70/38 PWP 40 with V waves

to 50, CVP 28 with V waves to 38, CO/CI/SVR

7.5/3.5/437

While sentensification may be less difficult, syntactic anoma-
lies remain a problem, as does extensive use of domain-
specific acronyms and abbreviations. It is clear, however,
that the same kind of semantic abbreviation takes place
which depends on a shared concept system. By consider-
ing such examples, we have been led to consider approaches
that do not depend on standard grammar or spelling, but
do exploit the domain-specific structures.

The challenge is to use the existing (and maintained) knowl-
edge resources, in lieu of annotated data that needs to be
created. For example, there are several structured lexicons
of part names. (They are actually names of categories of
parts, but we will refer to them as part names.) Indexing
with part names may be sufficient for many smart search
applications. In other words, if we can find solved problems
involving the parts referenced in the new problem, then we
have reduced the number of relevant “cases” significantly.

These various domain-specific knowledge resources have good
coverage, but they lack the structure and precision needed
for TCBR and OGS. Therefore, we have looked at tech-
niques for refining these knowledge resources to make them
more consistent, less redundant, and more powerfully struc-
tured. We have also developed robust indexing (and search)
techniques that are not destabilized by noisy data.

2. OVERVIEW
For knowledge to function as an asset in a corporation, it
must be explicit and machine-processible. “Explicit” means
that it is “written down,” as opposed to carried in people’s
heads or derivable via data analysis. Knowledge must be
machine-processible because the volume of data makes hu-
man processing impossible. It is commonly said that 80% of
corporate data exists as text: program notebooks; problem
summaries in warranty records, technical-assistance center
logs, customer surveys, and various other archives of records,
logs, and diaries. Most of this text is machine-processible
only in a limited sense. For example, key-word search can
find items by exact matching, but the slightest differences
in expression can cause an item to be missed. Ideally, one
would like to ask questions such as “Has this issue come up
before?” or“How many times has this issue come up before?”



and get the answer by searching and cross- comparing these
various archives. Current tools and methods cannot do this.

An archive of text records of solved repair problems is es-
pecially frustrating: One can easily imagine using such an
archive to avoid repeating time-consuming diagnostic and
repair experiences, but in practice it is difficult to use. This
is because of

(1) assumed contextual information that is not written
into the record,

(2) the paraphrase problem, and

(3) ambiguous language.

Let us consider our model TCBR application in more de-
tail: A technician with an unsolved repair problem is search-
ing the Warranty Data Archive to determine if his unsolved
problem or a similar problem has arisen before. The tech-
nician enters the symptoms and wants the records returned
in “most relevant symptom” order. After some analysis of
such repair records, we have determined that most symp-
toms have the form: “PART NAME is broken.” We have
focused our efforts on identifying nd classifying the part-
names references in a repair record. These part names have
become our surrogate for symptoms.

In Section 3, we describe the algorithm for ontology-guided
entity disambiguation. In Section 4, we describe the overall
TCBR application In Section 5, we discuss part name ex-
traction, which supports the TCBR application, and present
experimental results. Section 6 provides a discussion of these
results.

3. ONTOLOGY-GUIDED ENTITY DISAMBI-
GUATION

In unstructured expert-generated text, domain-specific en-
tities (e.g. parts in automotive domain; diagnoses, test re-
sults, therapy protocols in patient records) are referred to
by inherently ambiguous short noun phrase mentions that
are disambiguated by human readers based both on textual
context and on their extra-textual domain knowledge. Auto-
matic indexing and efficient searching of unstructured noisy
text corpora require that this disambiguation be performed
automatically so that part mentions are extracted and an-
notated with the respective part identifiers.

In each domain, this knowledge is partly expressed in domain-
specific taxonomies and concept systems. For example, med-
ical domain ontologies may classify entities as body struc-
tures, clinical findings, procedures and treatments, and so
on. In the GM automotive domain, structural ontologies of
automobile parts classify parts by functionality, as well as
by systems, subsystems and assemblies. Our method uses
lexical features derived from these ontologies, together with
lexical features from the context surrounding the automotive
text mentions, to perform disambiguation.

The principal scheme of our algorithm is as follows. For a
noun phrase NP , we define its context C as a collection of
features derived from the unit(s) of text containing NP(the

sentence, the paragraph, or other structural units if defined;
for instance, the headings of the manual section and chapter
for NPs in a manual).

The ontology tree T is composed of nodes corresponding to
automotive systems, subsystems, assemblies and individual
parts. Each node of T has names and descriptions associ-
ated with it, which are composed of lexical units (words and
stems). For each node N of the ontology tree T we likewise
define a collection of features C′, derived from the lexical
contents of N and its ancestors on the path to the root of
the tree, as well as of its siblings and additional lexical units
attached to the nodes of the ontology tree T .

Then for all candidate nodes N in T we compute the score
Q(NP, C, N, C′) and select the node N with the highest
score. The function Q is based on information-theoretic
measures associated with the lexical units in the tree T ,
based in their occurrence in the nodes throughout T . Es-
sentially, the measure associated with a single unit (word
or stem) expresses the uncertainty about the identity of the
node N containing that unit once the unit is known. For ex-
ample, a word or stem that occurs in the names or descrip-
tions of many nodes throughout T has a higher measure of
uncertainty than a word or stem that occurs only in a few
leaves or branches of T . These uncertainty scores of par-
ticipating units are then combined to form Q. For further
discussion of how this function is defined, see Appendix A.

4. OVERALL TCBR APPROACH
Repair records are usually partly structured, with impor-
tant information captured as free text. We want a TCBR
system that accepts a “query” consisting of the symptoms
of a problem and responds with a prioritized list of repair
records that have similar symptoms. We want to use the
knowledge structures that are available and maintained by
the manufacturer. This is a very rich source of already-
available knowledge. We do not want to need a significant
knowledge-acquisition effort specifically for the TCBR ap-
plication. We do not want to need to generate annotated
text for training ML methods.

The approach we imagine is to use information extraction to
create a structured index of the blocks of text included with
the repair records. After a preliminary analysis, we decided
that we could focus (for now) on “part names.” We want to
identify and classify part names in text. It is through the
classification of part names that both indexing and similar-
ity are defined. The indexing process would include cleaning
the text, extracting the part names, and mapping the part
names into existing taxonomies of part names. Thus, the
values for the slots in the index would be taken from one
or more existing parts taxonomies. Similarity would be de-
fined from the taxonomic structures. A characteristic of the
domain is that these part names and their structures are
constantly changing. Thus, the system would require a cer-
tain robustness.

Knowledge resources created for day-to-day purposes in a
company can often be adapted for decision support. Uschold
noted that a company’s glossary or thesaurus could be adapted
to become a semantic net [11]. Any manufacturing company,
such as General Motors, has numerous lists and lexicons re-



lated to the names associated with the design, engineering,
manufacturing, and servicing of its products. Our key ex-
ample are the lists of automotive parts that are referenced in
servicing vehicles. We might have focused on lexicons for de-
sign, engineering, or manufacturing, in developing decision-
support tools for those areas. An example for manufacturing
is the GM Variation-Reduction Adviser [6, 7].

One important consideration for TCBR is that the objects
of interest be structured into ISA and PART-OF taxonomies
(and perhaps other relations). This is because indexing text
leads to a desire to generalize and specialize to solve the
paraphrase problem and the disambiguation problem. One
natural context for an object in a taxonomy is the path
from the node where the object is named to the root, as
well as the descendants of the node. If the same name is
used in several nodes (e.g., “GAS”), then the choice of node
is the disambiguation of the name, and matching the textual
context with the taxonomic context is one way to choose the
most relevant node.

The kinds of lexicons and lists we used were:

• T, a taxonomy of part name categories. The relations
defined by the links has varying meaning, usually ISA
or PART-OF.

• a list of standard abbreviations,

• an engineering glossary,

• L, a list of labor code descriptions, and

• a mapping of the elements of L to the elements of T.

5. PART NAME EXTRACTION FROM NOI-
SY TEXT

First, let us clarify what we mean by part names. We are
interested in categories of parts, such as “OIL PAN.” There
are many kinds of “actual” oil pans, and each is identified by
a unique name (or rather a combination of data, including
a part number, supplier, date of manufacture, and other
identifying information). We find it convenient in this paper
to refer to OIL PAN and other part-name categories as“part
names,” but we are always referring to categories. We want
to be able to identify part names in text. We want to classify
the discovered part names by mapping them to T. In order
to accomplish this, we need to consider which words and
two-word phrases of the name are semantically“informative”
and which are not. In this paper we focus on identifying part
names. In the case that we have grammatical text, we would
expect to be able to extract noun phrases (NPs) from the
text using NLP techniques as a starting point for identifying
part names. Then we could determine by attempting to map
each NP to T whether the NP is a part name or some other
object (e.g., CUSTOMER).

However, the structure of part names can help us identify
them, even when the text is fairly ungrammatical. For con-
creteness, imagine that a technician is having trouble with
the “left outside rear view mirror.” Naturally, he might look
for this exact string, but a verbatim in a warranty record

might describe the “LEFT OUTSIDE REAR VIEW MIR-
ROR” in different ways. The most obvious variants are cre-
ated simply by omitting some of the qualifying adjectives,
which is often done when the context is assumed. Further,
vehicles have a bilateral symmetry, so that many parts come
in a left (driver’s side, etc.) version and a right (passenger’s
side, etc.) version. Sometimes the difference will be impor-
tant to the problem-solving potential of a warranty record,
but often it is not.

The semantic head of the above phrase is “MIRROR,”which
in this case is the syntactic head. Mirrors in vehicles are ei-
ther “rear view” or “vanity,” but vanity mirrors can be only
inside. Thus, technicians might neglect to add the qualify-
ing phrase “rear view” if they have already notes “outside.”
It might not even make sense for the search to favor these
kinds of qualifying adjectives, because such qualifiers are of-
ten omitted in technician’s notes. Thus, while if they are
present, they add to the information gain of the phrase, if
they are not present, there is no information loss. In other
words, it means nothing; it is a consequence of the “assumed
context,” which is so common in such notes. A hurried
technician might simply have written“OUTSIDE MIRROR”
knowing that vanity mirrors are never outside and the left-
right distinction is not important for the particular write
up. The essential structure of the NP is “MIRROR,” which
is essentially a concept class, along with enough qualifiers to
distinguish it from all other mirrors. There is (at least one)
taxonomic tree implicit in this analysis.

The training data for part name identification consists of
repair notes where part names have been labeled. For the
evaluation, we hand-labeled 1,000 randomly sampled repair
notes. We divided the repair notes into two sets of 500 each,
one for evaluation during development and the other for fi-
nal testing. We also used approximately 30,000 part name
phrases and a lexicon of 1,600 part name words collected
from these phrases during training. For testing we used
five-fold cross validation.

The structure of our HMM consists of “target” and “non-
target” states, si. Part names correspond to the “target”
state of the HMM. The non-target states are Start, Prefix,
Suffix, Background, and End. The Prefix state corresponds
to a fixed-length sequence of words before the target words.
Similarly, the Suffix state corresponds to a fixed-length se-
quence of words following the target words. The remaining
words are thought of as being emitted by the Background
state. The probabilities are estimated as ratios of counts.
The transition probability P (sj |si) is calculated as the total
number of (si, sj) label pairs divided by the total number
of si labels in the training data. The emission probability
P (w|si) is calculated as the number of w labeled as si di-
vided by the total number of si labels. One of the issues
we have had to face is getting sufficient labeled data for
training. This has had implications for the effectiveness of
HMM structure used to model our data [2, 3]. Our HMM
is complex with as many states as possible and is able to
capture the intricate structure of the data in use; however,
it results in poor (high variance) parameter estimation be-
cause of the sparseness of training data. In contrast, simpler
models with fewer states, while giving robust parameter es-
timates, are not expressive enough for data modeling. In



order to strike a balance, we used a statistical smoothing
technique called “shrinkage” to combine the estimates from
these models of differing complexity. Freitag and McCallum
[3] report positive results using“shrinkage” to perform infor-
mation extraction using HMMs. Some states from a complex
model are shrunk to a common state to form a new HMM
structure – hence the term shrinkage. To further improve
parameter estimates, states from the new HMM can be fur-
ther shrunk to form another HMM with even fewer states,
thus forming a shrinkage hierarchy. In our case, we shrunk
the Prefix and Suffix states to a common Context state. We
then employed another level of shrinkage, in which all the
states were shrunk to a single state.

The recall and precision scores from the five-fold cross vali-
dation along with the F-score are presented below. Table 1
shows results for the fully expressive model alone, as well as
for the optimal shrinkage mixture of three HMM models.

fully optimal
expressive shrinkage
model mixture

Average Recall 12.26 81.64
Average Precision 79.85 79.45
F-Score 21.26 80.53

Table 1: Five fold cross-validation results for (1)
the fully expressive model and (2) optimal shrinkage
mixture, with a context width of two.

The fully expressive model has poor recall though precision
is good. This indicates that the model by itself is not suf-
ficient to cover all part names. The F-score of the fully
expressive model is low. On the other hand, using shrinkage
with optimal mixture weights improves recall values sub-
stantially while maintaining high precision. The substantial
improvement in recall indicates that the shrinkage mixture
helps to smooth parameter estimates to expand coverage of
part names not handled by the fully expressive model alone.

We have investigated the effectiveness of using HMMs with
shrinkage for part name extraction and found that HMMs
do well modeling the repair notes as shown by an F-score
that hovers around 80%. Next, we sought to improve per-
formance on the remaining 20% of the part names that were
missed or incorrectly labeled by HMMs by introducing a
more flexible model called Linear-Chain Conditional Ran-
dom Field [9, 10]. We hypothesized that the errors not
handled by HMMs could be handled using the observation
dependencies found in repair notes. It is desirable to inte-
grate these dependencies into the models to improve overall
classification accuracy.

We used unigram and bigram features. Unigram features
are obtained using the identity of the current word. For
each word seen in the training data, the unigram feature
value is assigned to 1. Bigram features use previous and
current word.

Contrary to our original hypothesis, extraction using a CRF
did not outperform HMM with Shrinkage, although CRF
does perform substantially better than the HMM without
shrinkage.

Average Recall 85.41
Average Precision 74.86
F-Score 79.78

Table 2: Five fold cross-validation results for CRF
with a context width of two.

Analyzing the misclassifications of the HMM and the CRF,
we noticed that there was a fair amount of difference in
which items were misclassified. This suggested a weighted
combination of the two techniques might improve perfor-
mance. To combine the two models, we merged Viterbi
search [8] in both the HMM and the CRF using a weighted
combination.

Our results from the weighted combination of the HMM and
the CRF are shown in Table 3. There is some improvement
in overall score, but there is little improvement over either
model alone.

Average Recall 84.35
Average Precision 79.64
F-Score 81.93

Table 3: Five fold cross-validation results for
HMM+CRF with a context width of two.

6. DISCUSSION
When we used fully expressive HMMs performance was poor,
because of an insufficient amount of training data. With
shrinkage performance dramatically improved. We thought
that we could make further improvement using CRFs, since,
unlike HMMs, CRFs would allow us to model observation
dependencies. However, CRF did not outperform HMM
with shrinkage. Since the two approaches misclassified dif-
ferent part names, it seemed that it might be possible to
find an optimal way to combine the two approaches to ob-
tain better performance than with either approach by it-
self. We performed this combination by merging the Viterbi
search used by both HMMs and CRFs. We did this by us-
ing the Expectation Maximization algorithm to estimate the
optimal weights. We achieved some improvement in overall
score, but did not make a substantial improvement over ei-
ther model alone. The reason is that we use the same pair
of weights for each token position during the Viterbi search.
Ideally during the Viterbi search it would be desirable to
provide a weight of 1 to the model that correctly labeled the
token in question and a weight of 0 to the model that did
not provide the correct label. If we had an algorithm that
could correctly select the appropriate model at each token
position, the best f-score we would get is 86.62%. (We found
this score by tallying against the labeled version of the test
set.) Finally, it is likely that all of the approaches that we
tried would have done better had more training data been
available.

7. CONCLUSIONS
Textual Case-Based Reasoning is a promising technology for
organizations with large amounts of textual information and
taxonomies, such as the part name taxonomy described here,
which can be used to aid the case-based reasoning applica-
tion. When, as is the case here, that extraction is from noisy



data, effective techniques must be found to extract informa-
tion, here part names, to support TCBR.

While corpora linguistic techniques can perform well with
large amounts of labeled training data, many organizations
with textual data are not in a position to develop these large
training sets. HMMs with shrinkage and CRF approaches,
as described in this paper show how extraction can be suc-
cessful with much smaller training sets. The benchmarks
obtained with TCBR using relatively small amounts of an-
notated data should be used in a comparison against the
algorithm that uses exclusively domain ontology and struc-
tured data resources to guide part name extraction and iden-
tification.

APPENDIX
A. ONTOLOGY-GUIDED DISAMBIGUA-

TION ALGORITHM
Let tokenization of paragraph P produce a sequence of to-
kens {ti}. If sentence boundaries are available, we further
subdivide this sequence into groups by their respective sen-
tences. Let {ui} be the sequence of lexical units derived
from {ti} after tokenization. The lexical units are derived
by a transformation according to a dictionary D of abbre-
viations and multi-token terms; some tokens are expanded
to several lexical units, some are stemmed, the stem replac-
ing the token in its place in the sequence, some multi-token
groups collapsed to a single unit. This transformation from
sequences of tokens to sequences of standardized lexical units
will be referred to as U : {ti} → {ui}.

For a noun phrase NPthat spans lexical units uk, . . . , uk+l,
we define the primary context CNP as the collection of units
u1, . . . , uk−1, uk+l+1, . . .. If the phrase NP occurs in struc-
tured text such as a manual, we also add to this primary
context the units of text elements structurally related to P ,
such as headings under which P occurs. As an extension
of this approach, we assign to each lexical unit u in CNP

a weight depending on u’s position relative to NP(e.g., de-
creasing with the distance from u to NP , counted within P

in the number of lexical units separating them, and outside
P in the number of structural elements separating the cur-
rent element from P ). Denote this distance d(u, NP ) and
the corresponding weight wd(u,NP ).

For a candidate node N of T , define the ontology context
C′

N of N as consisting of lexical units derived according to
the rules of the transformation U from the names and de-
scriptions attached with the ancestors and siblings of node
N . Each unit u coming from a node Mu is associated with
a weight based on the distance d′

T (N, Mu), counted in the
number of nodes separating N and M on the path to the
root of T , with a special distance ds fixed for siblings of N .
Denote the corresponding weight wd′

T
(N,Mu).

We define the score Q(NP, CNP , N, C′
N ) as follows:

Q(NP, CNP , N, C′
N ) =

=
X

u∈C(NP,N)

wd(u,NP ) · w
′
dT (N,Mu) · (H(T ) − H(TU({NP})))

where C(NP, N) = (U({NP})∪CNP )∩C′
N , W = U({NP})

is the set of lexical units derived from NP , TW is the pruned
subtree of T as described above, and H(TW ) is the entropy
measure associated with it as described above.
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