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Abstract

In this paper we consider the problem
of identifying and classifying discourse
coherence relations. We report initial
results over the recently released Dis-
course Graphbank (Wolf and Gibson,
2005). Our approach considers, and
determines the contributions of, a va-
riety of syntactic and lexico-semantic
features. We achieve 81% accuracy on
the task of discourse relation type clas-
sification and 70% accuracy on relation
identification.

1 Introduction

The area of modeling discourse has arguably
seen less success than other areas in NLP. Con-
tributing to this is the fact that no consensus
has been reached on the inventory of discourse
relations nor on the types of formal restric-
tions placed on discourse structure. Further-
more, modeling discourse structure requires
access to considerable prior linguistic analy-
sis including syntax, lexical and compositional
semantics, as well as the resolution of entity
and event-level anaphora, all of which are non-
trivial problems themselves.

Discourse processing has been used in many
text processing applications, most notably
text summarization and compression, text
generation, and dialogue understanding. How-
ever, it is also important for general text un-
derstanding, including applications such as in-
formation extraction and question answering.

Recently, Wolf and Gibson (2005) have pro-
posed a graph-based approach to represent-

ing informational discourse relations.! They
demonstrate that tree representations are in-
adequate for modeling coherence relations,
and show that many discourse segments have
multiple parents (incoming directed relations)
and many of the relations introduce crossing
dependencies — both of which preclude tree
representations. Their annotation of 135 arti-
cles has been released as the GraphBank cor-
pus.

In this paper, we provide initial results for
the following tasks: (1) automatically classi-
fying the type of discourse coherence relation;
and (2) identifying whether any discourse re-
lation ezists on two text segments. The exper-
iments we report are based on the annotated
data in the Discourse Graphbank, where we
assume that the discourse units have already
been identified.

In contrast to a highly structured, com-
positional approach to discourse parsing, we
explore a simple, flat, feature-based method-
ology. Such an approach has the advan-
tage of easily accommodating many knowledge
sources. This type of detailed feature analysis
can serve to inform or augment more struc-
tured, compositional approaches to discourse
such as those based on Segmented Discourse
Representation Theory (SDRT) (Asher and
Lascarides, 2003) or the approach taken with
the D-LTAG system (Forbes et al., 2001).

Using a comprehensive set of linguistic fea-
tures as input to a Maximum Entropy clas-
sifier, we achieve 81% accuracy on classifying
the correct type of discourse coherence relation
between two segments.

!The relations they define roughly follow Hobbs
(1985).



2 Previous Work

In the past few years, the tasks of discourse
segmentation and parsing have been tackled
from different perspectives and within differ-
ent frameworks. Within Rhetorical Struc-
ture Theory (RST), Soricut and Marcu (2003)
have developed two probabilistic models for
identifying clausal elementary discourse units
and generating discourse trees at the sen-
tence level. These are built using lexical and
syntactic information obtained from mapping
the discourse-annotated sentences in the RST
Corpus (Carlson et al., 2003) to their corre-
sponding syntactic trees in the Penn Treebank.

Within SDRT, Baldridge and Lascarides
(2005b) also take a data-driven approach to
the tasks of segmentation and identification
of discourse relations. They create a prob-
abilistic discourse parser based on dialogues
from the Redwoods Treebank, annotated with
SDRT rhetorical relations (Baldridge and Las-
carides, 2005a). The parser is grounded
on headed tree representations and dialogue-
based features, such as turn-taking and do-
main specific goals.

In the Penn Discourse TreeBank (PDTB)
(Webber et al., 2005), the identification of dis-
course structure is approached independently
of any linguistic theory by using discourse con-
nectives rather than abstract rhetorical rela-
tions. PDTB assumes that connectives are
binary discourse-level predicates conveying a
semantic relationship between two abstract
object-denoting arguments. The set of seman-
tic relationships can be established at differ-
ent levels of granularity, depending on the ap-
plication. Miltsakaki, et al. (2005) propose
a first step at disambiguating the sense of a
small subset of connectives (since, while, and
when) at the paragraph level. They aim at dis-
tinguishing between the temporal, causal, and
contrastive use of the connective, by means of
syntactic features derived from the Penn Tree-
bank and a MaxEnt model.

3 Graphbank

3.1 Coherence Relations

For annotating the discourse relations in text,
Wolf and Gibson (2005) assume a clause-unit-
based definition of a discourse segment. They

define four broad classes of coherence rela-

tions:

(1) 1. Resemblance: similarity (par), contrast
(contr), example (examp), generalization (gen),
elaboration (elab);

2. Cause-effect: explanation (ce), violated expec-
tation (expv), condition (cond);

3. Temporal (temp): essentially narration;

4. Attribution (attr): reporting and evidential
contexts.

The textual evidence contributing to identi-
fying the various resemblance relations is het-
erogeneous at best, where, for example, simi-
larity and contrast are associated with specific
syntactic constructions and devices. For each
relation type, there are well-known lexical and
phrasal cues:

(2) a. similarity: and;
b. contrast: by contrast, but;
c. example: for example;
d. elaboration: also, furthermore, in addition,

note that;
e. generalization: in general.

However, just as often, the relation is encoded
through lexical coherence, via semantic asso-
ciation, sub/supertyping, and accommodation
strategies (Asher and Lascarides, 2003).

The cause-effect relations include conven-
tional causation and ezplanation relations
(captured as the label ce), such as (3) below:

(3) cause: SEG1: crash-landed in New Hope, Ga.,
effect: SEG2: and injuring 23 others.

It also includes conditionals and violated ex-

pectations, such as (4).

(4) cause: SEG1: an Eastern Airlines Lockheed L-
1011 en route from Miami to the Bahamas lost

all three of its engines,
effect: SEG2: and land safely back in Miami.

The two last coherence relations annotated
in Graphbank are temporal (temp) and attri-
bution (attr) relations. The first corresponds
generally to the occasion (Hobbs, 1985) or nar-
ration (Asher and Lascarides, 2003) relation,
while the latter is a general annotation over
attribution of source.?

3.2 Discussion

The difficulty of annotating coherence rela-
tions consistently has been previously dis-
cussed in the literature. In GraphBank, as in
any corpus, there are inconsistencies that must

2There is one non-rhetorical relation, same, which
identifies discontiguous segments.



be accommodated for learning purposes. As
perhaps expected, annotation of attribution
and temporal sequence relations was consis-
tent if not entirely complete. The most serious
concern we had from working with the corpus
derives from the conflation of diverse and se-
mantically contradictory relations among the
cause-effect annotations. For canonical causa-
tion pairs (and their violations) such as those
above, (3) and (4), the annotation was ex-
pectedly consistent and semantically appropri-
ate. Problems arise, however when examining
the treatment of purpose clauses and rationale
clauses. These are annotated, according to the
guidelines, as cause-effect pairings. Consider
(5) below.

(5) cause: SEG1: to upgrade lab equipment in 1987.
effect: SEG2: The university spent $ 30,000

This is both counter-intuitive and temporally
false. The rationale clause is annotated as the
cause, and the matrix sentence as the effect.
Things are even worse with purpose clause an-
notation. Consider the following example dis-

(ZOIlI'Se:3

(6) John pushed the door to open it, but it was
locked.

This would have the following annotation in
GraphBank:

(7) cause: to open it
effect: John pushed the door.

The guideline reflects the appropriate intu-
ition that the intention expressed in the pur-
pose or rationale clause must preceed the im-
plementation of the action carried out in the
matrix sentence. In effect, this would be some-
thing like

(8) [INTENTION TO SEG1] CAUSES SEG2

The problem here is that the cause-effect
relation conflates real event-causation with
telos-directed explanations, that is, action di-
rected towards a goal by virtue of an intention.
Given that these are semantically disjoint re-
lations, which are furthermore triggered by
distinct grammatical constructions, we believe
this conflation should be undone and charac-
terized as two separate coherence relations. If
the relations just discussed were annotated as

3This specific example was brought to our attention
by Alex Lascarides (p.c).

telic-causation, the features encoded for subse-
quent training of a machine learning algorithm
could benefit from distinct syntactic environ-
ments. We would like to automatically gener-
ate temporal orderings from cause-effect rela-
tions from the events directly annotated in the
text. Splitting these classes would preserve the
soundness of such a procedure, while keeping
them lumped generates inconsistencies.

4 Data Preparation and Knowledge
Sources

In this section we describe the various linguis-
tic processing components used for classifica-
tion and identification of Graphbank discourse
relations.

4.1 Pre-Processing

We performed tokenization, sentence tagging,
part-of-speech tagging, and shallow syntactic
parsing (chunking) over the 135 Graphbank
documents. Part-of-speech tagging and shal-
low parsing were carried out using the Carafe
implementation of Conditional Random Fields
for NLP (Wellner and Vilain, 2006) trained
on various standard corpora. In addition, full
sentence parses were obtained using the RASP
parser (Briscoe and Carroll, 2002). Grammat-
ical relations derived from a single top-ranked
tree for each sentence (headword, modifier,
and relation type) were used for feature con-
struction.

4.2 Modal Parsing and Temporal
Ordering of Events

We performed both modal parsing and tem-
poral parsing over events. Identification of
events was performed using EvITA (Sauri et
al., 2006), an open-domain event tagger devel-
oped under the TARSQI research framework
(Verhagen et al., 2005). EvITA locates and
tags all event-referring expressions in the input
text that can be temporally ordered. In addi-
tion, it identifies those grammatical features
implicated in temporal and modal informa-
tion of events; namely, tense, aspect, polarity,
modality, as well as the event class. Event an-
notation follows version 1.2.1 of the TimeML
specifications.*

“See http://www.timeml.org.



Modal parsing in the form of identifying
subordinating verb relations and their type
was performed using SlinkET (Sauri et al.,
2006), another component of the TARSQI
framework. SlinkET identifies subordination
constructions introducing modality informa-
tion in text; essentially, infinitival and that-
clauses embedded by factive predicates (re-
gret), reporting predicates (say), and predi-
cates referring to events of attempting (try),
volition (want), command (order), among oth-
ers. SlinkET annotates these subordination
contexts and classifies them according to the
modality information introduced by the rela-
tion between the embedding and embedded
predicates, which can be of any of the follow-

ing types:

e factive: The embedded event is presupposed or
entailed as true (e.g., John managed to leave the
party).

e counter-factive: The embedded event is pre-
supposed as entailed as false (e.g., John was un-
able to leave the party).

e evidential: The subordination is introduced
by a reporting or perception event (e.g., Mary
saw/told that John left the party).

e negative evidential: The subordination is a re-
porting event conveying negative polarity (e.g.,
Mary denied that John left the party).

e modal: The subordination creates an intensional
context (e.g., John wanted to leave the party).

Temporal orderings between events were
identified using a Maximum Entropy classi-
fier trained on the TimeBank 1.2 and Opin-
ion 1.0a corpora. These corpora provide an-
notated events along with temporal links be-
The link types included: be-
fore (e1 occurs before es) , includes (e occurs
sometime during e;), simultaneous (e; occurs
over the same interval as ey), begins (e; begins
at the same time as es), ends (e; ends at the
same time as ez).

tween events.

4.3 Lexical Semantic Typing and
Coherence

Lexical semantic types as well as a measure of
lexical similarity or coherence between words
in two discourse segments would appear to be
useful for assigning an appropriate discourse
relationship. Resemblance relations, in partic-
ular, require similar entities to be involved and

lexical similarity here serves as an approxima-
tion to definite nominal coreference. Identifi-
cation of lexical relationships between words
across segments appears especially useful for
cause-effect relations. In example (3) above,
determining a (potential) cause-effect relation-
ship between crash and injury is necessary to
identify the discourse relation.

4.3.1 Corpus-based Lexical Similarity

Lexical similarity was computed using the
Word Sketch Engine (WSE) (Killgarrif et al.,
2004) similarity metric applied over British
National Corpus. The WSE similarity metric
implements the word similarity measure based
on grammatical relations as defined in (Lin,
1998) with minor modifications.

4.3.2 The Brandeis Semantic
Ontology

As a second source of lexical coherence,
we used the Brandeis Semantic Ontology or
BSO (Pustejovsky et al., 2006). The BSO is
a lexically-based ontology in the Generative
Lexicon tradition (Pustejovsky, 2001; Puste-
jovsky, 1995). It focuses on contextualizing
the meanings of words and does this by a rich
system of types and qualia structures. For ex-
ample, if one were to look up the phrase RED
WINE in the BSO, one would find its type is
WINE and its type’s type is ALCOHOLIC BEV-
ERAGE. The BSO contains ontological qualia
information (shown below). Using the BSO,

wine

CONSTITUTIVE = Alcohol

HAS ELEMENT = Alcohol

MADE OF = Grapes

INDIRECT TELIC = drink activity
INDIRECT AGENTIVE = make alcoholic beverage

one is able to find out where in the ontolog-
ical type system WINE is located, what RED
WINE’s lexical neighbors are, and its full set
of part of speech and grammatical attributes.
Other words have a different configuration of
annotated attributes depending on the type of
the word.

We used the BSO typing information to se-
mantically tag individual words in order to
compute lexical paths between word pairs.
Such lexical associations are invoked when
constructing cause-effect relations and other
implicatures (e.g. between crash and injure
in Example 3).



The type system paths provide a measure
of the connectedness between words. For ev-
ery pair of head words in a GraphBank docu-
ment, the shortest path between the two words
within the BSO is computed. Currently, this
metric only uses the type system relations
(i.e., inheritance) but preliminary tests show
that including qualia relations as connections
is promising. We also computed the earliest
common ancestor of the two words. These
metrics are calculated for every possible sense
of the word within the BSO.

The use of the BSO is advantageous com-
pared to other frameworks such as Wordnet
because it focuses on the connection between
words and their semantic relationship to other
items. These connections are captured in
the qualia information and the type system.
In Wordnet, qualia-like information is only
present in the glosses, and they do not pro-
vide a definite semantic path between any two
lexical items. Although synonymous in some
ways, synset members often behave differently
in many situations, grammatical or otherwise.

5 Classification Methodology

This section describes in detail how we con-
structed features from the various knowlege
sources described above and how they were en-
coded in a Maximum Entropy model.

5.1 Maximum Entropy Classification

For our experiments of classifying relation
types, we used a Maximum Entropy classifier®
in order to assign labels to each pair of dis-
course segments connected by some relation.
For each instance (i.e. pair of segments) the
classifier makes its decision based on a set of
features. Each feature can query some ar-
bitrary property of the two segments, possi-
bly taking into account external information
or knowledge sources. For example, a fea-
ture could query whether the two segments are
adjacent to each other, whether one segment
contains a discourse connective, whether they
both share a particular word, whether a partic-
ular syntactic construction or lexical associa-
tion is present, etc. We make strong use of this

We wuse the Maximum
sifier  included with  Carafe
http://sourceforge.net /projects/carafe

Entropy clas-
available at

ability to include very many, highly interde-
pendent features® in our experiments. Besides
binary-valued features, feature values can be
real-valued and thus capture frequencies, sim-
ilarity values, or other scalar quantities.

5.2 Feature Classes

We grouped the features together into various
feature classes based roughly on the knowl-
edge source from which they were derived. Ta-
ble 1 describes the various feature classes in
detail and provides some actual example fea-
tures from each class for the segment pair de-
scribed in Example 5 in Section 3.2.

6 Experiments and Results

In this section we provide the results of a set of
experiments focused on the task of discourse
relation classification. We also report initial
results on relation identification with the same
set of features as used for classification.

6.1 Discourse Relation Classification

The task of discourse relation classification in-
volves assigning the correct label to a pair of
discourse segments.” The pair of segments to
assign a relation to is provided (from the an-
notated data). In addition, we assume, for
asymmetric links, that the nucleus and satel-
lite are provided (i.e., the direction of the rela-
tion). For the elaboration relations, we ignored
the annotated subtypes (person, time, loca-
tion, etc.). Experiments were carried out on
the full set of relation types as well as the sim-
pler set of coarse-grained relation categories
described in Section 3.1.

The GraphBank contains a total of 8755 an-
notated coherence relations. ® For all the ex-
periments in this paper, we used 8-fold cross-
validation with 12.5% of the data used for
testing and the remainder used for training
for each fold. Accuracy numbers reported are
the average accuracies over the 8 folds. Vari-
ance was generally low with a standard devi-
ation typically in the range of 1.5 to 2.0. We

5The total maximum number of features occurring
in our experiments is roughly 120,000.

"Bach segment may in fact consist of a sequence
of segments. We will, however, use the term segment
loosely to refer to segments or segment sequences.

8 All documents are doubly annotated; we used the
annotator! annotations.



Feature  Description Example

Class

C Words appearing at beginning and end of the two discourse first1l-is-to; first2-is- The
segments - these are often important discourse cue words.

P Proximity and direction between the two segments (in terms  adjacent; dist-less-than-3; dist-less-
of segments) - binary features such as distance less than 8, than-5; direction-reverse; samesen-
distance greater than 10 were used in addition to the distance tence
value itself; the distance from beginning of the document
using a similar binning approach

BSO Paths in the BSO up to length 10 between non-function ResearchLab — EducationalActiv-
words in the two segments. ity — University

WSE WSE word-pair similarities between words in the two seg- WSE-greater-than-0.05; WSE-
ments were binned as (> 0.05, > 0.1, > 0.2). We also com- sentence-sim = 0.005417
puted sentence similarity as the sum of the word similarities
divided by the sum of their sentence lengths.

E Event head words and event head word pairs between seg- eventl-is-upgrade; event2-is-spent;
ments as identified by EvITA. event-pair-upgrade-spent

SlinkET Event attributes, subordinating links and their types be- segl-class-is-occurrence; seg2-
tween event pairs in the two segments class-is-occurrence; segl-tense-

is-infinitive; seg2-tense-is-past;
seg2-modal-segl

C-E Cuewords of one segment paired with events in the other. first1-is-to-event2-is-spent; first2-is-

The-event1-is-upgrade

Syntax Grammatical dependency relations between two segments as  gr-ncmod; gr-ncmod-headl-
identified by the RASP parser. We also conjoined the rela- equipment; gr-ncmod-head-2-spent;
tion with one or both of the headwords associated with the etc.
grammatical relation.

Tlink Temporal links between events in the two segments. We seg2-before-segl

included both the link types and the number of occurrences

of those types between the segments

Table 1: Feature classes, their descriptions and example feature instances for Example 5 in

Section 3.2.

note here also that the interannotator agree-
ment between the two GraphBank annotators
was 94.6% for relations when they agreed on
the presence of a relation. The majority class
baseline (i.e., the accuracy achieved by calling
all relations elaboration) is 45.7% (and 66.57%
with the collapsed categories). These are the
upper and lower bounds against which these
results should be based.

To ascertain the utility of each of the var-
ious feature classes, we considered each fea-
ture class independently by using only features
from a single class in addition to the Proximity
feature class which serve as a baseline. Table 2
illustrates the result of this experiment.

We perfomed a second set of experiments
shown in Table 3 that is essentially the con-
verse of the previous batch. We take the union
of all the feature classes and perform ablation
experiments by removing one feature class at
a time.

6.2 Analysis

From the ablation results, it is clear that over-
all performance is most impacted by the cue-

Feature Class Accuracy Coarse-grained Acc.

Proximity 60.08% 69.43%
P+C 76.77% 83.50%
P+BSO 62.92% 74.40%
P+WSE 62.20% 70.10%
P+E 63.84% 78.16%
P+SlinkET 69.00% 75.91%
P+CE 67.18% 78.63%
P+Syntax 70.30% 80.84%
P+Tlink 64.19% 72.30%

Table 2: Classification accuracy over standard
and coarse-grained relation types with each
feature class added to Proximity feature class.

Feature Class Accuracy Coarse-grain Acc.
All Features 81.06%  87.51%
All-P 71.52% 84.88%
All-C 75.71% 84.69%
All-BSO 80.65% 87.04%
All-WSE 80.26% 87.14%
All-E 80.90%  86.92%
All-SlinkET 79.68% 86.89%
All-CE 80.41%  87.14%
All-Syntax 80.20% 86.89%
All-Tlink 80.30% 87.36%

Table 3: Classification accuracy with each fea-
ture class removed from the union of all feature
classes.



word features (C) and prozimity (P). Syntax
and SlinkET also have high impact improving
accuracy by roughly 10 and 9 percent respec-
tively as shown in Table 2. From the abla-
tion results in Table 3, it is clear that the util-
ity of most of the individual features classes
is lessened when all the other feature classes
are taken into account. This indicates that
multiple feature classes are responsible for pro-
viding evidence any given discourse relations.
Removing a single feature class degrades per-
formance, but only slightly, as the others can
compensate.

Overall precision, recall and F-measure re-
sults for each of the different link types us-
ing the set of all feature classes are shown
in Table 4 with the corresponding confusion
matrix in Table A.1. Performance correlates
roughly with the frequency of the various re-
lation types. We might therefore expect some
improvement in performance with more an-
notated data for those relations with low fre-
quency in the GraphBank.

Relation Precision Recall F-measure Count
elab 88.72 95.31 91.90 512
attr 91.14 95.10 93.09 184
par 71.89 83.33 77.19 132
same 87.09 75.00 80.60 72
ce 78.78 41.26 54.16 63
contr 65.51 66.67 66.08 57
examp 78.94 48.39 60.00 31
temp 50.00 20.83 29.41 24
expv 33.33 16.67 22.22 12
cond 45.45 62.50 52.63 8
gen 0.0 0.0 0.0 0

Table 4: Precision, Recall and F-measure re-
sults.

6.3 Coherence Relation Identification

The task of identifying the presence of a rela-
tion is complicated by the fact that we must
consider all (3) potential relations where n
is the number of segments. This presents a
troublesome, highly-skewed binary classifica-
tion problem with a high proportion of neg-
ative instances. Furthermore, some of the re-
lations, particularly the resemblance relations,
are transitive in nature (e.g. parallel(s;,sj) A
parallel(sj, s) — parallel(s;,sy)). However,
these transitive links are not provided in the
GraphBank annotation - such segment pairs
will therefore be presented incorrectly as neg-
ative instances to the learner, making this ap-

proach infeasible. An initial experiment con-
sidering all segment pairs, in fact, resulted in
performance only slightly above the majority
class baseline.

Instead, we consider the task of identify-
ing the presence of discourse relations between
segments within the same sentence. Using the
same set of all features used for relation clas-
sification, performance is at 70.04% accuracy.
Simultaneous identification and classification
resulted in an accuracy of 64.53%. For both
tasks the baseline accuracy was 58%.

6.4 Modeling Inter-relation
Dependencies

Casting the problem as a standard classifi-
cation problem where each instance is clas-
sified independently, as we have done, is a
potential drawback. In order to gain in-
sight into how collective, dependent model-
ing might help, we introduced additional fea-
tures that model such dependencies: For a
pair of discourse segments, s; and s;, to clas-
sify the relation between, we included features
based on the other relations involved with the
two segments (from the gold standard annota-
tions): {R(ss,sk)|k # j} and {R(sj, s;)|l # i}.
Adding these features improved classification
accuracy to 82.3%. This improvement is fairly
significant (a 6.3% reduction in error) given
that this dependency information is only en-
coded weakly as features and not in the form
of model constraints.

7 Discussion and Future Work

We view the accuracy of 81% on coherence re-
lation classification as a positive result, though
room for improvement clearly remains. An ex-
amination of the errors indicates that many of
the remaining problems require making com-
plex lexical associations, the establishment
of entity and event anaphoric links and, in
some cases, the exploitation of complex world-
knowledge. While important lexical connec-
tions can be gleaned from the BSO, we hy-
pothesize that the current lack of word sense
disambiguation serves to lessen its utility since
lexical paths between all word sense of two
words are currently used. Additional feature
engineering, particularly the crafting of more
specific conjunctions of existing features is an-



other avenue to explore further - as are auto-
matic feature selection methods.

Different types of relations clearly bene-
fit from different feature types. For ex-
ample, resemblance relations require simi-
lar entities and/or events, indicating a need
for robust anaphora resolution, while cause-
effect class relations require richer lexical and
world knowledge. One promising approach is
a pipeline where an initial classifier assigns
a coarse-grained category, followed by sepa-
rately engineered classifiers designed to model
the finer-grained distinctions.

An important area of future work in-
volves incorporating additional structure in
two places. First, as the experiment dis-
cussed in Section 6.4 shows, classifying dis-
course relations collectively shows potential for
improved performance. Secondly, we believe
that the tasks of: 1) identifying which seg-
ments are related and 2) identifying the dis-
course segments themselves are probably best
approached by a parsing model of discourse.
This view is broadly sympathetic with the ap-
proach in (Miltsakaki et al., 2005).

We furthermore believe an extension to the
GraphBank annotation scheme, with some mi-
nor changes as we advocate in Section 3.2, lay-
ered on top of the PDTB would, in our view,
serve as an interesting resource and model for
informational discourse.
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A Appendix
A.1 Confusion Matrix

elab par attr ce temp contr same
elab 488 3 7 3 1 0 2
par 6 110 2 2 0 8 2
attr 4 0 175 0 0 1 2
ce 18 9 3 26 3 2 2
temp 6 8 2 0 5 3 0
contr 4 12 0 0 0 38 0
same 3 9 2 2 0 2 54
examp 15 1 0 0 0 0 0
expv 3 1 1 0 1 4 0
cond 3 0 0 0 0 0 0
gen 0 0 0 0 0 0 0
A.2 SlinkET Example
S

DT NN VBD $ CD TO

Event

+Past

+Occurr

The university $ 30,000 to

A.3 Graphbank Annotation Example

examp

4

OO OO OO

—
(@3]

o O O

T

VB
Event
+Infinitive
+Occurr

FMODA
A

The university spent $30,000

cause—
effect

elaboration to upgrade lab equipment in 1987.

expv

SO DN OO WoOoOoOHHOO

cond gen
3 1
2 0
1 0
0 0
0 0
0 0
0 0
0 0
0 0
5 0
0 0
NX

N

NN

lab

NN

equipment

An estimated $60,000 to $70,000 was earmarked in 1988.

in

1987



