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Abstract PropBank (Palmer et al., 2005), OntoNotes (Hovy
et al., 2006), etc., are similar in this respect. This
fact makes it very difficult to address the question
of what types of distinctions are detected more suc-
cessfully by a given system.

The senses that are linked to specific syntactic
patterns are typically easier for people to distin-
guish. When main differentiating factor is the se-
mantics of the arguments, detecting such sense dis-
tinctions is often less straightforward. Our goal in

We present an unsupervised learning sys-
tem developed to recognize predicate sense
distinctions that depend on the semantics
of the arguments. We develop a sense-
tagged data set for 15 polysemous verbs se-
lected for having such sense distinctions.

We use this data set to evaluate the perfor-
mance of our system in a word sense induc-

1

tion setting. Relative to the baselines, our
system outperforms the best system in the
SEMEVAL-2007 Task 2 on two out of three
measures we use to evaluate the clustering
solution.

Introduction

the present work was to separate out and examine
the contribution of the latter factor towards sense
differentiation in polysemous verbs. With this goal
in mind, we designed a fully unsupervised sense
induction system that analyzes how different argu-
ments contribute to disambiguation, looking at each

argument position separately.

Disambiguation of polysemous words in language One of the main problems for the systems that
is usually accomplished by taking into account twoseek to detect or derive senses using distributional
aspects of the context: (1) the syntactic frame intsimilarity is separating occurrence counts for differ-
which the word is embedded and (2) the semanent senses of the word. The work in thesaurus con-
tics of the words with which it forms syntactic de- struction or sense induction has often either used
pendencies. In word sense disambiguation or inthe notion of monosemous near-synonyms (Hindle,
duction (WSD/WSI) systems, both aspects are rou1990; Grefenstette, 1994; Pantel and Lin, 2002) or
tinely modeled through distributional information, tried to represent contexts, rather than words per
following the idea that semantic similarity betweense (Sclitze, 1998; Mitchell and Lapata, 2008; Erk
words must be reflected in the similarity of their ha-and Pado, 2008). Our approach uses the idea that
bitual contexts of occurrence (Harris, 1985; Miller words that are similar in a particular context do not
and Charles, 1991). need to be distributionally similar overall. Our sys-

However, different ambiguities require different tem identifies the words selectionally similar to a
kinds of contextual information to be resolved (asgiven sense of the target and induces clusters of ar-
anybody who has done any amount of semantic arguments activating that sense. The former is accom-
notation can attest). WSD/WSI systems are not typplished by contextualizing the vector representation
ically designed to treat different kinds of sense dis-of such words to the target’s context.
tinctions separately. The sense-tagged data used forTo get an idea of how well our system performs,
training and testing of such systems is very laborwe decided to evaluate it as a standard sense in-
intensive to create in general. So it is not surprisduction system. Such an evaluation is difficult to
ing that such annotation does not usually attempperform without having a manually constructed re-
to specify the relationship between the annotatedource against which to compare the induced group-
senses and the context elements that distinguish bargs. We developed a sense-tagged data set for
tween them. Many commonly used sense-taggetl5 polysemous verbs that were selected for having
corpora, such as SemCor (Landes et al., 1998%ense distinctions strongly dependent on the seman-



tics of a single argument. tion 2 gives a detailed description of the algorithm.
The choice to create a data set for the testing oBection 3 describes the data set we developed for

our system was motivated by two considerationstesting. Section 4 describes the evaluation we per-

Firstly, the standard sense-tagged data sets (suchfasmed. Finally, in the last section, we discuss the

the ones mentioned above) conflate different kindsesults and some possible applications of the sys-

of contextual information, so they can not be usedem.

directly. The data sets that do specify the fac-

tors contributing to the disambiguation, such as the System Architecture

data from the FrameNet project (Ruppenhofer et aI.Our system produces clusterssaflectional equiva-

2.006)' are often incomplete, since only the SEnse nts(Rumshisky, 2008) for each sense of the target
linked to the completed frames are represented i ord

the corpus. Even in case of full coverage, only a

) A lexical itemw, is a selectional equivalenof
very small number of instances actually end up ex; . . . :
. o lexical itemws with respect to grammatical rela-
emplifying the relevant sense distinctions.

Secondlv. th N nnotation h tten b tri1on R, if in the argument position defined hf,
econdly, the sense annotation has often DEELL, o ¢ the senses af, selects for the same aspect

done on corpora which are not well-balanced, such .

as the Wall Street Journal data. As a result, the di Of meaning as one of the sensesugf. Such se-
L ) ' ' Jectional equivalence can also apply to two lexical

tribution of annotated instances across senses do&ngw anw, with distinct relationsk: and R

not reflect the actual frequency distribution betwee?: ! 2 ! 2

senses, as evidenced by the data sets produced
the last several Senseval competitions.

Initially, we considered using the data set used i
the last SEMEVAL competition for the WSD and
WSI tasks (Tasks 17 and 2, respectively) (Agirre e
al., 2007), which would have allowed us to compar

the performance of our system directly to the per- : .
forman £ th nse induction tems that |yvord forms syntactic dependencies, regardless of
ormance ol the sense Induction systems that pafy, o e the target word is the head or the depen-
ticipated in Task 2. However, the average per-verh . . .

dent element in a syntactic relation.

_entropy of the SENSEVAL data setis (.)'92’ suggest The data set we used for evaluation in this pa-
ing that the most frequent sense dominated the data

er consisted of verbs, and the direct object relation
set for many of the chosen verbs. In fact, out of theD )

. was used both for the target and for its selectional
65 verbs used in the WSI task, 11 verbs had only . 9 .
. . . equivalents. All the computations were performed
one sense in the combined test and training data set. ” )
o over the 100M word British National Corpus (BNC,

Due to such distribution across the senses, th

ling dat t did not dcularl IIEOOO). We used Robust Accurate Statistical Pars-
resufting data set did not seem particuiarly we ing (RASP) (Briscoe and Carroll, 2002) to extract
suited for testing the discriminatory powers of a

. . . grammatlcal relations.
sense-induction system. This was the case espé- .
. . . . For each target wortland relationR, we execute
cially since the evaluation schemes used in Task . . .
) e steps described in detail below.
relied to a large extent on the most frequent sense

to assess the systems’ performahce. 2.1 Establishing the set of wordsto be
For the above reasons, we do not use the SE-  ¢Justered

MEVAL Task 2 data set for evaluation directly. In- _. o .
Given a corpus, we first identify the set of selectors

stead, we perform an indirect comparison using the".

data set we developed. We use several measuresvl}'(j>th which the target word occurs in relatio,

evaluate the clustering solution quality, and com-anol the’? takithe inverse image of that sef[ under
e relationR~". For example, for = acquire

are our system’s performance to the erformanc% ) , . :
P y P P = obj, the first operation gives the set of nouns

the SEMEVAL Task 2 systems. Relative to the hat in direct obiect " theaui
baselines, our system outperforms the best systeﬁrha occur in direct object position witacquire -
e second operation gives us the set of potential

in the SEMEVAL Task 2 on two out of three mea- ) . :
selectional equivalents for different senses of

sures. : . :
. . acquire Words that occur with a given selector
The rest of the paper is organized as follows. Sec- :
only once, as well as those that occur with less

For further discussion of this, see Section 4. than two of the target’s selectors, are discarded.

or example, the vertlibreatenandstruggleare se-
8Ctional equivalents with respect to relaticohsbj
(direct object) andobj_against (relation between
he governing verb and the head of a prepositional
Phrase introduced bggains}.

In the discussion below, we will use the tes®-



We sort the resulting words according to how many Each w is then represented as /fadimensional vector

selectors of the target they co-occur with. w = (f(s)). where f(s) is selector scoring function
that determines the value for each selector based on its

association scores.

2.2 Identifying reliable selectors For example, consider the verbacquire and

Since every wordy in the resulting set occurs with [ack which are selectionally equivalent with
some of the same selectors as the tatgittcould ~ '€SPect to one of the senses aéquire (take
potentially be selectionally equivalent to one of the®1 @ certain characterisfic  We would like
target's senses. We need to identify selectors tha®" a§so%bj(lmportance-n,acqwreyv and
for both ¢ andw behave in the following manner: aSSOgp;(importance-n,lack-y to  produce a
(1) activate the appropriate sense (2) are good digombined value that is high enough to allow
ambiguators, i.e. activate only one sense and are nbpportanceto be identified as a reliable selector.
likely to occur with the other senses. Such selectors In this paper, we report results obtained by sev-
can be polysemous themselves, yet always occur i@ral configurations of our system, which vary with
the same sense when combining withr w. If ase-  fespect to the association score used, the method
lector occurs frequently with bothandw, several used to pick the to- selectors, and the selector
explanations are possible: scoring function. We used two types of associa-
tion scores: pointwise mutual informatiom{) and
(i) A selector activates the appropriate sense for bathd  mi normalized by a log factor of the tuple count
w, and that sense is fairly frequent for both words: freq(s,R,w).4 Selector scoring function used ei-
a.take orfacquirea newimportance ther just the association scoassog(s,w) or the
product of selector’s association scores witland

ii) (Parallel Sense Distinctionslf the verbs have more than . . . . .
W 5 it. The resulting configurations are summarized in

one selectionally equivalent sense, a selector could act

vate the wrong pair of senses: Table 1.
a. acquirdpossessa newsignificancg QUALITY) .
b. acquirdpossesa powerfulweapon(POSSESSION as50G:(5, w) PGRw) f(s)
1 mi(s, Rw) = log PIP(R0) assog (s, w)
(iii) (Selector Polysemy Different senses of that selector | 2 mi(s, Bw) - log(freq(s, R, w))| assog(s,w)
may activate unrelated interpretations for the two verbs: | 3 mi(s, Rw) assog(s, w) - assog(s, t)
4 mi(s, Rw) - log(freq(s, R, w)) assog(s,w) - assog(s,t)

a.take ona greateshareof the load
b. acquirethe sharesof the company Table 1: System configurations: mi, 2 - Mi-FACTOR,

. . 3-MI-PRODUCT, 4 - MI-FACTOR-PRODUCT.
In our model, we make an assumption that the first

case is the dominant one, while the other two cases We use the geometric mean of the two associa-
are much more rare. Under such conditions, seleGjoy scores as the combiner function to sort selec-
tors that are strongly associated with botandw 1< tor eachy, which induces a sorting order with
must be the ones that pick the corresponding sen§fe sequence of equivalence classes located along
for each of then?. _ _ the hyperbolic curves. Note that even if the relevant
For every word in the set of candidates for selecygnge s infrequent for the target, but predominant
tional equivalence, we obtain a set of reliable selecgy, w, the combined score would still be fairly high.
tors as follows: Clearly, automatically identifying all good dis-
ambiguators is not feasible. Our goal is to choose
enough selectors correctly so that the selectional

equivalents for each sense can be grouped together.
2. Combine the two association scores using a combiner

function ¢/(assog:(s, w), assog(s, t)) and choose the 2.3  Producing clusters of selectional
top-k selectors that maximize it. equivalents

1. For each selectaorthat occurs both withh andw, com-
pute association SCOBSS0G: (s, w) andassog (s, t).

?For efficiency, we restrict the number of elements to beWWe use group-average agglomerative clustering to
clustered to 4000, selecting the words that co-occur with aproduce clusters of selectional equivaleﬁILs —

higher number of the target’s selectors. .
3A selector that is strongly associated with betand w {w} for each sense of the target word, with each

must occur “frequently enough” with each of them. Ideally, w represented as kdimensional vector. For the
the frequency of distribution on the sensesdoandt mustbe

taken into account, since the relevant sense may be much more “Log factor de-emphasizes the elements with low occur-
prominent for one word than for the other. rence counts.



present experiments, we uke= 15. Similarity for ~ we extracted the selector for the appropriate gram-
two elementsv; andws is computed as the numeric matical relation. For each selector, we then com-
equivalent of set intersect (i.e. sum of minimums)puted the selector-cluster association score with
for the top45 selectors chosen for each of the ele-each of the high-ranking clusters. The sentences
ments. We do not apply normalization used in thecontaining selectos were tagged with the cluster
standard numerical extensions of Jaccard and Didcat had maximunasso¢s, C;). The sentences that
measures. were tagged with intersecting clusters (i.e. clus-
In our clustering algorithm, we keep a list of se-ters containing at least some of the same selec-
lectors for each node in the dendrogram. When twadional equivalents of the target) were then grouped
clusters are merged, a union of their selector listsogether.
is computed. Each selector is assigned a score that This method has an obvious handicap relative to
is a weighted average of its scores in the mergethe full WSI systems, namely, that we do disam-
clusters (weighted by the number of elements in théiguation based on only one selector. Consequently,

cluster). we would expect it to do poorly in situations where
a larger context is required for disambiguation.
24 Cluster rank Here are the clusters obtained for the verbs-
We sort all the nodes in the dendrogram by computcludeandgraspusing this method:
ing the following score for each nodg: verh conclude
gloss #1 finish
rank(C;) = cluster  begin-v continue-v resume-v prolong-v start-v

commence-v open-v initiate-v reopen-v re-open-v
IntraAPS{CZ-)Jog(]CZ-]) 'IOg(Z fz(s)) selectors  negotiation-n, discussion-n, investigation-n,

proceedings-n, conversation-n, inquiry-n, talk-n, debate-
n, friendship-n, deliberation-n, exploration-n, round-n,

where f;(s) is the score assigned to the selector argument-n, conquest-n, tour-n, ...

I ' 0 . gloss #2 reach an agreement
within clusterC;, |C;| is the number of elements i isiarign-v renegotiate-v agree-v negotiate-v

C;, andIntraAPS C;) is the average pairwise Simi- selectors deal-n, pact-n, contract-n, treaty-n, agreement-n,

seC;

larity between the elements of the cluster. covenant-n, settlement-n, ceasefire-n, arrangement-n,
. armistice-n, truce-n, ...
In the present experiments, we used the top 20
clusters that maximized this score. verh grasp
gloss #1 understand, comprehend
25 Sdector-cluster association cluster. appreciate-v recognise-v recognize-v realise-v realize-

v assess-v demonstrate-v reflect-v illustrate-v explain-v

Using the obtained clusters, we can estimate which understand-v acknowledge-v underline-v emphasize-v stress-
sense of the target a selector is likely to occur with, ¥ &mphasise-v o _
o selectors importance-n, nature-n, significance-n, potential-n,
We compute an association score for each of the vajue-n, difference-n, extent-n, fact-n, point-n, complexity-n,
chosen cluster€; and selectos: implication-n, relationship-n, principle-n, effect-n, meaning-
n, situation-n, truth-n, reality-n, concept-n, role-n, aspect-n,
necessity-n, idea-n, ...

asso¢s, C;) — ZwECi mi(s, Rw) gloss #2 grab hold of something
v 1Cy cluster put-v hold-v thrust-v touch-v raise-v rest-v lift-v rub-v
selectors hand-n, arm-n, chin-n, elbow-n, finger-n, shoulder-
. . P(s,Rw) n head-n, leg-n, receiver-n, knife-n, wrist-n, hair-n, back-n,
Wheremz(s, R'LU) = IOg W sword-n, ...

The resulting score indicates how likely selector
s is to pick the sense of the target associated with | "€ Standard sense-annotated data sets, such as,

C;. The difference between the scores obtained®’ €xample, the ones that have been developed
for different senses with a given selector indicatedVithin the framework of the SENSEVAL compe-
how strongly that selector tends to prefer one of thditions in the recent years (Preiss and Yarowsky,

senses. If the difference is small, the selector must001; Mihalcea and Edmonds, 2004; Agirre et al.,

either equally likely select for either of the senses2007), are not suitable for testing in this case.

or select for both senses at once. 3 Dataset

26 Usingclustersin WSl task We tested our system on an independently devel-
The obtained dendrogram was adapted for use witbped data set that was created using the British
the standard word sense induction task as followdNational Corpus (BNC), which is more balanced

Given a set of sentences containing the target wordhan the more commonly used annotated Wall Street



Journal data. We selected 15 polysemous verbs wittihe column, weighted by the number of instances
sense distinctions that were judged to depend fofior each verb.
disambiguation on semantics of the argumentin di- To get an idea of how well the verbs in our data
rect object position. set could be disambiguated by a supervised system
A set of senses was created for each verb usingr@lying solely on nouns in direct object position, we
modification of the Corpus Pattern Analysis (CPA)also ran on our data a Maximum Entropy classifier
technique (Pustejovsky et al., 2004). A set of comwith 10-fold cross-validatioi. The obtained accu-
plements was examined in the Sketch Engine, a lexacy values are shown in Table 4.
icographic tool that lists significant collocates that
co-occur with a given target word in the specified4 Evaluation
grammatical relation (Kilgarriff et al., 2004). If a
clear division was observed between semanticallfour system uses semantics of a single argument to
different groups of the collocates in direct objectdo the disambiguation, but since the verbs in our
position, the verb was selected. For each group, gata have been selected for effectiveness of single-
separate sense was added to the sense inventory Rfgument semantics disambiguation, it is reason-
the target. For example, for the veabquirg a sep- able to compare the performance of our system to
arate sense was added for each of the following setgat of the general sense induction systems. One
of direct objects: handicap that such evaluation imposes on our sys-
. - tem is that since no other context is available, one
(1) Take on certain characteristics . .
shape, meaning, color, form, dimension, reality, signifi- SE/€Ctor can only be associated with one sense of the

cance, identity, appearance, characteristic, flavor target. We found that our system performed well

(2) Purchase or become the owner of property even despite this handicap
land, stock, business, property, wealth, subsidiary, estate; ’ )
stake In Task-2 of SEMEVAL-2007 (Agirre and Soroa,

2007), Van Rijsbergen’s F-measure was used to

The resulting sense inventory was used to annotaig n the participating sense induction systems. Un-
200 sentences for each verb. The annotators (Wgg, this metric, the clusterlwordbaseline (all oc-

undergraduate linguistics majors) were instructed tQrrences of the target word grouped together) out-

mark each sentence with the most fitting sense. o torms all the clustering systems that competed

In sense annotation, the annotators are frequent& the task. This is due to the known problems with

forced to choose a sense when no disambiguatiatrp“S measure (Meila, 2003)
can rﬁally be performed (I:al_merf«:t al., 2toq7)’ ©S° A number of other metrics have been proposed in
pecially since sense inventories often comtain ovely, o iieratyre to evaluate the quality of a particular
lapping senses that can be activated simultaneous

- ustering solution against a gold standard (Amig
(Pustejovsky and Boguraev, 1993). Our goal was, ., 5q0g. peila, 2003; Zhao and Karypis, 2004),

o create, for each target word, f"‘ set pf ms_tance.?he metric must support certain reasonable con-
where humans had no trouble disambiguating be-

tween different senses. Our ANMOLAtors were therstraints, such as giving a lower score to the solution
ween dl - “W Y - Shat merges two clusters that correspond to different
fore instructed to mark a sentence as “N/A" if (1)

senses, or unnecessarily splits a single séndée

The sense inventory was missing the relevant SensE. ; wanted to see the comparison produced by met-

(2) More tha_n one sense geemed tofit (3) The SeN$fes that (1) do not require set matching to evaluate
was impossible to determine from the context.

a particular clustering solution, and/or (2) consider

The average inter-annotator agreement (ITA) forthe quality of mapping in both directions.

r Wi %, with disagreements resolv . .
our data set was 95%, with disagreements resolved We used the following metrics to evaluate the

in adjudication. Table 4 shows the following Char‘performance of our system: (1) F-measure (2)

acteristics for each verb: 1) ITA (percentage OfBCubed P&R (Amid et al., 2008) (3) mutual

instances where the annotators selected the samc? . i . .
. information as used in Meila (2003). We review
sense for the verb), 2) MFS (percentage of mstance?] )

the latter two measures below:
that belong to the most frequent sense), 3) the num-

ber of senses and number of instances, and 4) en-
tropy of the distribution of instances across senses. éwe used the Maximum Entropy  classi-

The last row of each column gives the average fofier from the CARAFE  project available at
- http://sourceforge. net/projects/carafe.

SFor further details on data set creation, see Rumshisky and “See, for example, Amiget al. (2008) for similar consid-
Batiukova (2008). erations.



“BCubed” measuresWe used the harmonic mean SEMEVAL Task-2 used two kinds of evaluation:
of BCubed precision and recall, which are definedsupervised and unsupervisédVe used the unsu-
for a given clustering solutiorC and a sense pervised method in our comparison. This method
assignment solutio§ on data seD as follows: used a set-matching evaluation technique optimiz-
ing F-measure. The set matching stage found the

> [C(e)nS(e)]

BCubed Precision = [CTel optimum cluster for each sense, and averaged the
" F-measure of the best-matching cluster across all
. % senses. Two relevant baselines were computed for

BCubed Recall = the data set: (1) all instances for the given tar-

get word clustered togethetdlusterlwordand (2)
' each instance treated as a separate clustdug-
terlins).

Since our own data set only included verbs, we
recomputed the metrics for the verbs in SEMEVAL
Entrc_)py/MI measuresWe used the s_tandard MU" jata set, based on the published clustering solutions

tual information measure of two variables definedq . .1, participating system. In addition to the F-

by the clustgring solution and the Sense aSSigr}heasure based metric, we computed the BCubed
ment/(C, 5) in the way delineated in Meila (2003): and NormalizedMI metrics both for our system and

B ) Pk') for the SEMEVAL data.
H(C,8) = Yoy Pk, K) log prspriry Table 2 summarizes the values obtained for these
i . metrics by four configurations of our system. Ta-
wher_e c € Cls a clgster from the clustering ble 3 gives the values obtained for the same metrics
solutionC', andsyy € Sisa Sonse ,f‘rom the sense ¢, each of the systems in SEMEVAL Task-2. We
assignment, and P(k, k') = =55 The range compute the metrics for the verbs in the SEMEVAL
for I(C,’ 5) depends on the entropy values of thedataset, based on the published clustering solutions
two variables H (C') andH(S): for each participating system. We give the values
over the full dataset (i.e. both test and training data).

wheree € D is an element of the data set
C'(e) is the cluster to whicle belongs, and(e) is
the sense category to whietbelongs, ana = | D|.

0 < I(C,8) < min(H(C), H(S))

Variant F-measure| BCubed Norm. Ml

Meila (2003) proposed a relatedriant of infor- - 038% 1‘3(13"; 040% 10615V; 188% 1;3(')
H clinst . . . . .

mationmeasurd’] = H(C) + H(S) - 2I(C, ) lciword | .584  100| .599 100 0O O
which suffers from the same problem, i.e. its max- [mifact B86 1003 522 87.1] 138 734
imum depends on the respective entropy values.| mi-fact-prod| .572 97.9| .540 90.2| .061 32.4
Since we needed to perform comparisons across M 504 86.3) 439 73.3|.103 54.8
different data sets, we usddC, S) normalized by mi-prod 544 932|469 783 101 837

max(H(C), H(S)):

Table 2: Performance of our system for different clustering

configurations
: _ 1(C,S)

NormalizedM| = (A9 )

. . System | F-measure| BCubed | Norm. Ml
which allowed us to retain thé0,1) range and % 1clw % 1clw % 1cli
certain other desirable properties, such as: iclinst |.035 4.6/.039 50| .118 100

lciword | .755  100|.776 100 O O
. I2R 528 69.9] 505 65.1] .051 43.2

NormalizedM 1 (Lc1wordS)= 0 UBC-AS | 750 99.3| .769 99.1/ .005 4.2

NormalizedM I (1clinstS)= H(S)/logn UMND2 | .640 84.8| .638 822 .006 5.1

NormalizedMI(S,5)= 1 uoy 383 50.7| .253 32.6| .048 40.7

upv_si .607 80.4| .520 67.0| .044 37.3

In Task-2 of SEMEVAL-2007, the participant
sense induction systems were evaluated using
Wall Street Journal data annotated with OntoNotes The reported values in both tables are averages
senses (Hovy et al., 2006). While we could not reacross all target words in the data set. To aid com-
use that data set with our system, we performed a—; - ) ) _

Supervised evaluation used a set-matching technique un-

Se_t of comparisons Of_Ol_” system’s performance reIEier which the obtained accuracy depends strongly on the ma-
ative to the characteristics of our data set. jority baseline for each word in the data set.

Table 3:SEMEVAL Task-2 system performance



parison across data sets, next to the actual valusitting: stooped-j 11.4, kneeling-j 11.3, recumbent-j 11.0,

obtained by each system, we give the ratio of that Seatedj 10.1, commanding-j 8.5, standingj 7.5, ...
cluster [figure-n posture-h

value to the b_eSt performing baseline. o predicative attributive-j 14.1, predicative-j 13.7, postnominal-
The verbs in our test data set have a significantly j 13.2, clausal-j 13.1, predicate-n 10.0, postverbal-j 9.1,
higher degree of polysemy compared to the SE- syntactic-j 8.8, prenominal-j 8.3, ordinal-j 6.8, adjectival-j
MEVAL data. While the average number of senses ¢juster [construction-n adjectiveln
per verb in our data and in SEMEVAL data is very dominant interactionist-n 11.4 marxist-j 10.3, pluralist-n
similar (3.73 and 3.54, respectively), the distribu- 10:2, philosophicalj 8.8, popperian 8.7, antiracistj 7.8,
i ’ Lo ! phenomenological-j 7.5, kantian-j 7.4, structuralist-j 7.4,
tions of senses differ. The average per-verb entropy essentialist-j 7.3, functionalist-j 7.2, dominant-j 7.1, holist-
for our data set is 1.4, as compared with the 0.9 j 6.9, doctrinal-j 6.6, materialist-n 6.4, theoretical-j 5.4,
ideological-j 5.1, ...
value for the SEMEVAL d?'ta_' Conse_quently' our cluster [conception-n perspective-n critiqué-n
data has a much lower majority baseline and there-
fore is potentially more difficult to classify. Note _ , ,
that the average number of instances per target iﬂlly amt_)lguo.us. T_he second cluster |n.the sorted list
our data set was similar to the SEMEVAL data set/0f dominantidentifies the other sense:
so the higher value dfclwordbaseline for Normal- dominant monopolistic-j 8.1, leading-j 8.0, competing-j 7.6,
izedMI reflect v the diff in th ¢ f respected-j 6.1, rival-j 6.0, monopoly-n 5.5, established-j 5.3,
1z€ refiects only the difierence in the entropy o yominant-j 5.2, competitive-j 4.6, well-established-j 4.5, ...
the annotated data. cluster  [manufacturer-n firm-n producer-n provider-n
Table 4 shows the F-measure values obtained forsupplier-i
two baselines and for our best-performing config- The resulting heterogeneous selector sets could
uration (ni-factor), for each verb in our data set. be used to improve ambiguity resolution in statisti-
The random baseline was computed in the follow-cal machine translation. Another application of this
ing way: for each verb, we randomly split the in- system would be to utilize multiple relations per in-
stances into clusters of the same number and sizgance. Selector-cluster association scores currently
as the sense classes in the annotated data, and aged to classify sense-tagged instances of the target
culated the resulting F-measure, averaged over @ord can be used to choose which relations are to
runs. affect disambiguation.
In summary, we have presented a system de-
signed to assess the impact of semantics of the ar-

The resulting system for clustering selectors ofgument on different types of ambiguities. For the
polysemous words can be used in a number ofases when ambiguity may be resolved by the se-
ways. For example, Gamallo (2005) uses a simmantics of the arguments, our system outperforms
ilar approach to clustering of argument positionsfull-context WSI systems. This system allows for
to improve prepositional phrase attachment in Pora humber of interesting applications that should be
tuguese. investigated in the future.

Using our system, we can also easily produce
heterogeneous sets of arguments that select for ﬂﬁeferences
same sense. For example, consider the wird
sition whose meaning is so underspecified that i€E. Agirre and A. Soroa. 2007. Semeval-2007 task 02:
almost always requires a modifier in order to be Evaluating word sense induction and discrimination

. . - systems. IrProceedings of SemEval-2QQYages 7—
dlsqr_nblguated. In the B_NC, the top_ modifiers of 12, Prague, Czech Republic, June. ACL.
p_osmon (_ncmod relation _|n RASP; with FOIIOca- E. Agirre, L. Marquez, and R. Wicentowski, editors.
tion ranking computed with log-factor adjusted Ml 2007. Proceedings of SemEval-200ACL, Prague,
score) aresitting, predicative anddominant Using Czech Republic, June.
the dendrogram obtained for themod relation  E. Amigo, J. Gonzalo, and J. Artiles. 2008. A compari-
for position we can sort the clusters whose selec- son of extrinsic_ clustering evaluation metrics based on
tor lists include a given collocate, so that the cluster ‘;_0rma| C.O”S”";'.”tts' Tec:u?al r?port, B‘f\lpéga”&e”éqge
in which the given collocate has the highest average S%r;gi:]#ajes y Sistemas Informticos ( ), Madrid,
M_I is placed at the top. For the collocates a}boveBNC. 2000. The Briish National Corpus
this method places at the top the clusters with theé the BNC  Consortium, University of Oxford,

following selector list$: http://www.natcorp.ox.ac.uk/

Notice that the phrasgominant positioris actu-

5 Conclusion and Future Work

9MI values for each selector, averaged across all elementsf the cluster, are given next to the POS-marked lemma



Word No. No. ITA% Entropy | MFS MaxEnt random 1clword mi-fact
Senses Inst. accuracy

absorb 7 196 92.4 2.49 .30 .58 .20 .33 .36
acquire 4 186 92.1 1.86 44 44 .30 .45 .59
admit 2 163 98.7 1.00 .53 71 .51 .67 74
assume | 3 191 90.8 1.55 .45 .73 39 .52 .48
conclude | 2 178 97.5 0.96 .62 .89 55 .68 51
cut 4 166 92.3 1.33 .58 .51 49 .61 78
deny 3 190 97.2 1.49 49 .62 .38 .54 55
dictate 2 193 98.9 0.53 .88 .97 .79 .85 .62
drive 11 174 97.6 2.64 41 .40 .23 .34 .39
edit 2 176 98.0 0.98 .57 .82 .57 .67 .62
enjoy 2 193 86.2 0.93 .66 .70 .57 .70 53
fire 6 162 97.3 1.87 .54 .73 37 49 58
grasp 3 178 97.6 1.25 .49 .84 45 .61 85
know 2 172 92.6 0.98 .58 .79 .54 .67 .56
launch 3 196 89.9 1.24 .63 74 .52 .62 .66
Average | 3.73 180.9| 94.5 141 545 699 .457 .584 586

Table 4: Per-word characteristics of the data set and system perfoeman

T. Briscoe and J. Carroll. 2002. Robust accurate statistid. Mitchell and M. Lapata. 2008. Vector-based mod-

cal annotation of general texProceedings of LREC
2002, Las Palmas, Canary Islangsages 1499-1504.

els of semantic composition. Proceedings of ACL
pages 236—-244.

K. Erk and S. Pado. 2008. A structured vector spacé. Palmer, D. Gildea, and P. Kingsbury. 2005. The

model for word meaning in context. Iroceedings
of EMNLP.

Proposition Bank: An annotated corpus of semantic
roles. Computational Linguistics31(1):71-106.

P. Gamallo, A. Agustini, and G. Lopes. 2005. Cluster-M. Palmer, H. Dang, and C. Fellbaum. 2007. Making

ing syntactic positions with similar semantic require-
ments.Computational Linguistics31(1):107-145.

G. Grefenstette. 1994. Explorations in Automatic

fine-grained and coarse-grained sense distinctions,
both manually and automaticallyournal of Natural
Language Engineering

Thesaurus DiscoveryKluwer Academic Publishers, P. Pantel and D. Lin. 2002. Discovering word senses

Norwell, MA, USA.

from text. InProceedings of ACM SIGKDD02

Z. Harris. 1985. Distributional structure. In J. Katz, ed-J Preiss and D. Yarowsky, editors. 200roceedings of

itor, Philosophy of Linguisticspages 26—47. Oxford
University Press, New York.

D. Hindle. 1990. Noun classification from predicate- J.

argument structures. IRroceedings of ACLpages
268-275, Pittsburgh, PA. ACL.

E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, andJ.

R. Weischedel. 2006. OntoNotes: The 90% solution.
In Proceedings of HLT-NAACL, Companion Volume:

the Second Int. Workshop on Evaluating WSD Systems
(Senseval 2)ACL2002/EACL2001.

Pustejovsky and B. Boguraev. 1993. Lexical knowl-
edge representation and natural language processing.
Artif. Intell., 63(1-2):193-223.

Pustejovsky, P. Hanks, and A. Rumshisky. 2004. Au-
tomated Induction of Sense in Context. @OLING
2004, Geneva, Switzerlanpdages 924-931.

Short Papers pages 57-60, New York City, USA, A Rumshisky and O. Batiukova. 2008. Polysemy in

June. ACL.

A. Kilgarriff, P. Rychly, P. Smrz, and D. Tugwell. 2004.
The Sketch EngineProceedings of Euralex, Lorient,
France pages 105-116.

S. Landes, C. Leacock, and R.l. Tengi. 1998. Build-
ing semantic concordances. In C. Fellbaum, editor,
Wordnet: an electronic lexical databasellT Press,
Cambridge (Mass.).

verbs: systematic relations between senses and their
effect on annotation. IHJCL-2008 Manchester,
England.

A. Rumshisky. 2008. Resolving polysemy in verbs:

Contextualized distributional approach to argument
semantics. In A. Lenci, editoBistributional Models

of the Lexicon, A Special Issue of Rivista di Linguis-
tica.

M. Meila. 2003. Comparing clusterings. Techical Re-J. Ruppenhofer, M. Ellsworth, M. Petruck, C. Johnson,

port TR418, University of Washington, Department
of Statistics.

R. Mihalcea and P. Edmonds, editors. 20@Enseval-
3: Third International Workshop on the Evaluation of
Systems for the Semantic Analysis of TBatrcelona,
Spain, July. ACL.

G. Miller and W. Charles. 1991. Contextual correlates
of semantic similarity.Language and Cognitive Pro-
cessest(1):1-28.

and J. Scheffczyk. 200&rameNet Il: Extended The-
ory and Practice

H. Schitze. 1998. Automatic word sense discrimina-

tion. Computational Linguistics24(1):97-123.

Y. Zhao and G. Karypis. 2004. Empirical and theoretical

comparisons of selected criterion functions for docu-
ment clusteringMachine Learning55:311-331.



