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Abstract

We present an unsupervised learning sys-
tem developed to recognize predicate sense
distinctions that depend on the semantics
of the arguments. We develop a sense-
tagged data set for 15 polysemous verbs se-
lected for having such sense distinctions.
We use this data set to evaluate the perfor-
mance of our system in a word sense induc-
tion setting. Relative to the baselines, our
system outperforms the best system in the
SEMEVAL-2007 Task 2 on two out of three
measures we use to evaluate the clustering
solution.

1 Introduction

Disambiguation of polysemous words in language
is usually accomplished by taking into account two
aspects of the context: (1) the syntactic frame into
which the word is embedded and (2) the seman-
tics of the words with which it forms syntactic de-
pendencies. In word sense disambiguation or in-
duction (WSD/WSI) systems, both aspects are rou-
tinely modeled through distributional information,
following the idea that semantic similarity between
words must be reflected in the similarity of their ha-
bitual contexts of occurrence (Harris, 1985; Miller
and Charles, 1991).

However, different ambiguities require different
kinds of contextual information to be resolved (as
anybody who has done any amount of semantic an-
notation can attest). WSD/WSI systems are not typ-
ically designed to treat different kinds of sense dis-
tinctions separately. The sense-tagged data used for
training and testing of such systems is very labor-
intensive to create in general. So it is not surpris-
ing that such annotation does not usually attempt
to specify the relationship between the annotated
senses and the context elements that distinguish be-
tween them. Many commonly used sense-tagged
corpora, such as SemCor (Landes et al., 1998),

PropBank (Palmer et al., 2005), OntoNotes (Hovy
et al., 2006), etc., are similar in this respect. This
fact makes it very difficult to address the question
of what types of distinctions are detected more suc-
cessfully by a given system.

The senses that are linked to specific syntactic
patterns are typically easier for people to distin-
guish. When main differentiating factor is the se-
mantics of the arguments, detecting such sense dis-
tinctions is often less straightforward. Our goal in
the present work was to separate out and examine
the contribution of the latter factor towards sense
differentiation in polysemous verbs. With this goal
in mind, we designed a fully unsupervised sense
induction system that analyzes how different argu-
ments contribute to disambiguation, looking at each
argument position separately.

One of the main problems for the systems that
seek to detect or derive senses using distributional
similarity is separating occurrence counts for differ-
ent senses of the word. The work in thesaurus con-
struction or sense induction has often either used
the notion of monosemous near-synonyms (Hindle,
1990; Grefenstette, 1994; Pantel and Lin, 2002) or
tried to represent contexts, rather than words per
se (Scḧutze, 1998; Mitchell and Lapata, 2008; Erk
and Pado, 2008). Our approach uses the idea that
words that are similar in a particular context do not
need to be distributionally similar overall. Our sys-
tem identifies the words selectionally similar to a
given sense of the target and induces clusters of ar-
guments activating that sense. The former is accom-
plished by contextualizing the vector representation
of such words to the target’s context.

To get an idea of how well our system performs,
we decided to evaluate it as a standard sense in-
duction system. Such an evaluation is difficult to
perform without having a manually constructed re-
source against which to compare the induced group-
ings. We developed a sense-tagged data set for
15 polysemous verbs that were selected for having
sense distinctions strongly dependent on the seman-



tics of a single argument.
The choice to create a data set for the testing of

our system was motivated by two considerations.
Firstly, the standard sense-tagged data sets (such as
the ones mentioned above) conflate different kinds
of contextual information, so they can not be used
directly. The data sets that do specify the fac-
tors contributing to the disambiguation, such as the
data from the FrameNet project (Ruppenhofer et al.,
2006), are often incomplete, since only the senses
linked to the completed frames are represented in
the corpus. Even in case of full coverage, only a
very small number of instances actually end up ex-
emplifying the relevant sense distinctions.

Secondly, the sense annotation has often been
done on corpora which are not well-balanced, such
as the Wall Street Journal data. As a result, the dis-
tribution of annotated instances across senses does
not reflect the actual frequency distribution between
senses, as evidenced by the data sets produced for
the last several Senseval competitions.

Initially, we considered using the data set used in
the last SEMEVAL competition for the WSD and
WSI tasks (Tasks 17 and 2, respectively) (Agirre et
al., 2007), which would have allowed us to compare
the performance of our system directly to the per-
formance of the sense induction systems that par-
ticipated in Task 2. However, the average per-verb
entropy of the SENSEVAL data set is 0.92, suggest-
ing that the most frequent sense dominated the data
set for many of the chosen verbs. In fact, out of the
65 verbs used in the WSI task, 11 verbs had only
one sense in the combined test and training data set.

Due to such distribution across the senses, the
resulting data set did not seem particularly well
suited for testing the discriminatory powers of a
sense-induction system. This was the case espe-
cially since the evaluation schemes used in Task 2
relied to a large extent on the most frequent sense
to assess the systems’ performance.1

For the above reasons, we do not use the SE-
MEVAL Task 2 data set for evaluation directly. In-
stead, we perform an indirect comparison using the
data set we developed. We use several measures to
evaluate the clustering solution quality, and com-
pare our system’s performance to the performance
the SEMEVAL Task 2 systems. Relative to the
baselines, our system outperforms the best system
in the SEMEVAL Task 2 on two out of three mea-
sures.

The rest of the paper is organized as follows. Sec-

1For further discussion of this, see Section 4.

tion 2 gives a detailed description of the algorithm.
Section 3 describes the data set we developed for
testing. Section 4 describes the evaluation we per-
formed. Finally, in the last section, we discuss the
results and some possible applications of the sys-
tem.

2 System Architecture

Our system produces clusters ofselectional equiva-
lents(Rumshisky, 2008) for each sense of the target
word.

A lexical item w1 is a selectional equivalentof
lexical item w2 with respect to grammatical rela-
tion R, if in the argument position defined byR,
one of the senses ofw1 selects for the same aspect
of meaning as one of the senses ofw2. Such se-
lectional equivalence can also apply to two lexical
itemsw1 anw2 with distinct relationsR1 andR2.
For example, the verbsthreatenandstruggleare se-
lectional equivalents with respect to relationsdobj
(direct object) andiobj against (relation between
the governing verb and the head of a prepositional
phrase introduced byagainst).

In the discussion below, we will use the termse-
lector to refer to the words with which the target
word forms syntactic dependencies, regardless of
whether the target word is the head or the depen-
dent element in a syntactic relation.

The data set we used for evaluation in this pa-
per consisted of verbs, and the direct object relation
was used both for the target and for its selectional
equivalents. All the computations were performed
over the 100M word British National Corpus (BNC,
2000). We used Robust Accurate Statistical Pars-
ing (RASP) (Briscoe and Carroll, 2002) to extract
grammatical relations.

For each target wordt and relationR, we execute
the steps described in detail below.

2.1 Establishing the set of words to be
clustered

Given a corpus, we first identify the set of selectors
with which the target word occurs in relationR,
and then take the inverse image of that set under
the relationR−1. For example, fort = acquire,
R = obj, the first operation gives the set of nouns
that occur in direct object position withacquire.
The second operation gives us the set of potential
selectional equivalents for different senses of
acquire. Words that occur with a given selector
only once, as well as those that occur with less
than two of the target’s selectors, are discarded.



We sort the resulting words according to how many
selectors of the target they co-occur with.2

2.2 Identifying reliable selectors

Since every wordw in the resulting set occurs with
some of the same selectors as the targett, it could
potentially be selectionally equivalent to one of the
target’s senses. We need to identify selectors that
for both t andw behave in the following manner:
(1) activate the appropriate sense (2) are good dis-
ambiguators, i.e. activate only one sense and are not
likely to occur with the other senses. Such selectors
can be polysemous themselves, yet always occur in
the same sense when combining witht or w. If a se-
lector occurs frequently with botht andw, several
explanations are possible:

(i) A selector activates the appropriate sense for botht and
w, and that sense is fairly frequent for both words:

a. take on/acquirea newimportance

(ii) (Parallel Sense Distinctions.) If the verbs have more than
one selectionally equivalent sense, a selector could acti-
vate the wrong pair of senses:

a. acquire/possessa newsignificance(QUALITY )
b. acquire/possessa powerfulweapon(POSSESSION)

(iii) ( Selector Polysemy.) Different senses of that selector
may activate unrelated interpretations for the two verbs:

a. take ona greatershareof the load
b. acquirethesharesof the company

In our model, we make an assumption that the first
case is the dominant one, while the other two cases
are much more rare. Under such conditions, selec-
tors that are strongly associated with botht andw
must be the ones that pick the corresponding sense
for each of them.3

For every word in the set of candidates for selec-
tional equivalence, we obtain a set of reliable selec-
tors as follows:

1. For each selectors that occurs both witht andw, com-
pute association scoreassocR(s, w) andassocR(s, t).

2. Combine the two association scores using a combiner
functionψ(assocR(s, w), assocR(s, t)) and choose the
top-k selectors that maximize it.

2For efficiency, we restrict the number of elements to be
clustered to 4000, selecting the words that co-occur with a
higher number of the target’s selectors.

3A selector that is strongly associated with botht andw
must occur “frequently enough” with each of them. Ideally,
the frequency of distribution on the senses forw andt must be
taken into account, since the relevant sense may be much more
prominent for one word than for the other.

Each w is then represented as ak-dimensional vector
w = 〈f(s)〉, where f(s) is selector scoring function
that determines the value for each selector based on its
association scores.

For example, consider the verbsacquire and
lack which are selectionally equivalent with
respect to one of the senses ofacquire (take
on a certain characteristic). We would like
for assocobj(importance-n,acquire-v) and
assocobj(importance-n,lack-v) to produce a
combined value that is high enough to allow
importanceto be identified as a reliable selector.

In this paper, we report results obtained by sev-
eral configurations of our system, which vary with
respect to the association score used, the method
used to pick the top-k selectors, and the selector
scoring function. We used two types of associa-
tion scores: pointwise mutual information (mi) and
mi normalized by a log factor of the tuple count
freq(s, R, w).4 Selector scoring function used ei-
ther just the association scoreassocR(s, w) or the
product of selector’s association scores withw and
t. The resulting configurations are summarized in
Table 1.

assocR(s, w) f(s)

1 mi(s, Rw) = log P (s,R,w)
P (s)P (R,w) assocR(s, w)

2 mi(s, Rw) · log(freq(s, R, w)) assocR(s, w)
3 mi(s, Rw) assocR(s, w) · assocR(s, t)
4 mi(s, Rw) · log(freq(s, R, w)) assocR(s, w) · assocR(s, t)

Table 1: System configurations.1 - MI , 2 - MI -FACTOR,

3 - MI -PRODUCT, 4 - MI -FACTOR-PRODUCT.

We use the geometric mean of the two associa-
tion scores as the combiner function to sort selec-
tors for eachw, which induces a sorting order with
the sequence of equivalence classes located along
the hyperbolic curves. Note that even if the relevant
sense is infrequent for the target, but predominant
for w, the combined score would still be fairly high.

Clearly, automatically identifying all good dis-
ambiguators is not feasible. Our goal is to choose
enough selectors correctly so that the selectional
equivalents for each sense can be grouped together.

2.3 Producing clusters of selectional
equivalents

We use group-average agglomerative clustering to
produce clusters of selectional equivalentsCi =
{w} for each sense of the target word, with each
w represented as ak-dimensional vector. For the

4Log factor de-emphasizes the elements with low occur-
rence counts.



present experiments, we usek = 15. Similarity for
two elementsw1 andw2 is computed as the numeric
equivalent of set intersect (i.e. sum of minimums)
for the top-15 selectors chosen for each of the ele-
ments. We do not apply normalization used in the
standard numerical extensions of Jaccard and Dice
measures.

In our clustering algorithm, we keep a list of se-
lectors for each node in the dendrogram. When two
clusters are merged, a union of their selector lists
is computed. Each selector is assigned a score that
is a weighted average of its scores in the merged
clusters (weighted by the number of elements in the
cluster).

2.4 Cluster rank

We sort all the nodes in the dendrogram by comput-
ing the following score for each nodeCi:

rank(Ci) =

IntraAPS(Ci) · log(|Ci|) · log(
∑

s∈Ci

fi(s))

where fi(s) is the score assigned to the selector
within clusterCi, |Ci| is the number of elements in
Ci, andIntraAPS(Ci) is the average pairwise simi-
larity between the elements of the cluster.

In the present experiments, we used the top 20
clusters that maximized this score.

2.5 Selector-cluster association

Using the obtained clusters, we can estimate which
sense of the target a selector is likely to occur with.
We compute an association score for each of the
chosen clustersCi and selectors:

assoc(s, Ci) =

∑
w∈Ci

mi(s, Rw)

|Ci|

wheremi(s, Rw) = log P (s,R,w)
P (s)P (R,w) .

The resulting score indicates how likely selector
s is to pick the sense of the target associated with
Ci. The difference between the scores obtained
for different senses with a given selector indicates
how strongly that selector tends to prefer one of the
senses. If the difference is small, the selector must
either equally likely select for either of the senses,
or select for both senses at once.

2.6 Using clusters in WSI task

The obtained dendrogram was adapted for use with
the standard word sense induction task as follows.
Given a set of sentences containing the target word,

we extracted the selector for the appropriate gram-
matical relation. For each selector, we then com-
puted the selector-cluster association score with
each of the high-ranking clusters. The sentences
containing selectors were tagged with the cluster
that had maximumassoc(s, Ci). The sentences that
were tagged with intersecting clusters (i.e. clus-
ters containing at least some of the same selec-
tional equivalents of the target) were then grouped
together.

This method has an obvious handicap relative to
the full WSI systems, namely, that we do disam-
biguation based on only one selector. Consequently,
we would expect it to do poorly in situations where
a larger context is required for disambiguation.

Here are the clusters obtained for the verbscon-
cludeandgraspusing this method:

verb: conclude
gloss #1: finish
cluster: begin-v continue-v resume-v prolong-v start-v

commence-v open-v initiate-v reopen-v re-open-v
selectors: negotiation-n, discussion-n, investigation-n,

proceedings-n, conversation-n, inquiry-n, talk-n, debate-
n, friendship-n, deliberation-n, exploration-n, round-n,
argument-n, conquest-n, tour-n, ...

gloss #2: reach an agreement
cluster: sign-v renegotiate-v agree-v negotiate-v
selectors: deal-n, pact-n, contract-n, treaty-n, agreement-n,

covenant-n, settlement-n, ceasefire-n, arrangement-n,
armistice-n, truce-n, ...

verb: grasp
gloss #1: understand, comprehend
cluster: appreciate-v recognise-v recognize-v realise-v realize-

v assess-v demonstrate-v reflect-v illustrate-v explain-v
understand-v acknowledge-v underline-v emphasize-v stress-
v emphasise-v

selectors: importance-n, nature-n, significance-n, potential-n,
value-n, difference-n, extent-n, fact-n, point-n, complexity-n,
implication-n, relationship-n, principle-n, effect-n, meaning-
n, situation-n, truth-n, reality-n, concept-n, role-n, aspect-n,
necessity-n, idea-n, ...

gloss #2: grab hold of something
cluster: put-v hold-v thrust-v touch-v raise-v rest-v lift-v rub-v
selectors: hand-n, arm-n, chin-n, elbow-n, finger-n, shoulder-

n head-n, leg-n, receiver-n, knife-n, wrist-n, hair-n, back-n,
sword-n, ...

The standard sense-annotated data sets, such as,
for example, the ones that have been developed
within the framework of the SENSEVAL compe-
titions in the recent years (Preiss and Yarowsky,
2001; Mihalcea and Edmonds, 2004; Agirre et al.,
2007), are not suitable for testing in this case.

3 Data set

We tested our system on an independently devel-
oped data set that was created using the British
National Corpus (BNC), which is more balanced
than the more commonly used annotated Wall Street



Journal data. We selected 15 polysemous verbs with
sense distinctions that were judged to depend for
disambiguation on semantics of the argument in di-
rect object position.

A set of senses was created for each verb using a
modification of the Corpus Pattern Analysis (CPA)
technique (Pustejovsky et al., 2004). A set of com-
plements was examined in the Sketch Engine, a lex-
icographic tool that lists significant collocates that
co-occur with a given target word in the specified
grammatical relation (Kilgarriff et al., 2004). If a
clear division was observed between semantically
different groups of the collocates in direct object
position, the verb was selected. For each group, a
separate sense was added to the sense inventory for
the target. For example, for the verbacquire, a sep-
arate sense was added for each of the following sets
of direct objects:

(1) Take on certain characteristics
shape, meaning, color, form, dimension, reality, signifi-
cance, identity, appearance, characteristic, flavor

(2) Purchase or become the owner of property
land, stock, business, property, wealth, subsidiary, estate,
stake

The resulting sense inventory was used to annotate
200 sentences for each verb. The annotators (two
undergraduate linguistics majors) were instructed to
mark each sentence with the most fitting sense.

In sense annotation, the annotators are frequently
forced to choose a sense when no disambiguation
can really be performed (Palmer et al., 2007), es-
pecially since sense inventories often contain over-
lapping senses that can be activated simultaneously
(Pustejovsky and Boguraev, 1993). Our goal was
to create, for each target word, a set of instances
where humans had no trouble disambiguating be-
tween different senses. Our annotators were there-
fore instructed to mark a sentence as “N/A” if (1)
The sense inventory was missing the relevant sense
(2) More than one sense seemed to fit (3) The sense
was impossible to determine from the context.5

The average inter-annotator agreement (ITA) for
our data set was 95%, with disagreements resolved
in adjudication. Table 4 shows the following char-
acteristics for each verb: 1) ITA (percentage of
instances where the annotators selected the same
sense for the verb), 2) MFS (percentage of instances
that belong to the most frequent sense), 3) the num-
ber of senses and number of instances, and 4) en-
tropy of the distribution of instances across senses.
The last row of each column gives the average for

5For further details on data set creation, see Rumshisky and
Batiukova (2008).

the column, weighted by the number of instances
for each verb.

To get an idea of how well the verbs in our data
set could be disambiguated by a supervised system
relying solely on nouns in direct object position, we
also ran on our data a Maximum Entropy classifier
with 10-fold cross-validation.6 The obtained accu-
racy values are shown in Table 4.

4 Evaluation

Our system uses semantics of a single argument to
do the disambiguation, but since the verbs in our
data have been selected for effectiveness of single-
argument semantics disambiguation, it is reason-
able to compare the performance of our system to
that of the general sense induction systems. One
handicap that such evaluation imposes on our sys-
tem is that since no other context is available, one
selector can only be associated with one sense of the
target. We found that our system performed well
even despite this handicap.

In Task-2 of SEMEVAL-2007 (Agirre and Soroa,
2007), Van Rijsbergen’s F-measure was used to
rank the participating sense induction systems. Un-
der this metric, the1cluster1wordbaseline (all oc-
currences of the target word grouped together) out-
performs all the clustering systems that competed
in the task. This is due to the known problems with
this measure (Meila, 2003).

A number of other metrics have been proposed in
the literature to evaluate the quality of a particular
clustering solution against a gold standard (Amigó
et al., 2008; Meila, 2003; Zhao and Karypis, 2004).
The metric must support certain reasonable con-
straints, such as giving a lower score to the solution
that merges two clusters that correspond to different
senses, or unnecessarily splits a single sense.7 We
also wanted to see the comparison produced by met-
rics that (1) do not require set matching to evaluate
a particular clustering solution, and/or (2) consider
the quality of mapping in both directions.

We used the following metrics to evaluate the
performance of our system: (1) F-measure (2)
BCubed P&R (Amiǵo et al., 2008) (3) mutual
information as used in Meila (2003). We review
the latter two measures below:

6We used the Maximum Entropy classi-
fier from the CARAFE project available at
http://sourceforge.net/projects/carafe.

7See, for example, Amiǵo et al. (2008) for similar consid-
erations.



“BCubed” measures: We used the harmonic mean
of BCubed precision and recall, which are defined
for a given clustering solutionC and a sense
assignment solutionS on data setD as follows:

BCubed Precision =
P

e

|C(e)∩S(e)|
|C(e)|

n

BCubed Recall =
P

e

|C(e)∩S(e)|
|S(e)|

n

where e ∈ D is an element of the data set,
C(e) is the cluster to whiche belongs, andS(e) is
the sense category to whiche belongs, andn = |D|.

Entropy/MI measures: We used the standard mu-
tual information measure of two variables defined
by the clustering solution and the sense assign-
mentI(C, S) in the way delineated in Meila (2003):

I(C, S) =
∑

k,k′ P (k, k′) log P (k,k′)
P (k)P (k′)

where ck ∈ C is a cluster from the clustering
solutionC, andsk′ ∈ S is a sense from the sense
assignmentS, andP (k, k′) =

|ck∩s
k′ |

n
. The range

for I(C, S) depends on the entropy values of the
two variables,H(C) andH(S):

0 ≤ I(C, S) ≤ min(H(C), H(S))

Meila (2003) proposed a relatedvariant of infor-
mationmeasureV I = H(C) + H(S) − 2I(C, S)
which suffers from the same problem, i.e. its max-
imum depends on the respective entropy values.
Since we needed to perform comparisons across
different data sets, we usedI(C, S) normalized by
max(H(C), H(S)):

NormalizedMI = I(C,S)
max(H(S),H(C))

which allowed us to retain the(0, 1) range and
certain other desirable properties, such as:

NormalizedMI(1c1word,S)= 0

NormalizedMI(1c1inst,S)= H(S)/ log n

NormalizedMI(S,S)= 1

In Task-2 of SEMEVAL-2007, the participant
sense induction systems were evaluated using
Wall Street Journal data annotated with OntoNotes
senses (Hovy et al., 2006). While we could not re-
use that data set with our system, we performed a
set of comparisons of our system’s performance rel-
ative to the characteristics of our data set.

SEMEVAL Task-2 used two kinds of evaluation:
supervised and unsupervised.8 We used the unsu-
pervised method in our comparison. This method
used a set-matching evaluation technique optimiz-
ing F-measure. The set matching stage found the
optimum cluster for each sense, and averaged the
F-measure of the best-matching cluster across all
senses. Two relevant baselines were computed for
the data set: (1) all instances for the given tar-
get word clustered together (1cluster1word) and (2)
each instance treated as a separate cluster (1clus-
ter1inst).

Since our own data set only included verbs, we
recomputed the metrics for the verbs in SEMEVAL
data set, based on the published clustering solutions
for each participating system. In addition to the F-
measure based metric, we computed the BCubed
and NormalizedMI metrics both for our system and
for the SEMEVAL data.

Table 2 summarizes the values obtained for these
metrics by four configurations of our system. Ta-
ble 3 gives the values obtained for the same metrics
for each of the systems in SEMEVAL Task-2. We
compute the metrics for the verbs in the SEMEVAL
dataset, based on the published clustering solutions
for each participating system. We give the values
over the full dataset (i.e. both test and training data).

Variant F-measure BCubed Norm. MI
% 1c1w % 1c1w % 1c1i

1c1inst .038 6.5 .040 6.7 .188 100
1c1word .584 100 .599 100 0 0
mi-fact .586 100.3 .522 87.1 .138 73.4
mi-fact-prod .572 97.9 .540 90.2 .061 32.4
mi .504 86.3 .439 73.3 .103 54.8
mi-prod .544 93.2 .469 78.3 .101 53.7

Table 2: Performance of our system for different clustering
configurations

System F-measure BCubed Norm. MI
% 1c1w % 1c1w % 1c1i

1c1inst .035 4.6 .039 5.0 .118 100
1c1word .755 100 .776 100 0 0
I2R .528 69.9 .505 65.1 .051 43.2
UBC-AS .750 99.3 .769 99.1 .005 4.2
UMND2 .640 84.8 .638 82.2 .006 5.1
UOY .383 50.7 .253 32.6 .048 40.7
upv si .607 80.4 .520 67.0 .044 37.3

Table 3:SEMEVAL Task-2 system performance

The reported values in both tables are averages
across all target words in the data set. To aid com-

8Supervised evaluation used a set-matching technique un-
der which the obtained accuracy depends strongly on the ma-
jority baseline for each word in the data set.



parison across data sets, next to the actual value
obtained by each system, we give the ratio of that
value to the best performing baseline.

The verbs in our test data set have a significantly
higher degree of polysemy compared to the SE-
MEVAL data. While the average number of senses
per verb in our data and in SEMEVAL data is very
similar (3.73 and 3.54, respectively), the distribu-
tions of senses differ. The average per-verb entropy
for our data set is 1.4, as compared with the 0.9
value for the SEMEVAL data. Consequently, our
data has a much lower majority baseline and there-
fore is potentially more difficult to classify. Note
that the average number of instances per target in
our data set was similar to the SEMEVAL data set,
so the higher value of1c1wordbaseline for Normal-
izedMI reflects only the difference in the entropy of
the annotated data.

Table 4 shows the F-measure values obtained for
two baselines and for our best-performing config-
uration (mi-factor), for each verb in our data set.
The random baseline was computed in the follow-
ing way: for each verb, we randomly split the in-
stances into clusters of the same number and size
as the sense classes in the annotated data, and cal-
culated the resulting F-measure, averaged over 10
runs.

5 Conclusion and Future Work

The resulting system for clustering selectors of
polysemous words can be used in a number of
ways. For example, Gamallo (2005) uses a sim-
ilar approach to clustering of argument positions
to improve prepositional phrase attachment in Por-
tuguese.

Using our system, we can also easily produce
heterogeneous sets of arguments that select for the
same sense. For example, consider the wordpo-
sition whose meaning is so underspecified that it
almost always requires a modifier in order to be
disambiguated. In the BNC, the top modifiers of
position (ncmod relation in RASP; with colloca-
tion ranking computed with log-factor adjusted MI
score) aresitting, predicative, anddominant. Using
the dendrogram obtained for thencmod relation
for position, we can sort the clusters whose selec-
tor lists include a given collocate, so that the cluster
in which the given collocate has the highest average
MI is placed at the top. For the collocates above,
this method places at the top the clusters with the
following selector lists9:

9MI values for each selector, averaged across all elements

sitting: stooped-j 11.4, kneeling-j 11.3, recumbent-j 11.0,
seated-j 10.1, commanding-j 8.5, standing-j 7.5, ...
cluster: [figure-n posture-n]

predicative: attributive-j 14.1, predicative-j 13.7, postnominal-
j 13.2, clausal-j 13.1, predicate-n 10.0, postverbal-j 9.1,
syntactic-j 8.8, prenominal-j 8.3, ordinal-j 6.8, adjectival-j
6.1, ...
cluster: [construction-n adjective-n]

dominant: interactionist-n 11.4 marxist-j 10.3, pluralist-n
10.2, philosophical-j 8.8, popperian-j 8.7, antiracist-j 7.8,
phenomenological-j 7.5, kantian-j 7.4, structuralist-j 7.4,
essentialist-j 7.3, functionalist-j 7.2, dominant-j 7.1, holist-
j 6.9, doctrinal-j 6.6, materialist-n 6.4, theoretical-j 5.4,
ideological-j 5.1, ...
cluster: [conception-n perspective-n critique-n]

Notice that the phrasedominant positionis actu-
ally ambiguous. The second cluster in the sorted list
for dominantidentifies the other sense:

dominant: monopolistic-j 8.1, leading-j 8.0, competing-j 7.6,
respected-j 6.1, rival-j 6.0, monopoly-n 5.5, established-j 5.3,
dominant-j 5.2, competitive-j 4.6, well-established-j 4.5, ...
cluster: [manufacturer-n firm-n producer-n provider-n
supplier-n]

The resulting heterogeneous selector sets could
be used to improve ambiguity resolution in statisti-
cal machine translation. Another application of this
system would be to utilize multiple relations per in-
stance. Selector-cluster association scores currently
used to classify sense-tagged instances of the target
word can be used to choose which relations are to
affect disambiguation.

In summary, we have presented a system de-
signed to assess the impact of semantics of the ar-
gument on different types of ambiguities. For the
cases when ambiguity may be resolved by the se-
mantics of the arguments, our system outperforms
full-context WSI systems. This system allows for
a number of interesting applications that should be
investigated in the future.
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