Using Semantics of the Arguments for Predicate Sense Induction

> Anna Rumshisky Victor A. Grinberg

> > September 18, 2009 GL2009 – Pisa, Italy

Resolving Lexical Ambiguity

- Words are disambiguated in context
- Our focus here will be primarily on verbs
 - though we have applied some of the same principles to noun contexts
- For verbs, main sources of sense discrimination
 - Syntactic frames
 - Semantics of the arguments

Word Sense Determined in Context

• Argument Structure (Syntactic Frame)

The authorities denied that there is an alternative. [that-CLAUSE] The authorities denied the Prime Minister the visa. [NP] [NP]

• Semantic Typing of Arguments, Adjuncts, Adverbials

The general fired four lieutenant-colonels. *(dismiss)* The general fired four rounds. *(shoot)* This development explains their strategy. *(be the reason for)* This booklet explains their strategy. *(describe)* Peter treated Mary with antibiotics. *(medical)* Peter treated Mary with respect. *(human relations)* The customer will absorb the cost. *(pay)* The customer will absorb this information. *(learn)*

• Problem addressed

Sense distinctions linked to argument semantics

- The customer will absorb the cost.
- The customer will absorb this information.
- Automated algorithm for detecting such distinctions

Talk Outline

- Problem Definition
 - Resolution of Lexical Ambiguity in Verbs
 - Using Semantics of the Arguments for Disambiguation
- Review of Distributional Similarity Approaches
- Bipartite Contextualized Clustering
- Performance in Sense Induction Task
- Conclusion

Sense Induction with Argument Sets

- Sense induction based on semantic properties of the words with which the target word forms syntactic dependencies
 - will use the term selector for dependents and headwords alike
- Need to group together selectors that pick same sense of the target word

Corpus Patterns for "absorb"

The <u>customer</u> will absorb the <u>cost</u>.

Mr. Clinton wanted <u>energy producers</u> to absorb the <u>tax</u>. PATTERN 1: [[Abstract] | [Person]] absorb [[Asset]]

<u>They</u> quietly absorbed this new <u>information</u>. Meanwhile, <u>I</u> absorbed a fair amount of management <u>skills</u>. PATTERN 2: [[Person]] absorb {([QUANT]) [[Abstract= Concept]}

<u>Water</u> easily absorbs <u>heat</u>. The SO_2 cloud absorbs solar radiation.

PATTERN 3: [[PhysObj] | [Substance]] absorb [[Energy]]

The <u>villagers</u> were far too absorbed in their own <u>affairs</u>. <u>He</u> became completely absorbed in <u>struggling</u> for survival. PATTERN 4: [[Person]] {be | become} absorbed {in [[Activity] | [Abstract]}

^{*} Patterns taken from the CPA project pattern set

Argument Sets for Different Senses

Sense Induction with Argument Sets

- Selection works in both directions with polysemous verbs
 - context elements select a particular sense of the target word
 - a given sense selects for particular aspects of meaning in its arguments
- Argument sets are often semantically heterogeneous absorb the <u>{skill, information, rumours, culture}</u>
- Running example

deny-v (Sense 1 refuse to give / Sense 2 state that something is untrue)
object

a. Sense 1: visa, access, consent, approval, allowance

b. Sense 2: accusation, rumour, charge, attack, sale, existence, presence

Distributional Similarity

- Typically, such tasks are addressed using distributional similarity
 - Get all the contexts in which the word occurs
 - Compare contexts for different words
- Context gets represented as a feature vector

<(feature₁, value₁)> = <(feature₁, value₁), (feature₂, value₂), ...>

- Each feature corresponds to some element or parameter of the context
 bag of words; populated grammatical relations
- Measure how close two words (e.g. skill-n, culture-n) are distributionally
 - e.g. cosine between vectors; other measures of how often words occur in similar contexts
- Measure how close two contexts of occurrence are, using distributional information on words comprising each context

Similarity Measures

$$\begin{aligned} Dice(A,B) &= \frac{|A \cap B|}{\frac{1}{2}(|A|+|B|)}; \quad Dice^{\dagger}(\vec{X},\vec{Y}) = \frac{\sum_{i}\min(x_{i},y_{i})}{\frac{1}{2}\left(\sum_{i}x_{i}+\sum_{i}y_{i}\right)} \\ Jaccard(A,B) &= \frac{|A \cap B|}{|A \cup B|}; \quad Jaccard^{\dagger}(\vec{X},\vec{Y}) = \frac{\sum_{i}\min(x_{i},y_{i})}{\sum_{i}\max(x_{i},y_{i})} \\ \cos(\bar{X},\bar{Y}) &= \frac{\vec{X}\cdot\vec{Y}}{|\vec{X}||\vec{Y}|} = \frac{\sum_{i}x_{i}y_{i}}{\sqrt{\sum_{i}x_{i}^{2}}\sqrt{\sum_{i}y_{i}^{2}}} \\ Euclidean-Distance(\vec{X},\vec{Y}) &= |\vec{X}-\vec{Y}| = \sqrt{\sum_{i}(x_{i}-y_{i})^{2}} \\ L_{1} \ norm &= \sum_{i}|x_{i}-y_{i}| = 2\left(1-\sum_{i}\min(x_{i},y_{i})\right) \\ D(p||q) &= \sum_{i}p_{i}\log\frac{p_{i}}{q_{i}} \\ JS(p||q) &= \frac{1}{2}\left[D(p||\frac{p+q}{2}) + D(q||\frac{p+q}{2})\right] \\ \alpha-skew(p,q) &= D(p||\alpha \cdot q + (1-\alpha) \cdot p) \end{aligned}$$

Uses for Distributional Similarity

- Distributional similarity measures are used to produce clusters of semantically similar words
 - reciprocal nearest neighbours (Grefenstette 1994)
- Multiple senses for each word can be represented by soft cluster assignments
 - committees (Pantel & Lin 2002)
 - Sketch Engine position clusters (Kilgarriff & Rychly 2004)

Distributional Similarity

- Why can't we use it?
 - In our task, selector contexts do not need to be distributionally similar
 - They only need to be <u>similar in context</u> (= activate the same sense)

deny-v (Sense 1 refuse to give / Sense 2 state that something is untrue)
object

- a. Sense 1: visa, access, consent, approval, allowance
- b. Sense 2: accusation, rumour, charge, attack, sale, existence, presence
- <u>Overall distributional similarity</u> may be low *sim*(visa-n, allowance-n); *sim*(sale-n, rumour-n)
- But <u>contextualized similarity</u> must be high *c_sim*(visa-n, allowance-n, (deny-v, object))

What we propose

- A method to contextualize distributional representation of lexical items to a particular context
- Sense induction technique based on this contextualized representation

Talk Outline

- Problem Definition
 - Resolution of Lexical Ambiguity in Verbs
 - Using Semantics of the Arguments for Disambiguation
- Review of Distributional Similarity Approaches
- Bipartite Contextualized Clustering
- Performance in Sense Induction Task
- Conclusion

Bipartite Contextualized Clustering

Bipartite Contextualized Clustering

- Each sense of the target word selects for a particular semantic component
- Identifying selectors that activate a given sense of the target is equivalent to identifying other contexts that select for the same semantic component
 - Therefore, must cluster words that select for the same properties as a given sense of the target – with respect to the target word and a particular grammatical relation: e.g., (acquire, object)
- acquire (learn vs. buy):

hone	skill
practice	language
master	technique
learn	habit
•••	•••
purchase	land
own	stock
sell	business
steal	property

Think about it as a bipartite graph:

Selectional Equivalence

• A word is a *selectional equivalent* of the target word if one of its senses, selects (in the specified argument position) for the same meaning component as one of the senses of the targer word

acquire

- (purchase): purchase, own, sell, buy, steal
 - land, stock, business
- (*acquire a quality*): emphasize, stress, recognize, possess, lack
 - significance, importance, meaning, character
- (learn): hone, practice, teach, learn, master
 - skill, language, technique
- Selectional equivalents for a given sense of the target word occur with the same selectors as that sense and effectively ensure that we perceive that selector as activating that sense of the target
 - land and stocks can be purchased and owned, skills and techniques can be practiced and taught, hence we acquire them in a different sense

Procedure (1)

- Identify potential selectional equivalents for different senses of the target
 - Identify all selector contexts in which the target word was found in corpus.
 - (selector, gramrel): e.g., (stock, object⁻¹)
 - Take the inverse image of the above set under grammatical R^{-1} . This gives a set of potential equivalents for each sense of the target.

Procedure (2)

- Identify relevant selectors, i.e. good disambiguators that activate similar interpretations for the target and its potential equivalent
 - Given the target word *t* and potential selectional equivalent *w*
 - Compute association scores for each selector *s* that occurs with both *t* and *w*
 - Combine the two association scores using a combiner function $\Psi(assoc_{R}(s, t), assoc_{R}(s, w))$
 - Choose top-*k* selectors that maximize it!
 - Each potential selectional equivalent is <u>represented</u> as a *k*dimensional vector $w = \langle f(s) \rangle$ of resulting selector scores

How do we do it? (identify relevant selectors)

Given the target (deny-v, object):

- for confirm-v, we would need to select report-n, existence-n, allegation-n
- for grant-v, we would need to select access-n, right-n, approval-n, permission-n

Relevant selectors must occur "often enough" with both words

- modeled as having both association scores relatively high

System Configurations

- Association scores for (selector, verb, relation)
 - P(s|Rw)
 - *mi(s,Rw)*
 - *mi(s,Rw)* * log freq(*s, R, w*)
- Combiner functions $\Psi(assoc_R(s, t), assoc_R(s, w))$
 - product $a_1 a_2 \leftarrow$ equivalence classes along hyperbolic curves
 - harmonic mean $2a_1a_2/(a_1+a_2)$

Choosing selectors for deny-v/grant-v

(with R = object)

Identifying Reliable Selectors

Assoc. score: Conditional probability

	deny	-V	confi	rm-v
	count	P(n Rv)	count	P(n Rv)
'report-n'	103	.0256	62	.0159
'existence-n'	92	.0228	32	.0082
'claim-n'	77	.0191	17	.0043
'allegation-n'	99	.0246	7	.0018
'view-n'	8	.0019	86	.0221
'importance-n'	32	.0079	18	.0046
'fact-n'	20	.0049	23	.0059
'involvement-n'	63	.0156	6	.0015
'charge-n'	184	.0457	2	.0005
'right-n'	57	.0141	6	.0015

Identifying Reliable Selectors

Assoc. score: Conditional probability

	deny	-V	grant	C-V	
	count	P(n Rv)	count	P(n Rv)	
'access-n'	110	.0273	56	.0129	
'right-n'	57	.0141	46	.0108	
'approval-n'	46	.0114	57	.0132	
'permission-n'	9	.0022	228	.0528	
'rights-n'	23	.0057	63	.0145	
'status-n'	15	.0037	74	.0171	
'charge-n'	184	.0457	5	.0011	
'power-n'	9	.0022	60	.0139	
'request-n'	15	.0037	36	.0083	
'license-n'	2	.0049	254	.0588	

Resulting Representations

Assoc. score: Conditional probability

	confirm-v	grant-v	refuse-v
	P(s Rw)	P(s Rw)	P(s Rw)
'access'	.0000	.0129	.0145
'rights'	.0015	.0108	.0017
'approval'	.0005	.0132	.0009
'permission'	.0000	.0528	.0660
	confirm-v	contradict-v	refuse-v
	P(s Rw)	P(s Rw)	P(s Rw)
'report'	.0160	.0108	.0000
'story'	.0039	.0054	.0000
'allegation'	.0018	.0027	.0000
'view'	.0222	.0376	.0000

Identifying Reliable Selectors

Assoc. score: Mutual information

	deny-	V	confi	rm-v
	count	MI(n,Rv)	count	MI(n,Rv)
'ascendency-n'	1	11.6	2	12.8
'appropriateness-n'	3	9.1	2	8.7
'validity-n'	17	8.9	10	8.3
'centrality-n'	1	7.7	3	9.5
'primacy-n'	2	7.6	5	9.1
'existence-n'	83	8.9	76	7.4
'rumour-n'	28	9.1	7	7.3
'sighting-n'	1	7.0	3	8.8
'prejudice-n'	6	7.3	9	8.0
'allegation-n'	91	10.7	2	5.4

Identifying Reliable Selectors

Assoc. score: Mutual information

	deny-v		grant	C-V	
	count	MI(n,Rv)	count	MI(n,Rv)	
'approval-n'	37	8.5	21	8.6	
'serf-n'	1	7.4	3	9.9	
'primacy-n'	2	7.6	3	9.1	
'visa-n'	2	7.1	5	9.3	
'permission-n'	4	5.6	71	10.6	
'autonomy-n'	5	6.7	8	8.3	
'access-n'	48	7.5	23	7.3	
'exemption-n'	1	5.0	28	10.6	
'request-n'	11	6.3	21	8.1	
'asylum-n'	1	5.3	8	9.1	

Choosing Association Scores

- Conditional probability gives equal weight to each instance, regardless of how frequent the selector itself is
- MI scheme picks more "characteristic", but less frequent selectors
 - Normalizing for selector frequency,
 - Intersection between selector lists is smaller, similarity computation becomes unreliable
- Normalizing MI by the log factor de-emphasizes selectors with low occurrence counts

Procedure (3)

- Produce clusters of selectional equivalents
 - group-average agglomerative clustering
 - <u>similarity measure</u>:
 - sum of minima of association scores (numeric equivalent of set intersect)
 - intra- and inter-cluster APS
 - average pairwise similarity is kept both for elements within each cluster, and for every pair of merged clusters
 - ranked selector lists
 - keep a list of selectors for each node in the cluster tree
 - a union of selector lists computed, each selector assigned the score equal to the weighted average of its scores in the merged clusters
 - soft cluster assignment for selectors

Merging Ranked Selector Lists

- selector lists for (acquire, object)

Cluster 2234=564+667 (45.351/45.351) [stress-v] [underline-v] <pre-eminence-n:8.91 distinctiveness-n:8.77 significance-n:7.47 credentials-n:7.26 importance-n:7.20 dimension-n:6.99 salience-n:5.15 respectability-n:4.17 reputation-n:3.83 humility-n:3.72 individuality-n:3.70 liturgy-n:3.66 normality-n:3.57 urgency-n:3.43 liking-n:3.39 gloss-n:3.37 fascination-n:3.33 status-n:3.29 elegance-n:3.29 hollow-n:3.25 competence-n:3.25 orientation-n:3.24 sensitivity-n:3.16 willingness-n:3.14>

Cluster 747 [emphasise-v] <distinctiveness-n:8.55 stigma-n:8.25 longevity-n:8.11 tan-n:7.89 individuality-n:7.66 credentials-n:7.66 legitimacy-n:7.32 significance-n:7.25 importance-n:7.17 hollow-n:6.94 reputation-n:6.81 attribute-n:6.69 trait-n:6.50 relevance-n:6.41 status-n:6.32>

Cluster 2239=747+2234 (43.648/44.215) [emphasise-v] [stress-v underline-v] <distinctiveness-n:8.70 significance-n:7.40 credentials-n:7.39 importance-n:7.19 pre-eminence-n:5.94 individuality-n:5.02 reputation-n:4.82 dimension-n:4.66 hollow-n:4.48 status-n:4.30 salience-n:3.43 respectability-n:2.78 stigma-n:2.75 longevity-n:2.70 tan-n:2.63 humility-n:2.48 legitimacy-n:2.44 liturgy-n:2.44 normality-n:2.38 urgency-n:2.29 liking-n:2.26 gloss-n:2.24 attribute-n:2.23 fascination-n:2.22 elegance-n:2.19 trait-n:2.17 competence-n:2.16 orientation-n:2.16 relevance-n:2.14 sensitivity-n:2.11 willingness-n:2.09>

Implementation

- Custom-designed agglomerative clustering engine implemented in C++
 - easy extension for different scoring schemes, similarity measures, hard/soft clustering schemes
- 100M word British National Corpus
- Robust Accurate Statistical Parsing (RASP) used to extract grammatical relations
 - binary relations (dobj, subj, etc.)
 - ternary relations (w/ introducing preposition)
 - frequency-filtered (e.g. rare prepositions thrown out)
 - relation inverses for all relations

Talk Outline

- Problem Definition
 - Resolution of Lexical Ambiguity in Verbs
 - Using Semantics of the Arguments for Disambiguation
- Review of Distributional Similarity Approaches
- Bipartite Contextualized Clustering
- Performance in Sense Induction Task
- Conclusion

Sense-Induction Task

Sense Induction Task

- We adapted our system for use in a standard word sense induction (WSI) setting
- Recent Semeval-2007 (Agirre et al. 2007) competition had a WSI task in which 6 systems competed
- 65 verbs were used in the data set
 - unsuitable for our purposes, as sense distinctions due to argument semantics impossible to identify
 - a lot of verbs with senses that depend for disambiguation on syntactic frame
- We use a separately developed data set and perform comparison relative to the baselines

Data Set Characteristics

- We needed a data set that targets a specific contextual factor
 - namely, the semantics of a particular argument
- 15 (verb, grammatical relation) pairs
 - verbs judged to have sense distinctions dependent on a particular argument (we chose **dobj**)
- 200 instances for each pair; two annotators
- Inter-annotator agreement (ITA) 95% micro-average
 - range 99% 84%
- Average number of senses 3.65 (range: 2-11, stddev: 2.30)

Data Set, Per-word Characteristics

Distribution across senses	Word	No. Senses	No. Inst.	ITA %	Entropy	MFS	MaxEnt accu-
- Per-verb entropy							racy
much higher than	absorb	7	196	92.4	2.49	.30	.58
for SemEval data	acquire	4	186	92.1	1.86	.44	.44
Tested in supervised	admit	2	163	98.7	1.00	.53	.71
learning setting	assume	3	191	90.8	1.55	.45	.73
- MayEnt acquire ou	conclude	2	178	97.5	0.96	.62	.89
Maxein accuracy	cut	4	166	92.3	1.33	.58	.51
	deny	3	190	97.2	1.49	.49	.62
	dictate	2	193	98.9	0.53	.88	.97
	drive	11	174	97.6	2.64	.41	.40
	edit	2	176	98.0	0.98	.57	.82
	enjoy	2	193	86.2	0.93	.66	.70
	fire	6	162	97.3	1.87	.54	.73
	grasp	3	178	97.6	1.25	.49	.84
	know	2	172	92.6	0.98	.58	.79
	launch	3	196	89.9	1.24	.63	.74
	Average	3.73	180.9	94.5	1.41	.545	.699

Sketch Engine

Home Concordance Word Sketch Thesaurus Sketch-Diff

dictate bnc freq = 1264

<u>object</u>	<u>646</u>	4.2	<u>subject</u>	<u>520</u>	6.8	modifier	<u>175</u>	2.2
letter	<u>25</u>	20.51	circumstance	<u>14</u>	18.39	otherwise	<u>11</u>	25.83
pace	<u>12</u>	19.87	consideration	<u>10</u>	15.82	partly	<u>9</u>	24.2
term	<u>26</u>	19.1	custom	2	15.19	largely	<u>Z</u>	18.48
choice	<u>14</u>	16.57	prudence	<u>3</u>	14.77	also	<u>14</u>	16.25
policy	<u>21</u>	15.33	tradition		12.64	often	<u>8</u>	15.4
shape	<u>9</u>	13.71	sense	<u>10</u>	12.49	externally	2	13.01
caution	<u>4</u>	12.51	conscience	<u>4</u>	12.41	still	<u>Z</u>	12.6
intifada	<u>2</u>	10.95	availability	<u>4</u>	11.56	only	<u>Z</u>	11.89
content	<u>5</u>	10.51	logic	<u>4</u>	11.47	clearly	<u>4</u>	11.89
form	<u>10</u>	9.15	wisdom	<u>3</u>	9.93	necessarily	<u>3</u>	11.49
tactic	<u>3</u>	9.08	arithmetic	<u>2</u>	9.22	probably	<u>4</u>	11.37
action	<u>8</u>	9.03	Quinn	<u>2</u>	8.85	even	<u>5</u>	11.04
passage	<u>4</u>	8.86	paradigm	<u>2</u>	8.44	merely	<u>3</u>	10.96
memoirs	<u>2</u>	8.86	function	<u>5</u>	8.36	partially	2	10.15
geometry	<u>2</u>	8.67	convenience	<u>2</u>	8.28	already	<u>4</u>	9.83
pattern	<u>6</u>	8.4	fashion	<u>3</u>	7.92	ultimately	2	9.81
format	<u>3</u>	8.25	Brussels	<u>2</u>	7.87	always	<u>4</u>	9.26
need	7	8.14	need	<u>6</u>	7.8	virtually	2	8.89
treatment	<u>5</u>	7.84	interest	7	7.78	effectively	2	8.45
answer	4	7.64	policy	7	7.67	both	<u>3</u>	8.27

Senses for dictate, dobj

(1) verbalize to be recorded (letter, passage, memoir)

(2) determine the character of or serve as a motivation for (terms, policy, etc.)

Using Clusters in a WSI Task

(1) Sort all the nodes in the dendrogram by computing rank of each node C_{i}

$$rank(C_i) = IntraAPS(C_i) \cdot \log(|C_i|) \cdot \log(\sum_{s \in C_i} f_i(s))$$

(2) Given selector *s* from a particular corpus occurrence of target, compute an association score for each of the chosen clusters C_i and *s*

$$\operatorname{assoc}(s, C_i) = \frac{\sum_{w \in C_i} \operatorname{mi}(s, Rw)}{|C_i|}$$

where

$$\operatorname{mi}(s, Rw) = \log \frac{P(s, R, w)}{P(s)P(R, w)}$$

Using Clusters in a WSI Task

- (3) For each sentence in the data set, we extract the selector which in that sentence occurs in the specified grammatical relation to the target
- (4) For each of the extracted selectors,
 - selector-cluster association score is computed with each of the top-ranking clusters in the dendrogram
 - sentences containing that selector are associated with the highest-ranking cluster
- (5) Sentences associated with intersecting verb clusters (i.e. clusters containing at least some of the same selectional equivalents of the target) are grouped together

Evaluation Measures

- 1. <u>Set-matching F-measure</u> (Agirre et al., 2007)
 - computer F-measure for each cluster/sense class pair
 - find the optimal cluster for each sense
 - average F-measure of the best-matching cluster across all senses
- 2. Harmonic mean of B-Cubed P&R (Amigo et al, 2008)
 - based on per-element Precision and Recall

BCubed Precision =
$$\frac{\sum_{e} \frac{|c_e \cap s_e|}{|c_e|}}{n}$$
BCubed Recall =
$$\frac{\sum_{e} \frac{|c_e \cap s_e|}{|s_e|}}{n}$$

where *e* is an element of data set *D*, *c_e* is the cluster to which e belongs, *s_e* is the sense class to which e belongs, and n = |D|

Evaluation Measures (2)

3. NormalizedMI

• We define mutual information *I(C,S)* between the two variables defined by the clustering solution *C* and the gold standard sense assignment *S* as

$$I(C, S) = \sum_{i,j} P(i,j) \log \frac{P(i,j)}{P(i)P(j)}$$

- where c_i is a cluster from C, s_i is a sense from S, and $P(i,j) = \frac{|c_i \cap s_j|}{n}$
(similar to Meila 2003)

• Range for the mutual information depends on the entropy values *H*(*C*) and *H*(*S*)

 $0 \le I(C, S) \le \min(H(C), H(S))$

Evaluation Measures (3)

- 3. <u>NormalizedMI</u> (cont'd)
 - We normalize this value by max(*H*(*C*),*H*(*S*))

NormalizedMI = $\frac{I(C, S)}{\max(H(S), H(C))}$

- This normalization gives us some desirable properties for comparison across data sets
 - i. (0,1) range
 - ii. NormalizedMI(1c1word, S) = 0

iii. Normalized MI(1clinst, S) = $H(S)/\log n$

Baselines

We used the same the baselines as in the SEMEVAL WSI Task

- 1 cluster 1 word
 - all occurrences are grouped together for each target word
- 1 cluster 1 instance
 - each instance is a cluster (i.e. singleton)

Senseval System Performance

System	F-me	asure	BCı	ıbed	Norm. MI		
	9	$\% \ 1c1w$		% 1c1w		% 1c1i	
1c1 inst	.035	4.6	.039	5.0	.118	100	
1c1word	.755	100	.776	100	0	0	
I2R	.528	69.9	.505	65.1	.051	43.2	
UBC-AS	.750	99.3	.769	99.1	.005	4.2	
UMND2	.640	84.8	.638	82.2	.006	5.1	
UOY	.383	50.7	.253	32.6	.048	40.7	
upv_si	.607	80.4	.520	67.0	.044	37.3	

Our System Performance

System	F-measure		BCubed		Norm. MI	
	% 1 c1 w		$\% \ 1 c 1 w$		% 1c1i	
1c1inst	.038	6.5	.040	6.7	.188	100
1c1word	.584	100	.599	100	0	0
$\operatorname{mi-fact-prod}$.5861	.00.3	.522	87.1	.138	73.4
mi-fact-prod-prod	.572	97.9	.540	90.2	.061	32.4
mi-prod	.504	86.3	.439	73.3	.103	54.8
mi-prod-prod	.544	93.2	.469	78.3	.101	53.7

• Results reported for configurations selected in preliminary evaluation

System-Specific Considerations

- This method has an obvious disadvantage, compared to the full WSI systems
 - disambiguation is based on a single selector
- The system performs well despite this handicap

- The verbs in our data set have sense distinctions that depend on the semantics of the chosen argument
 - this disadvantage should manifest only in cases where other context elements contribute to disambiguation

Talk Outline

- Problem Definition
 - Resolution of Lexical Ambiguity in Verbs
 - Using Semantics of the Arguments for Disambiguation
- Review of Distributional Similarity Approaches
- Bipartite Contextualized Clustering
- Performance in Sense Induction Task
- Conclusions

Conclusions

- A method to contextualize distributional representation of lexical items to a particular context
- Resulting clustering algorithm produces groups of words selectionally similar to different senses of the target, with respect to the specified argument position
- Fully unsupervised
- Avoid computational pittfalls by using short contextualized vectors

Practical Applications

- Enhance lexicographic analysis and research tools that facilitate sense definition (e.g. the Sketch Engine, Kilgarriff & Rychly 2004)
- Should help improve performance of complete WSD or WSI systems, possibly facilitate various parsing tasks, counteract data sparsity problem in a number of tasks

Overlapping Senses

- Frequently, there are good prototypical cases that exemplify each sense
 The research showed an undeniable dependency
 The photo showed the victim entering the store
- And then there are boundary cases The <u>graph</u> showed an undeniable dependency

Per-word System Performance

Word	No.	No.	ITA %	Entropy	MFS	MaxEnt		F-measu	ire
	Senses	Inst.				accu-			
						racy			
							random	1c1word	$\operatorname{mi-fact-prod}$
absorb	7	196	92.4	2.49	.30	.58	.20	.33	.36
acquire	4	186	92.1	1.86	.44	.44	.30	.45	.59
admit	2	163	98.7	1.00	.53	.71	.51	.67	.74
assume	3	191	90.8	1.55	.45	.73	.39	.52	.48
conclude	2	178	97.5	0.96	.62	.89	.55	.68	.51
cut	4	166	92.3	1.33	.58	.51	.49	.61	.78
deny	3	190	97.2	1.49	.49	.62	.38	.54	.55
dictate	2	193	98.9	0.53	.88	.97	.79	.85	.62
drive	11	174	97.6	2.64	.41	.40	.23	.34	.39
edit	2	176	98.0	0.98	.57	.82	.57	.67	.62
enjoy	2	193	86.2	0.93	.66	.70	.57	.70	.53
fire	6	162	97.3	1.87	.54	.73	.37	.49	.58
grasp	3	178	97.6	1.25	.49	.84	.45	.61	.85
know	2	172	92.6	0.98	.58	.79	.54	.67	.56
launch	3	196	89.9	1.24	.63	.74	.52	.62	.66
Average	3.73	180.9	94.5	1.41	.545	.699	.457	.584	.586