
IJDAR manuscript No.
(will be inserted by the editor)

Domain-Specific Entity Extraction from Noisy,

Unstructured Data Using Ontology-Guided Search

Sergey Bratus · Anna Rumshisky

Alexy Khrabrov · Rajenda Magar

Paul Thompson

Received: date / Accepted: date

Abstract Domain-specific knowledge is often recorded by experts in the form of un-

structured text. For example, in the medical domain, clinical notes from electronic

health records contain a wealth of information. Similar practices are found in other do-

mains. The challenge we discuss in this paper is how to identify and extract part names

from technicians repair notes, a noisy unstructured text data source from General Mo-

tors’ archives of solved vehicle repair problems, with the goal to develop a robust and

dynamic reasoning system to be used as a repair adviser by service technicians.

In the present work, we discuss two approaches to this problem. We present an algo-

rithm for ontology-guided entity disambiguation that uses existing knowledge sources

such as domain-specific taxonomies and other structured data. We illustrate its use in

automotive domain, using GM parts ontology and the unit structure of repair man-

uals text to build context models, which are then used to disambiguate mentions of

part-related entities in the text. We also describe extraction of part names with a

small amount of annotated data using Hidden Markov Models (HMM) with shrinkage,

achieving an f-score of approximately 80%. Next we used linear-chain Conditional Ran-

dom Fields (CRF) in order to model observation dependencies present in the repair

notes. Using CRF did not lead to improved performance, but a slight improvement

over the HMM results was obtained by using a weighted combination of the HMM and

CRF models.

Keywords Text Analysis · Language Models · Information Extraction · Ontology-

Guided Search

Sergey Bratus, Rajenda Magar, Paul Thompson
Dept. of Computer Science, Dartmouth College, Hanover, NH USA
E-mail: {sergey.bratus,rajenda.magar,paul.thompson}@dartmouth.edu

Alexy Khrabrov
Thayer School of Engineering, Dartmouth College, Hanover, NH USA
E-mail: alexy.khrabrov@dartmouth.edu

Anna Rumshisky
Dept. of Computer Science, Brandeis University, Waltham, MA USA
E-mail: arum@cs.brandeis.edu



2

1 Introduction

In many specialized areas, domain knowledge is often codified in the form of specialized

lexicons and ontologies. At the same time, working domain experts often keep records

of their actions in the form of unstructured notes. Using domain knowledge recorded in

such form presents a serious problem, since annotating large amounts of unstructured

text for machine learning algorithms with domain concepts and semantic types requires

extensive human labor.

For example, such is the situation with clinical notes from the electronic patient

records. Despite some recent efforts [12], there is a distinct lack of annotated corpora

for unstructured medical text. At the same time, a number of lexicons and ontologies

are available in the medical domain. For example, the National Library of Medicine

maintains a Unified Medical Language System (UMLS) which provides both taxonomy

in the form of network of semantic types, and metathesaurus defining and linking

relevant concept structures; a SNOMED nomenclature of clinical terms is available

from the College of American Pathologists.

A similar situation exists in many manufacturing companies which often maintain

relevant ontologies and thesauri for their products. The challenge we discuss in this

paper is how to identify and extract part names from technicians repair notes, a noisy

unstructured text data source from General Motors’ archives of solved vehicle repair

problems, with the goal to develop a robust and dynamic reasoning system to be used

as a repair adviser by service technicians.

This extraction problem is alleviated by the presence of a comprehensive and ac-

tively maintained ontology, which contains a lot of semantic and lexical clues to disam-

biguating the said notes. We proceed from the assumption that the writer abbreviates

(and the reader therefore interprets) the notes based on a shared conceptual context,

and that the same context is expressed in the ontology. This allows us to build and com-

pare context models derived from both text units and the ontology, and base semantic

disambiguation on an information-theoretic basis, as described in Section 3.

We use the term ontology loosely, to refer to what is used as a de facto tool

for knowledge organization and communication structuring by a large body of engi-

neers and other specialists. Strictly speaking, “terminology” or “controlled vocabulary”

might be more fitting. However, in our choice of the term, we want to stress the fact

that the data set is closely linked with (and in practice may be inseparable from) the

actual organization of knowledge regarding the unit structure and composition of the

objects. In other words, the role played by it in reality is closest to that of a com-

prehensive taxonomy encompassing a de facto ontology. The structured organizational

knowledge expressed in this dataset should not be considered trivial because the very

existence of this data is due to real communication needs of large bodies of domain

experts and represents a systematic effort to facilitate their collaboration.

General Motors has numerous structured knowledge sources that are maintained

for various purposes; in particular, a taxonomy of part names organized by functional

subsumption, which we use as the ontology. The unstructured text data we use comes

from GM’s massive archives of service technicians’ notes on solved repair problems.

The overall goal of the project described in this paper is to use these archives and

resources to develop robust, dynamic Textual Case-Based Reasoning (TCBR) systems

[1, 5] that can be used as repair advisers by service technicians and engineers. A core

challenge is in the taxonomic indexing of repair text archives, so that smart search, e.g.,

ontology-guided search (OGS), can be used to match the description of the symptoms



3

of a new problem with those of solved problems in the archive. Since classifying and

disambiguating text are key elements of the indexing process, it includes a strong

element of natural language processing (NLP) and information extraction. For example,

“GAS CAP” and “FUEL CAP” are synonyms and should be classified together, but

“GAS” by itself requires disambiguation, because it has three distinct meanings in

the context of three distinct subsystems: the powertrain (as fuel for the engine), the

heating and cooling system (as refrigerant for the air conditioning), and the fuel cell

power system, where hydrogen gas is used to generate electricity. Clearly, two kinds

of methods must be developed: (1) methods to classify text by locating key phrases

on lexical taxonomies, and (2) methods to disambiguate the text by using context to

determine which regions of the taxonomies are more likely to be most relevant.

The types of solved-problem archives we have in mind consist of a few structured

attributes along with technicians’ notes in free-form text. Existing collections of text

annotated by parts of speech, such as the Penn TreeBank, are of little use in analyzing

this kind of text. It has a specialized vocabulary and abbreviations. The text blocks are

brief, and commonly they do not obey the rules of standard English spelling or gram-

mar. Therefore, certain standard NLP techniques have not been fruitful, and domain-

specific alternatives seem necessary. It needs to be taken into account that we do not

have the resources to hand-annotate such text in the domain-specific ways required.

Since the text consists of ungrammatical fragments with no sentence boundaries for

each fragment, it is doubtful whether annotating parts of speech right away would be

the right approach. For example, consider the following actual sample from our notes:

CUST STATES THE RIGHT SIDE OF

THE HOOD IS SITTING

HIGHER THENA FOUND RT SIDE

OF HOOD LOOSE TIGHTEN

HOOD BOLT

For a domain expert, this segment yields the following sentences:

1. CUST STATES THE RIGHT SIDE OF THE HOOD

IS SITTING HIGHER

2. THENA FOUND RT SIDE OF HOOD LOOSE

3. TIGHTEN HOOD BOLT

There is a number of anomalies in this segment, in addition to the absence of

sentence boundaries. Notice that unstructured notes in different domains carry their

own peculiarities. Consider the following excerpt from a free-text note taken from an

electronic medical record:

At 8:30am SBP 80 and dopamine gtt increased

to 9.5mg/kg. PA catheter placed under fluro

with opening # PA 70/38 PWP 40 with V waves

to 50, CVP 28 with V waves to 38, CO/CI/SVR

7.5/3.5/437

While sentensification may be less difficult, syntactic anomalies remain a problem,

as does extensive use of domain-specific acronyms and abbreviations. It is clear, how-

ever, that the same kind of semantic abbreviation takes place, which depends on a

shared concept system. By considering such examples, we have been led to consider



4

approaches that do not depend on standard grammar or spelling, but do exploit the

domain-specific structures.

The challenge is to use the existing (and maintained) knowledge resources, in lieu

of annotated data that needs to be created. For example, there are several structured

lexicons of part names. (They are actually names of categories of parts, but we will

refer to them as part names.) Indexing with part names may be sufficient for many

smart search applications. In other words, if we can find solved problems involving the

parts referenced in the new problem, then we have reduced the number of relevant

“cases” significantly.

These various domain-specific knowledge resources have good coverage, but they

lack the structure and precision needed for TCBR and OGS. Therefore, we have looked

at techniques for refining these knowledge resources to make them more consistent, less

redundant, and more powerfully structured. We have also developed robust indexing

(and search) techniques that are not destabilized by noisy data.

We note that both our ontology and reference text samples are mission-critical

and actively maintained for the specific domain. Hence whereas one can rely on these

properties being true in the automotive and medical domains, in other domains where

manuals and procedures might not be as mission critical, our methods may not yield

the results as good as can be obtained in the domains at hand.

2 Overview

Knowledge resources created for day-to-day purposes in a company can often be adapted

for decision support. Uschold noted that a company’s glossary or thesaurus could be

adapted to become a semantic net [11]. Any manufacturing company, such as General

Motors, has numerous lists and lexicons related to the names associated with the design,

engineering, manufacturing, and servicing of its products. Our key example are the lists

of automotive parts that are referenced in servicing vehicles. We might have focused

on lexicons for design, engineering, or manufacturing, in developing decision-support

tools for those areas. An example for manufacturing is the GM Variation-Reduction

Adviser [6, 7].

For knowledge to function as an asset in a modern corporation, it must be ex-

plicit and machine-readable. “Explicit” means that it is “written down,” as opposed to

carried in people’s heads or derivable via data analysis. Knowledge must be machine-

readable because the sheer volume of data makes human processing impossible. It is

commonly said that 80% of corporate data exists as text: program notebooks; prob-

lem summaries in warranty records, technical-assistance center logs, customer surveys,

and various other archives of records, logs, and diaries. Most of this text is machine-

readable only in a limited sense. For example, key-word search can find items by exact

matching, but the slightest differences in expression can cause an item to be missed.

Ideally, one would like to ask questions such as “Has this issue come up before?” or

“How many times has this issue come up before?” and get the answer by searching,

cross-referencing, and comparing these various archives. Current tools and methods

cannot do this.

Repair records are usually partly structured, with important information captured

as free text. We want a TCBR system that accepts a “query” consisting of the symp-

toms of a problem and responds with a prioritized list of repair records that have similar

symptoms. We want to use the knowledge structures that are available and maintained



5

by the manufacturer. This is a very rich source of already-available knowledge. We

would like to avoid a significant knowledge-acquisition effort specifically for the TCBR

application, e.g. annotating text for training ML methods.

An archive of text records of solved repair problems poses major challenges when

matching it to the codified contextual knowledge tree. One can easily imagine using

such an archive to avoid repeating time-consuming diagnostic and repair experiences,

but in practice it is difficult to use. This is because of

(1) assumed contextual information that is not written into the record,

(2) the paraphrase problem, and

(3) ambiguous language.

Let us consider our model TCBR application in more detail: A technician with

an unsolved repair problem is searching the Warranty Data Archive to determine if

his unsolved problem or a similar problem has arisen before. The technician enters

the symptoms and wants the records returned in the “most relevant symptom” order.

After some analysis of such repair records, we have determined that most symptoms

have the form: “PART NAME is broken.”

We have focused our efforts on identifying and classifying the part-names references

in a repair record. These part names have become our surrogate for symptoms. Part

name extraction is indicative of much broader NLP problems posed by the text outlined

above, such as the material context omitted from the text, paraphrases missing from

the grammar, ambiguous language, and so on. We focus on this particular problem

because it appears to deliver a highest payoff in the industrial scenarios.

In fact, extracting entity names, such as part names, is the first step towards

understanding of natural text as it immediately enables business analytics and other

statistical applications even at its simplest. It also significantly improves search of

document collections and, therefore, location of relevant documents. For example, in

the automotive domain, much of the business activity revolves around making, ordering,

or replacing parts. In the medical domain, symptoms and diagnoses play a similar role.

The approach we imagine is to use information extraction to create a structured

index of the blocks of text included with the repair records. We want to identify and

classify part names in text. It is through the classification of part names that both

indexing and similarity are defined. The indexing process would include cleaning the

text, extracting the part names, and mapping the part names into existing taxonomies

of part names. Thus, the values for the slots in the index would be taken from one

or more existing parts taxonomies. Similarity would be defined from the taxonomic

structures. A characteristic of the domain is that these part names and their structures

are constantly changing. Thus, the system would require a certain robustness.

An important consideration for TCBR is that the objects of interest be structured

into isa and part-of taxonomies (and perhaps other relations). This is because indexing

text leads to a desire to generalize and specialize to solve the paraphrase problem and

the disambiguation problem. One natural context for an object in a taxonomy is the

path from the node where the object is named to the root, as well as the descendants

of the node. If the same name is used in several nodes (e.g., “GAS”), then the choice

of node is the disambiguation of the name, and matching the textual context with the

taxonomic context is one way to choose the most relevant node.

The kinds of lexicons and lists we used were:

– T, a taxonomy of part name categories. The relations defined by the links has

varying meaning, usually isa or part-of.



6

– a list of standard abbreviations,

– an engineering glossary,

– L, a list of labor code descriptions, and

– a mapping of the elements of L to the elements of T.

We note that the ontology provided to us represents the summary of a large organi-

zation’s efforts in structuring communications between its units, and, as such, resembles

a coding tree (in the information theory sense) rather than a codification of synonymy,

hyper/hyponymy, substitutability and other semantic relations captured by a lexical

KBs such as WordNet [14]. Specifically, our ontology is meant to capture context rela-

tionships between terms and concepts represented by its nodes in a way that a domain

expert would rely on when communicating with a colleague. Thus it is obvious to us

that our ontology and WordNet are products of two different processes, the former

deriving from an organizational process designed specifically to produce the corpus at

hand as a remedy for concrete communication issues, and the latter being a general and

broad attempt to structure language norms not tailored to any specific project needs.

Even though we cannot quantify the difference in the product of these two processes

exactly, we observe much more focused and uniform grouping of our domain-specific

ontologies, with a much more fixed set of relationships, mostly containment, reflected

in the tree structure, vs. a more general network-like structure of the synsets.

While many authors, e.g., [13], [14], [15], have used natural language processing

or machine learning techniques for various language processing tasks with biomedical

texts, we are unaware of any approaches to lexical disambiguation based on information-

theoretic mappings to taxonomies such as presented here. The following describes sev-

eral examples of this research. Demner-Fushaman et al. [14] describe how to improve

the accuracy of text categorization based on a thesaurus by eliminating highly am-

biguous terms from the thesaurus. Chapman et al. [13] use a na ive Bayes classifier

to categorize chief complaints from free text fields of medical records into seven early

presentations of disease categories, or syndromes, for use in an electronic syndromic

surveillance system. Bundschus et al. [15] compare the use of several topic modeling

techniques for use in (semi-) automated generation of metadata annotation for PubMed

abstracts. By contrast, our approach uses both new data structures and new algorithms

to organize the domain knowledge at hand.

In Section 3, we describe the algorithm for ontology-guided entity disambiguation.

In Section 4, we describe the overall OGS-based TCBR application pipeline. In Section

5, we discuss part name extraction, which supports the TCBR application, and present

experimental results. Section 6 provides a discussion of these results, and Section 7

concludes.

3 Ontology-Guided Entity Disambiguation

In unstructured expert-generated text, domain-specific entities (e.g. parts in automo-

tive domain; diagnoses, test results, therapy protocols in patient records) are referred to

by inherently ambiguous short noun phrase mentions that are disambiguated by human

readers based both on textual context and on their extra-textual domain knowledge.

Automatic indexing and efficient searching of unstructured noisy text corpora require

that this disambiguation be performed automatically so that part mentions are ex-

tracted and annotated with the respective part identifiers.



7

In each domain, this knowledge is partly expressed in domain-specific taxonomies

and concept systems. For example, medical domain ontologies may classify entities as

body parts, clinical findings, procedures and treatments, and so on. In the GM automo-

tive domain, structural ontologies of automobile parts classify parts by functionality,

as well as by systems, subsystems and assemblies. Our method uses lexical features de-

rived from these ontologies, together with lexical features from the context surrounding

the automotive text mentions, to perform disambiguation.

The main idea behind the algorithm we propose is the following. We need to dis-

ambiguate each part mention to a particular node in the ontology tree. The elements of

the noun phrase NPcomprising the part mention may occur in the names and descrip-

tions associated with a given set of nodes in the ontology tree. We make the simplifying

assumption that the target part mention will disambiguate to one of these candidate

nodes. We term the set of candidate nodes, along with the paths from each node to the

root, a tree cut induced by the part mention. We associate a probability distribution

with a given tree cut and assign a probability to each leave by assuming equiprobable

branching at each node.1 Entropy of a tree cut is then computed as the entropy of the

associated probability distribution.

For each candidate node, we obtain its tree context by assembling the lexical items

from the names and descriptions of the nodes on its path to the root. We then look

at the context in which the target part mention occurs, and compute a set-theoretic

intersect of this context with the tree context of the candidate node. Each term in

the intersect will occur only in some candidate nodes, thereby inducing a further cut

on the tree cut corresponding to the target part mention. We compute an association

score between the candidate node and the target part mention by weighting each term

in the intersect by the overall reduction in the entropy it induces on the original tree

cut. Thus, for example, the term “assembly” may not be very informative, but it may

reduce the set of candidate nodes for a particular part mention to a single node. Each

term is also weighted according to its distance from the target entity in text and the

tree path distance from the candidate node. The part mention is then disambiguated

to the node that maximizes this association score.

More formally, for an entity E (part mention) associated with a noun phrase NP ,

we define its context C as a collection of features derived from the unit(s) of text

containing the NP(the sentence, the paragraph, or other structural units if defined; for

instance, the headings of the manual section and chapter for the NPs in a manual).

For each node N of the ontology tree T we likewise define a collection of features C′,

derived from the lexical contents of N and its ancestors on the path to the root of the

tree, as well as of its siblings and additional lexical units attached to the nodes of the

ontology tree T .

For all candidate nodes N in T , we compute the score Q(E, C, N, C′) and select

the node N with the highest score. The function Q is based on information-theoretic

measures associated with the lexical units in the tree T , based in their occurrence in

the nodes throughout T . Essentially, the measure associated with a single unit (word

or stem) expresses the uncertainty about the identity of the node N containing that

unit once the unit is known. For example, a word or stem that occurs in the names

or descriptions of many nodes throughout T has a higher measure of uncertainty than

1 Ideally, corpus counts could be used to estimate probabilities at each node, but that
requires making further assumptions, such as equal distribution of senses for each ambiguous
word.



8

a word or stem that occurs only in a few leaves or branches of T . These uncertainty

scores of participating units are then combined to form Q. The definition of function

Q is discussed below.

In our initial experiments we also considered adding sibling-child and associated

metadata nodes in the tree to the nodes’ tree context. While anecdotally such inclusion

with an appropriate weight coefficient appears helpful, – in particular in the situations

where the creators of the ontology apparently counted on the human reader deriving

the context from the words previously used in siblings as a form of abbreviation –

we do not currently possess convincing measurements in favor of this hypothesis. We

note this omission of lexical units that would be helpful for automated processing is a

general human tendency – the same tendency to eliminate redundancy that our entire

model aims to capture. Generally, we found the context gathered on the upward path

toward the root of the tree discriminating enough.

3.1 Information-Theoretic Context Association Score

Let tokenization of a paragraph P produce a sequence of tokens {ti}. If sentence bound-

aries are available, we further subdivide this sequence into groups by their respective

sentences. Let {ui} be the sequence of lexical units derived from {ti} after tokenization.

The lexical units are derived by a transformation according to a dictionary D of ab-

breviations and multi-token terms; some tokens are expanded to several lexical units,

some are stemmed, the stem replacing the token in its place in the sequence, some

multi-token groups collapsed to a single unit. This transformation from sequences of

tokens to sequences of standardized lexical units will be referred to as U : {ti} → {ui}.

For an entity E that spans lexical units uk, . . . , uk+l, we define the primary context

CE as the collection of units u1, . . . , uk−1, uk+l+1, . . .. If E occurs in structured text

such as a manual, we also add to this primary context the units of text structurally

related to P , such as headings under which P occurs. As an extension of this approach,

we assign to each lexical unit u in CE a weight depending on u’s position relative to

E (e.g., decreasing with the distance from u to E, counted within P in the number

of lexical units separating them, and outside P in the number of structural elements

separating the current element from P ). Denote this weight d(u, E).

For a candidate node N of T , define the ontology context C′

N of N as consisting of

lexical units derived according to the rules of the transformation U from the names and

descriptions attached with the ancestors and siblings of node N . Each unit u coming

from a node Nu is associated with a weight based on the distance between N and Nu,

counted in the number of nodes separating N and Nu on the path to the root of T ,

with a special distance value fixed for siblings of N . Denote this weight dT (Nu, N).

We define the score Q(E, CE , N, C′

N ) as follows:

Q(E, CE , N, C′

N ) =

=
X

u∈C(E,N)

d(u, E) · dT (Nu, N) · (H(TE) − H((TE)u))

where C(E, N) is the set of terms in the set-theoretic context intersect C(E, N) =

(U(E)∪CE)∩C′

N , TW is the tree cut induced on T by the set of lexical units derived

from the W , and H(TW ) is the entropy [13] measure associated with it as described

above.



9

We considered using other parts of speech and their relations, such as verb phrases,

but our texts are noun-rich and verb-poor. Examining other syntactic constructs in

addition to NPs is an interesting further extension of this work.

4 Matching Noun Phrases to XML Ontology

In this section, we describe the application of the above algorithm in a test setting.

The ontology used for the task was derived from Vehicle Partitioning and Product

Structure (VPPS) taxonomy maintained within GM. VPPS is a taxonomy of part

names organized by functional subsumption, which contains roughly 5000 nodes. It is

supplemented by a lexicon of part name categories (UPC-FNA) that contains 55,000

entries. The text data we used comes from the low-noise technical text from the GM

car user manual, as well as the noisy repair notes.

4.1 Data Formatting

We received the original VPPS and UPC-FNA data as large spreadsheets in the MS

Excel format, with the tree structure being represented by way of cell indentation. We

found this representation hard to validate and maintain, especially because our planned

approach was to continually enhance the ontology tree based on the merging of these

sources with added annotation. Moreover, while validating the original spreadsheets,

we found some apparent format discrepancies and errors (e.g., mis-attached nodes),

most probably due to past maintenance edits, an outcome we wished to avoid.

The parts lists and ontologies being “living documents” actively maintained and

exchanged by different groups of specialists, we also anticipated providing the data

owners with tools for future validation and management that would not conflict with

our added annotations. We therefore decided to represent, process, and maintain the

underlying main dataset combining VPPS and UPC-FNA (which serves as input to all

our algorithms) as a single XML document, validated both through the standard XML

parsing mechanisms and by our own scripts, and processed according to the DOM

model.

The obtained matches of part mentions against the ontology must be output for

human consumption and verification. When developing the pipeline, we output such

matches in a simple ASCII markup, which also makes it easy to use in further scripting.

We describe our results and markup below. We also output supporting data as YAML,

a data interchange format similar to XML but less verbose.

4.2 System Description

In the experiments with part mentions from the GM car manuals, ontology-guided

search is currently performed for any text on the paragraph level. Noun phrases are

extracted from the sentences comprising each paragraph, filtered against the unigrams

encountered in the tree, their entropies computed and sorted, and the corresponding

tree nodes are shown for each paragraph along with the phrases.

As a part of preprocessing the ontology, lexical units for abbreviation expansions

were added as attributes to their respective nodes, so abbreviation expansion is taken



10

care of by the design of the ontology. The paragraphs boundaries are obtained via title

headings in the original SGML documents. The titles for each text unit are preserved,

parsed, and used as a part of text context for each part mention. Each paragraph is

sentensified, and each sentence is then passed through an English parser – currently

Charniak’s parser – and the NPs are found with their NN |JJ modifiers. Measuring

parsing performance was not a part of this phase of the project, but checking them

by hand found virtually no errors in the technical text of the manuals, likely due to

the simple structure of the technical text at hand. The NPs are filtered against the

unigrams list of all the words encountered in the ontology, thus forming the set of

interesting, or sensible, phrases, which we will refer to as mentions.

Top-scoring ontology nodes are then identified for each mention found in a para-

graph, and a list of mentions (relevant and/or identifiable NPs), with the correspond-

ing top disambiguation candidates for each NP , is associated with each paragraph.

The resulting paragraph summaries are stored in a machine-oriented, human-readable

YAML format, available for immediate inspection and verification after each automatic

pipeline run. The produced document is then represented as the list of paragraph and

sentence summaries. The pipeline steps are described below in the order of their actual

execution.

– Text Extraction from SGML. Text and headings are extracted from SGML of a

manual chapter. The title blocks are collected hierarchically and output as a path,

slash-separated, for each paragraph.

– Sentence Boundary Detection and Parsing. Sentences and their immediate para-

graph heading are extracted and parsed using Charniak’s parser. Paragraph titles

are split by / and each part is parsed separately.

– Noun Phrase Extraction. We read parse trees from Charniak’s parser such as:

(S1 (S (NP (DT The) (VB scan) (NN tool))

(VP (VBZ displays) (NP (NNP On/Off))) (. .)))

– and extract noun phrases (NPs) with a noun head NN and nominal or adjectival

modifiers (NN|JJ), and record them along with syntax labels and the location of

origin – sentence and paragraph.

– Entropy Computation and Sorting. For each extracted NP, we compute the associa-

tion score with each of the candidate nodes, and record the top-scoring nodes with

the corresponding scores, along with the node’s location in the ontology. Associ-

ation scores are generated for unigrams and bigrams encountered in the ontology

tree.

– Text Markup and Output. Finally, we mark up the original text with the top-entropy

phrases and top nodes for them.

The final markup of the text looks as shown in Figure 1.

The original sentences are printed one per line, with Sn: prefix, where n is the

sentence number. The paragraphs are delimited with the lines of the form:

@Par Pn: /Hierarchical/Title/Heading

For example:



11

@Par P1: /Engine/Engine Electrical/Diagnostic Information and Procedures/Scan Tool

Output Controls

S1: The engine control module (ECM) commands the generator OFF by removing the 5-volt

reference signal from the L-terminal of the voltage regulator when you select OFF.

@Mention 1 [voltage regulator] (NN NN) :S2 =2.585 (6)

@Node 1

Tree context: /vpps/vehicle/information & controls/driver information/clusters/regulator

integrated circuit voltage

Score: 3.462

@Node 2

Tree context: /vpps/vehicle/electrical function/charging & energy

storage/generator/generator internal component/terminal voltage regulator

Score: 2.177

@Node 3

Tree context: /vpps/vehicle/electrical function/charging & energy

storage/generator/generator internal component/plate voltage regulator

Score: 2.177

...

Fig. 1 Text markup sample for the technical manual.

@Par P2: /Engine/Engine Electrical/Diagnostic Information and Procedures/Scan Tool

Output Controls

Only the paragraphs containing the mentions for which a match was found contain

the appropriate markup. Each mention block starts with its number, @Mention 1,

@Mention 2, etc., and consists of a mention header line, containing the mention phrase

and stats, for example:

@Mention 1 [voltage regulator] (NN NN) :S1 =2.585 (6)

where the interpretations of each markup element are as follows:

@Mention 1 this is the first matched mention in the paragraph
[regulator voltage] the actual mention

(NN NN) POS tags corresponding to the words left-to-right
:S1 originating sentence
=2.585 entropy for this mention in the ontology tree, assuming a

uniform distribution over the candidate nodes
(6) number of leaf nodes in the tree cut for this mention

We then show the top matched nodes containing the mention, including their path
names, showing for each ancestor starting at the root, the slash-separated node name
(if available) or node type:

@Node 1

Tree context: /vpps/vehicle/information \& controls/driver information/clusters/

regulator integrated circuit voltage

Score: 3.462

Repair notes are processed in the same manner, using similar filtering mechanisms.

In the absence of the hierarchical title heading structure, text-only context before and

after the target NP is used in disambiguation. As NPs are extracted from each sentence,

we retain only the content words when querying the ontology (skipping determiners,



12

conjunctions, possessive markers, etc.). A sample markup of disambiguated part men-

tion from a repair note is shown in Figure 2. Note that in this example, the target NP

“wiring harness” is highly ambiguous and occurs in 1539 nodes in the ontology tree.

S1: DRIVER’S SEAT WILL NOT GO TO THE MEMORY POSITION WHEN KEY IS INSERTED . REPLACE

BRAKE PEDAL SENSOR OLH TO REMOVE AND REPLACE RIGHT FRONT SEAT CUSHION TO REPAIR WIRING

HARNESS AND REROUTE

@Mention 1 [wiring harness] (NN NN) :S1 =10.588 (1539)

@Node 1

Tree context: /vpps/vehicle/interior/seats/front seat/harness assembly: driver seat

suspension air supply harness assembly

Score: 0.901

@Node 2

Tree context: /vpps/vehicle/interior/seats/front seat/harness asm

Score: 0.838

@Node 3

Tree context: /vpps/vehicle/electrical function/power & signal distribution/wire

harnesses/front seat cushion heater wiring harness assembly

Score: 0.683

...

Fig. 2 Text markup for a sample repair note.

5 HMM/CRF Approach to Part Name Extraction from Noisy Text

First, let us reiterate what we mean by part names. We are interested in categories

of parts, such as “OIL PAN.” There are many kinds of “actual” oil pans, and each is

identified by a unique name (or rather a combination of data, including a part number,

supplier, date of manufacture, and other identifying information). We find it convenient

in this paper to refer to OIL PAN and other part-name categories as “part names,”

but we are always referring to categories. We want to be able to identify part names in

text. We want to classify the discovered part names by mapping them to T. In order to

accomplish this, we need to consider which words and two-word phrases of the name

are semantically “informative” and which are not. In this paper we focus on identifying

part names. In the case that we have grammatical text, we would expect to be able to

extract noun phrases (NPs) from the text using NLP techniques as a starting point for

identifying part names. Then we could determine by attempting to map each NP to T

whether the NP is a part name or some other object (e.g., CUSTOMER).

However, the structure of part names can help us identify them, even when the text

is fairly ungrammatical. For concreteness, imagine that a technician is having trouble

with the “left outside rear view mirror.” Naturally, he might look for this exact string,

but a verbatim in a warranty record might describe the “LEFT OUTSIDE REAR

VIEW MIRROR” in different ways. The most obvious variants are created simply by

omitting some of the qualifying adjectives, which is often done when the context is

assumed. Further, vehicles have a bilateral symmetry, so that many parts come in a

left (driver’s side, etc.) version and a right (passenger’s side, etc.) version. Sometimes



13

the difference will be important to the problem-solving potential of a warranty record,

but often it is not.

The semantic head of the above phrase is “MIRROR,” which in this case is the

syntactic head. Mirrors in vehicles are either “rear view” or “vanity,” but vanity mirrors

can be only inside. Thus, technicians might neglect to add the qualifying phrase “rear

view” if they have already notes “outside.” It might not even make sense for the search

to favor these kinds of qualifying adjectives, because such qualifiers are often omitted

in technician’s notes. Thus, while if they are present, they add to the information gain

of the phrase, if they are not present, there is no information loss. In other words, it

means nothing; it is a consequence of the “assumed context,” which is so common in

such notes. A hurried technician might simply have written “OUTSIDE MIRROR”

knowing that vanity mirrors are never outside and the left-right distinction is not

important for the particular write up. The essential structure of the NP is “MIRROR,”

which is essentially a concept class, along with enough qualifiers to distinguish it from

all other mirrors. There is (at least one) taxonomic tree implicit in this analysis.

The training data for part name identification consists of repair notes where part

names have been labeled. For the evaluation, we hand-labeled 1,000 randomly sampled

repair notes. We divided the repair notes into two sets of 500 each, one for evaluation

during development and the other for final testing. We also used approximately 30,000

part name phrases and a lexicon of 1,600 part name words collected from these phrases

during training. For testing we used five-fold cross validation.

The structure of our HMM consists of “target” and “non-target” states, si. Part

names correspond to the “target” state of the HMM. The non-target states are Start,

Prefix, Suffix, Background, and End. The Prefix state corresponds to a fixed-length

sequence of words before the target words. Similarly, the Suffix state corresponds to

a fixed-length sequence of words following the target words. The remaining words are

thought of as being emitted by the Background state. The probabilities are estimated

as ratios of counts. The transition probability P (sj |si) is calculated as the total number

of (si, sj) label pairs divided by the total number of si labels in the training data. The

emission probability P (w|si) is calculated as the number of w labeled as si divided by

the total number of si labels. One of the issues we have had to face is getting suffi-

cient labeled data for training. This has had implications for the effectiveness of HMM

structure used to model our data [2, 3]. Our HMM is complex with as many states as

possible and is able to capture the intricate structure of the data in use; however, it

results in poor (high variance) parameter estimation because of the sparseness of train-

ing data. In contrast, simpler models with fewer states, while giving robust parameter

estimates, are not expressive enough for data modeling. In order to strike a balance,

we used a statistical smoothing technique called “shrinkage” to combine the estimates

from these models of differing complexity. Freitag and McCallum [3] report positive

results using “shrinkage” to perform information extraction using HMMs. Some states

from a complex model are shrunk to a common state to form a new HMM structure

– hence the term shrinkage. To further improve parameter estimates, states from the

new HMM can be further shrunk to form another HMM with even fewer states, thus

forming a shrinkage hierarchy. In our case, we shrunk the Prefix and Suffix states to a

common Context state. We then employed another level of shrinkage, in which all the

states were shrunk to a single state.

The recall and precision scores from the five-fold cross validation along with the

F-score are presented below. Table 1 shows results for the fully expressive model alone,

as well as for the optimal shrinkage mixture of three HMM models.



14

fully optimal
expressive shrinkage
model mixture

Average Recall 12.26 81.64
Average Precision 79.85 79.45
F-Score 21.26 80.53

Table 1 Five fold cross-validation results for (1) the fully expressive model and (2) optimal
shrinkage mixture, with a context width of two.

The fully expressive model has poor recall though precision is good. This indi-

cates that the model by itself is not sufficient to cover all part names. The F-score

of the fully expressive model is low. On the other hand, using shrinkage with optimal

mixture weights improves recall values substantially while maintaining high precision.

The substantial improvement in recall indicates that the shrinkage mixture helps to

smooth parameter estimates to expand coverage of part names not handled by the fully

expressive model alone.

We have investigated the effectiveness of using HMMs with shrinkage for part

name extraction and found that HMMs do well modeling the repair notes as shown by

an F-score that hovers around 80%. Next, we sought to improve performance on the

remaining 20% of the part names that were missed or incorrectly labeled by HMMs by

introducing a more flexible model called Linear-Chain Conditional Random Field [9,

10]. We hypothesized that the errors not handled by HMMs could be handled using

the observation dependencies found in repair notes. It is desirable to integrate these

dependencies into the models to improve overall classification accuracy.

We used unigram and bigram features. Unigram features are obtained using the

identity of the current word. For each word seen in the training data, the unigram

feature value is assigned to 1. Bigram features use previous and current word.

Contrary to our original hypothesis, extraction using a CRF did not outperform

HMM with Shrinkage, although CRF does perform substantially better than the HMM

without shrinkage.

Average Recall 85.41
Average Precision 74.86
F-Score 79.78

Table 2 Five fold cross-validation results for CRF with a context width of two.

Analyzing the misclassifications of the HMM and the CRF, we noticed that there

was a fair amount of difference in which items were misclassified. This suggested a

weighted combination of the two techniques might improve performance. To combine

the two models, we merged Viterbi search [8] in both the HMM and the CRF using a

weighted combination.

Our results from the weighted combination of the HMM and the CRF are shown

in Table 3. There is some improvement in overall score, but there is little improvement

over either model alone.



15

Average Recall 84.35
Average Precision 79.64
F-Score 81.93

Table 3 Five fold cross-validation results for HMM+CRF with a context width of two.

6 Discussion

When we used fully expressive HMMs performance was poor, because of an insuf-

ficient amount of training data. With shrinkage performance dramatically improved.

We thought that we could make further improvement using CRFs, since, unlike HMMs,

CRFs would allow us to model observation dependencies. However, CRF did not out-

perform HMM with shrinkage. Since the two approaches misclassified different part

names, it seemed that it might be possible to find an optimal way to combine the two

approaches to obtain better performance than with either approach by itself.

E.g., the HMM and the HMM+CRF miss “on” in “on star antenna,” reporting

only “star antenna” as a part name, whereas the CRF correctly reports the entire part

name. It turns out that “on” occurs in the training data mostly as a non-target word,

so the HMM does not catch it. On the other hand, the CRF catches “on” because of

the bigram “on star”, which is unambiguously labeled as target-target in training. The

HMM+CRF is not able to catch it, which means that on this particular observation

the HMM label dominates the CRF label.

On the other hand, “pads” in “step pads” is missed by the CRF, but not by the

HMM and the HMM+CRF. Here “step” is caught by all three methods since it is

unambiguously labeled as target in training. But “pads” is not observed in training, so

the CRF misses it. However, in the case of the HMM, the target label of “step” must

have influenced the target-target transition between “step” and “pads”, thus causing

the HMM to not miss “pads” (target-target transition probability is considerable). The

fact that the HMM+CRF does not miss “pads” must mean that in the combination

the HMM label is stronger than the CRF label at this particular observation.

We produced our HMM+CRF combination by merging the Viterbi search used by

both HMMs and CRFs. We did this by using the Expectation Maximization algorithm

to estimate the optimal weights. We achieved some improvement in overall score, but

did not make a substantial improvement over either model alone. The reason is that we

use the same pair of weights for each token position during the Viterbi search. Ideally

during the Viterbi search it would be desirable to provide a weight of 1 to the model

that correctly labeled the token in question and a weight of 0 to the model that did

not provide the correct label. If we had an algorithm that could correctly select the

appropriate model at each token position, the best f-score we would get is 86.62%.

(We found this score by tallying against the labeled version of the test set.) Finally,

it is likely that all of the approaches that we tried would have done better had more

training data been available.

With improved coverage of training data, both the HMM and the CRF would be

able to perform better. In the case of the CRF, we can expect more training data

to help improve bigram coverage for use in bigram features. A comprehensive bigram

coverage adds robustness even in the presence of ambiguity problem posed by unigrams

because bigrams are unlikely to be ambiguously labeled.



16

7 Conclusions

Textual Case-Based Reasoning is a promising technology for organizations with large

amounts of textual information and taxonomies, such as the part name taxonomy

described here, which can be used to aid the case-based reasoning application. When,

as is the case here, that extraction is from noisy data, effective techniques must be

found to extract information, here part names, to support TCBR.

While corpora linguistic techniques can perform well with large amounts of labeled

training data, many organizations with textual data are not in a position to develop

these large training sets. HMMs with shrinkage and CRF approaches, as described in

this paper show how extraction can be successful with much smaller training sets. The

benchmarks obtained with TCBR using relatively small amounts of annotated data

should be used in a comparison against the algorithm that uses exclusively domain on-

tology and structured data resources to guide part name extraction and identification.

Many organizations represent institutional knowledge in the form of structured data

which either exists as or is easily converted into hierarchical ontology. Such an ontology

as we have shown can play an important role in disambiguation of noun phrase spans in

short-hand professional notes. Our experience shows that such ontologies underline the

language of professional communication and can therefore be efficiently used in their

automatic understanding and augmentation. We presented a method for exploiting

explicit ontologies to this effect. Automatic ontology construction techniques may find

a new use in concert with our method to further improve accuracy of automatic context

understanding.

8 References

[1] Bruninghaus, S. and Ashley, K. D. 2005. Reasoning with Textual Cases Proceedings

of the International Conference on Case-Based Reasoning (ICCBR), 137-151.

[2] Freitag, D. and McCallum, A. 2000. Information Extraction with HMM Structures

Learned by Stochastic Optimization. In Proceedings of the Seventeenth National Con-

ference on Artificial Intelligence, AAAI, 584-589.

[3] Freitag, D. and McCallum, A. 1999. Information Extraction with HMMs and Shrink-

age. In Papers from the AAAI-99 Workshop on Machine Learning for Information Ex-

traction, 31-36, July. AAAI Technical Report WS-99-11.

[4] Lafferty, J., McCallum, A., and Pereira, F. 2001. Conditional Random Fields: Proba-

bilistic Models for Segmenting and Labeling Sequence Data. In Proc. 18th International

Conference on Machine Learning.

[5] Lenz, M. 1998. Textual CBR and Information Retreival: A Comparison. In Gierl, L.

and Lenz, M. (eds.) Proceedings of the 6th German Workshop on Case-Based Reason-

ing, IMIB Series vol. 7, Inst. fuer Medizinische Informatik und Biometrie, University

of Rostock.

[6] Morgan, A. P., Cafeo, J. A., Gibbons, D. I., Lesperance, R. M., Sengir, G. H., and

Simon, A. M. 2003. The General Motors Variation-Reduction Adviser: Evolution of a



17

CBR System. ICCBR 2003, 306-318.

[7] Morgan, A. P., Cafeo, J. A., Godden, K., Lesperance, R. M., Simon, A. M, McGuin-

ness, D. L., and Benedict, J. L. 2005. The General Motors Variation-Reduction Adviser.

AI Magazine 26,3, 18-28.

[8] Rabiner, L. R. 1989. A Tutorial on Hidden Markov Models and Selected Applica-

tions in Speech Recognition. In Proceedings of the IEEE, 77, 2.

[9] Sha, F. and F. Pereira. Shallow Parsing with Conditional Random Fields. Technical

Report MS-CIS-02-35, University of Pennsylvania (2003)

[10] Sutton, C. and McCallum, A. 2006. An Introduction to Conditional RandomFields

for Relational Learning. In Introduction to Statistical Relational Learning. Getoor, L.

and BenTaskar, B. (eds.) MIT Press.

[11] Uschold, M. 2000. Creating, Integrating and Maintaining Local and Global On-

tologies. Proceedings of the 14th European Conference on Artificial Intelligence ECAI

2000, Berlin, Germany.

[12] Roberts, A., R. Gaizauskas, M. Hepple, N. Davis, G. Demetriou, Y. Guo, J. Kola,

I. Roberts, A. Setzer, A. Tapuria, et al. 2007. The CLEF corpus: Semantic annotation

of clinical text. In AMIA Annu Symp Proc, volume 625.

[13] Cover, T.M., Thomas, J.A. Elements of Information Theory. John Wiley and Sons,

2006.

[14] Fellbaum, C., et al. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[15] Chapman, W., Dowling, J.N., and Wagner, M.M. Classification of Emergency De-

partment Chief Complaints Into 7 Syndromes: A Retrospective Analysis of 527,228

Patients. Annals of Emergency Medicine, vol. 46, no. 5, Nov. 2005.

[16] Demner-Fushman, D. UMLS content views appropriate for NLP processing of the

biomedical literature vs. clinical text. Journal of Biomedical Informatics, Aug. 2010.

[17] Bundschus, M., Volker Tresp, V., and Hans-Peter Kriegel, H.-P. Topic models for

semantically annotated document collections. In NIPS 2009 Workshop: Applications

for Topic Models: Text and Beyond, 2009.


