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Our approach takes advantage of how the centers of odd B-splines
at different levels are distributed across the domain. In this supple-
mental material, we first describe this distribution making the nec-
essary notations, then prove properties of the basis refinement step.
Finally, we use the above results to prove the local point lemma and
that locality is preserved when we define y as in Section 5.2 to en-
sure linear precision. We conclude this supplemental material with
an example that illustrates the effects of the proposed refinement
method in the resulting approximation function.

S1 Notation

As discussed in Section 5.2, we denote as cji the center of the linear
B-splines φj

i . Let Ij be the lattice of centers cji of linear B-splines
at the refinement level j. Observe that, if t > j, then Ij ⊂ It.
Crucially, linear B-splines at refinement level j can be centered only
at the lattice points Ij ; at each successive level of refinement, this
lattice becomes twice as fine (i.e., the distance between adjacent
points in the lattice is halved). This is illustrated in Figure S1.

The size of the support of a linear B-spline at level j is denoted by
sj (Figure S1). We let ‖ · ‖d denote the length of an element in
direction d.
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Figure S1: Centers of linear B-splines at different levels. The
set I0 consists only of the centers denoted by circles, the set I1
includes the centers denoted by circles and those marked by dia-
monds, and I2 includes all the centers denoted in the figure.

Using the expression in Section 5.3, we say that φj
i is active if ∃k

such that αi,j
k 6= 0.

Using the refinement relations, we say that a B-spline φj+1
n is a

child of φj
i (equivalently, that φj

i is a parent of φj+1
n ) if φj+1

n results
from the refinement of φj

i , i.e., if the refinement coefficient aj+1
in

(Equation 4) is not zero. From Figure 6, it is clear that one function
can have multiple children and multiple parents and a function will
have a single parent if and only if they have the same center.

S2 Properties of Step 2

Remark S1. For every active linear B-spline φj
i :

sj ≤ 2‖el‖d ∀el, el ∪ S(φj
i ) 6= ∅. (S1)

Proof. In the initial configuration, defined in Section 4.2, we have
a single element e0 and a set of linear B-splines φ0

i at the coarsest

level centered at corners of this element such that s0 = 2‖e0‖d in
all directions d.

In each iteration, when an element el is split, we refine all linear
B-splines φj

i which overlap that split element and have sj > ‖el‖d.
Therefore the above statement follows from an inductive argument.

Remark S2. If φj
i is refined, then it has no active ancestors

Proof. In step 2, a linear B-spline φj
i is refined if sj > ‖el‖d. If

it had an active parent, φj−1
n , then its support would be twice as

large and therefore sj−1 > 2‖el‖d, violating the property proved
in Remark S1. Any previous ancestor would have an even larger
support, which concludes the proof.

These remarks will be used in the following proofs of locality and
we can also conclude from them that at each iteration step 2 needs
to perform at most one level of refinement.

S3 Local Point Lemma

In this section we will prove that if cji is the center of an active
linear B-spline φj

i , then cji is a local point of φj
i .

Remark S3. S(φj
i ) overlaps with at most two elements in a given

direction and if it overlap with two elements then cji is at the bound-
ary between these elements.
Proof. Since the locations of the centers of the linear B-splines cji
are fixed and given by Ij , it is clear from Figure S1 that φj

i that
overlaps el will overlap another element ek if and only if el and ek
are adjacent and the center cji lies on the boundary between el and
ek.

Since element refinement involves splitting an element halfway and
basis functions are refined to guarantee ‖el‖d ≤ 2sj for all active
φj
i which overlaps el, this property is preserved after every iteration

of our algorithm.

This remark implies that if S(φj
i ) overlaps with el, then el ∈

N (cji ). From this we conclude that S(φj
i ) ⊂ N (cji ), and there-

fore cji is a local point of φj
i from the definition (recall Section 4).

Since we have shown that the center cji is a local point, this con-
cludes the proof of the local point lemma.

S4 Locality proof with Linear Precision

If φj
i is active, let yji be, as defined as in Section 5.2,

yji =
∑
k

αi,j
k xk/α

j
i , where αj

i =
∑
k

αi,j
k (S2)

In this section we will show that if φj
i is active, then then yji is a

local point of φj
i .

We will use an inductive argument. From the proof given in the
previous section, in the initial configuration when y0i = c0i , y0i is
a local point. We will show that this property is preserved at every



iteration of our algorithm, i.e., it is preserved when basis functions
are refined when elements are split.

S4.1 Preservation over Basis Refinement

When a B-spline φj
i is refined it becomes inactive and the the co-

efficients αj+1,n
k of its children φj+1

n are updated. This results in
updating the positions yj+1

n to ȳj+1
n . To show that the above prop-

erty is preserved over basis refinement, it is sufficient to prove that
ȳj+1
n is a local point of φj+1

n .

Let us first consider the case when the φj+1
n was inactive before

refinement of φj
i . Let aj+1

in be the refinement coefficient given by
Equation 4. In this scenario, the refinement of φj

i updates the coef-
ficients αn,j+1

k as follows (Equation 8):

ᾱn,j+1
k = aj+1

in αi,j
k , ∀k. (S3)

From the definition of y (Equation S2) that

ȳj+1
n = ���aj+1

in

∑
k α

i,j
k xk

�
��aj+1

in

∑
k α

i,j
k

= yji . (S4)

From the refinement property S(φj+1
n ) ⊂ S(φj

i ), the induction
assumption S(φj

i ) ⊂ N (yji ), and the above result ȳj+1
n = yji it

follows that S(φj+1
n ) ⊂ N (ȳj+1

n ). Therfore ȳj+1
n is a local point

of φj+1
n .

Let us now consider the case when φj+1
n was active before refine-

ment of φj
i . We make the flowing remarks:

Remark S4. If φj+1
n is an active child of φj

i , then the updated po-
sition of yj+1

n , given by ȳj+1
n , can be expressed as a convex combi-

nation of yji and yj+1
n .

Proof. Let aj+1
in be the refinement coefficient given by Equation

4. The refinement of φj
i updates the coefficients αn,j+1

k as follows
(Equation 8):

ᾱn,j+1
k = αn,j+1

k + aj+1
in αi,j

k , ∀k. (S5)

Therefore, if y is defined as in Equation S2, then

ȳj+1
n =

αj+1
n yj+1

n + aj+1
in αj

iy
j
i

αj+1
n + aj+1

in αj
i

. (S6)

Remark S5. If φj+1
n is active,N (yji ) ∩N (yj+1

n ) ⊂ N (ȳj+1
n )

Proof. If el ∈ N (yji ) ∩ N (yj+1
n ), then yji , y

j+1
n ∈ el. Since ȳj+1

n

is a convex combination of yji and yj+1
n , ȳj+1

n ∈ el and therefore
el ∈ N (ȳj+1

n ).

From the induction assumption S(φj+1
n ) ⊂ N (yj+1

n ) and S(φj
i ) ⊂

N (yji )). Since φj+1
n results from the refinement of φj

i , S(φj+1
n ) ⊂

S(φj
i ) and therefore S(φj+1

n ) ⊂ N (yji ) ∩ N (yj+1
n ). From Re-

mark S5 we conclude that S(φj+1
n ) ⊂ N (ȳj+1

n ), showing that the
property is preserved during basis refinement.

S4.2 Preservation over Element Refinement

Finally we will show that S(φj
i ) ⊂ N (yji ) is preserved when an

element are split. We start by making the following remarks.
Remark S6. Let φj

i be an active linear B-spline, j > 0. If φj−1
n

are the parents of φj
i which have been refined, then

αj
i =

∑
n

ajni

yji =
∑
n

ajnic
j−1
n /(

∑
n

ajni) (S7)

where the coefficients a are given by Equation 4.

Before we prove this Remark, we prove the following Remark that
stems directly from it.
Remark S7. If φj

i is active and has no active ancestors, then αj
i =

1 and yji = cji .
Proof. For j = 0, this results directly from the initial configuration
when all linear B-splines are at the coarsest level and c0i = y0i and
α0
i = 1.

For j > 0 we will use the result from Remark S6:

On the one dimensional case for linear B-splines, using the values
of a from Equation 5, we can write Equation S7 when all parents
are refined as {

yj2i = cj−1
i

yj2i+1 = 1
2
cj−1
i + 1

2
cj−1
i+1 .

From the lattice structure and the symmetry of the a terms around
the center, we see that yji = cji when all parents are refined. From
Equation 5, αj

i =
∑

n a
j
ni = 1, which is a result from the parti-

tion of unity property of refinement relations. This result is directly
extended in the multi-dimensional case.

Proof. [Remark S6] We will prove this property by induction. At
the initial configuration when all linear B-splines are at the coarsest
level, c0i = y0i and α0

i = 1. At this level, there are no active linear
B-splines with j > 0 and therefore the Remark S6 holds.

We assume that Remark S6 holds and will show that after an itera-
tion of the refinement algorithm it still holds.

We first show that it still holds after step 2. Let φj
i be a linear B-

spline which whill be refined in this step. Only linear B-splines
with no active ancestors can be refined (Remark S2) and therefore
φj
i has no active ancestors. Since we assume that Remark S6 holds,

Remark S7 also holds and therefore yji = cji and αj
i = 1. Let φj+1

n

be a child of φj
i .

If φj+1
n is inactive, then

ᾱj+1
n = aj+1

in αj
i = aj+1

in (from Equation S3)

ȳj+1
n = yji = cji (from Equation S4)

(S8)

and Remark S6 holds.

Otherwise, if φj+1
n is not inactive, then

ᾱj+1
n = αj+1

n + aj+1
in (from Equation S5)

ȳj+1
n =

αj+1
n yj+1

n + aj+1
in cji

αj+1
n + aj+1

in

(from Equation S6).
(S9)



From the induction assumption αj+1
n yj+1

n =
∑

m ai+1
im cjm and

αj+1
n =

∑
m aiim, form indexing all parents φj+1

m other than φj+1
n

that have been refined. Therefore

ᾱ1
n =

∑
m

aiim + aj+1
in

ȳj+1
n =

∑
m ai+1

im cjm + aj+1
in cjt∑

m aiim + aj+1
in

and Remark S6 holds. From this we conclude that the property is
preserved after step 2.

In step 3, though the values αi,j
k are updated, the values αj

i do not
change (Equation 10), concluding the proof.

We will now show that S(φj
i ) ⊂ N (yji ) is preserved when el is

split into elA and elB across direction d. It is sufficient to validate
the statement on the active linear B-splines φj

i that overlap el. From
the induction assumption yji is a local point of el. We must then
prove that if S(φj

i ) overlaps with elA (and/or elB), then yji is a local
point of elA (and/or elB). We will proceed to prove this considering
the two possible cases: S(φj

i ) overlaps with only one element (elA
or elB) and S(φj

i ) overlaps with both elements (elA and elB).

Case 1: φj
i overlaps one element Consider a linear B-spline

φj
i that overlaps with el. From the induction assumption (S(φj

i ) ∈
N (yji )) yji ∈ el. First, let us consider the case when φj

i overlaps
only one of the elements that result from the split. Without loss of
generality, we assume S(φj

i ) ∩ elB = ∅. If yji /∈ elA, then this
element refinement would make yji no longer a local point. In what
follows we will show that this is never the case, i.e., if S(φj

i ) ∩
elB = ∅, then yji ∈ elA, from which we can conclude that S(φj

i ) ∈
N (yji ).
Remark S8. If φj

i is active, then yji ∈ S(φj
i ), where S(φj

i ) is the
closure of S(φj

i ).
Proof. This property holds in the initial configuration when y0i =
c0i . We will show that this property is preserved during basis refine-
ment (step 2) and conclude the proof by induction. As in the pre-
vious paragraph, we will look at the updated positions ȳj+1

n when
φj+1
n results from the refinement of φj

i .

From Remark S2 and Remark S7, if φj
i is refined, then yji = cji .

The refinement relations guarantee that for linear B-splines cji ∈
S(φj+1

n ) (see Figure 6) from which we conclude yji ∈ S(φj+1
n ).

If yj+1
n is not active ȳj+1

n = yji (Equation S4) and therefore ȳj+1
n ∈

S(φj+1
n ).

Otherwise, if yj+1
n is active, yj+1

n ∈ S(φj+1
n ) from the induction

assumption. Remark S4 allows us to express ȳj+1
n and a convex

combination of yj+1
n and yji (both in S(φj+1

n )) from which we con-
clude that ȳj+1

n ∈ S(φj+1
n ).

From the induction assumptions (yji ∈ el) and Remark S8, yji ∈
el∩S(φj

i ). From the assumption S(φj
i )∩elB = ∅, S(φj

i )∩elB ⊂
∂elB , where ∂elB is the boundary of elB . From this we conclude
that yji ∈ elA ∪ ∂elB . Since S(φj

i ) is a K-dimensional cuboid and
elA and elB are adjacentK-dimensional cuboids we conclude from

S(φj
i )∪ elA 6= ∅ that S(φj

i )∪∂elb \ elA = ∅. Therefore, yji ∈ elA
and therefore S(φj

i ) ⊂ N (yji ) after element refinement.

Case 2: φj
i overlaps both elements Now let us consider the

case when φj
i overlaps both elements that result from the split, i.e.,

S(φj
i ) ∩ elA 6= ∅ and S(φj

i ) ∩ elB 6= ∅. As previously discussed,
yji ∈ el. In what follows we will prove that yji is also on the bound-
ary between elA and elB , which will allow us to conclude that after
the split the property S(φj

i ) ∈ N (yji ) is preserved.

Let us first consider the case when there are no active ancestors
and therefore

∑
k α

i,j
k = 1 and yji = cji (Remark S7). From Re-

mark S3, if φj
i overlaps both elements, then cji is on the boundary

between elA and elB and therefore S(φj
i ) ∈ N (cji ). Since in this

case yji = cji , the property is preserved.

Let us now consider the case when there are active ancestors. Let
Bj

i be the set of active ancestors.
Remark S9. Bj

i describes the set of active linear B-splines φm
n 6=

φj
i that do not vanish at cji

Proof. The B-splines φm
n 6= φj

i that do not vanish at cji are its
ancestors (all of them) or descendents that are centered at cji (see
Figure 6). All of the active ancestors are in Bj

i . Since φj
i is active,

there can be no active linear B-spline whose only ancestor is φj
i .

Since the descendents that do not vanish at cji have φj
i as a unique

ancestor, none of them are active.

From Remark S9 and the assumption that a partition of unity is
guaranteed in all previous iterations, we conclude∑

k

αi,j
k +

∑
n,m∈Bj

i

∑
k

αn,m
k φm

n (cji ) = 1. (S10)

If S(φj
i ) overlaps elA and elB the same is true for all of its an-

cestors. Therefore, from Remark S3, they must all be centered on
the boundary between elA and elB . We conclude that cmn is equal
to cji in direction d, cmn |d = cji |d. We will use this to show that
yji |d = cji |d.

Letm0 be the coarsest level in Bj
i . Any function φm0

n must have no
active ancestors since those would also be on Bj

i . From Remark S7,
ym0
n = cm0

n and therefore, ym0
n |d = cji |d.

Next, we take the next coarsest level on Bj
i ,m1, and let φm1

n1
be any

linear B-spline at this level. Bm1
n1

only contains the linear B-splines
in Bj

i at level m0. As in Equation S10, we can use Remark S9 and
the partition of unity assumption to conclude∑

k

αn1,m1
k +

∑
n

∑
k

αm0,n
k φm0

n (cm1
n1

) = 1

Using the assumption of linear precision on all previous iterations
and letting the evaluation function xk 7→ pk be the identity, we
conclude (Equation 7) that

cm1
n1

=
∑
k

αn1,m1
k xk +

∑
n

∑
k

αm0,n
k xkφ

m0
n (cm1

n1
).

From this we can express cm1
n1

as a convex combination of ym1
n1

and
ym0
n .

cm1
n1

= αm1
n1
ym1
n1

+
∑
n

φm0
n (cm1

n1
)αn

m0
ynm0

.



Since cm1
n1
|d = ym0

n |d = cji |d, it follows that ym1
n1
|d = cji |d. We

can continue this process to the finer levels to achieve that yji |d =

cji |d.

From this we conclude that yji is a local point after an element is
split which concludes the proof that yji is a local point.

S5 Example

Let qji =
∑
αi,j
k pk, where the coefficients αi,j

k are given by Equa-
tion 6. Then, Equation 7 can be expressed as:

P (x) =
∑
i,j

qjiφ
j
i (x). (S11)
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Our	Method

Adding	virtual	nodes

Figure S2: Contrasting the interpolation solution from our method
with the interpolation solution adding virtual nodes. Top row: the
interpolation solution from our method. The resulting interpolation
is equivalent to a uniform basis function at the coarsest level j such
that every sample on the element boundary belongs to Ij (in this
case j = 1). The values qji can be computed hierarchically at
points for which samples pji do not exist. In this example, q13 is
based on the average of the adjacent samples x0, x6 ∈ I0, and
q14 is the average of the four corner samples, also contained in I0.
Bottom row: interpolation solution adding virtual nodes. The color
display on the right illustrates how our method restricts the impact
of a sample in Ij to sj .

To further illustrate the result of our refinement strategy for high
dimensions, we show a two-dimensional example on the top row
of Figure S2. Given an element and the samples xk on its bound-
ary, we can determine the solution of our approximation. We use
Equation S11 with uniform basis functions at the coarsest level j at
which xk ∈ Ij , ∀k. The coefficients qji can be determined at each
successive level j as follows. At j = 0, since there are guaranteed
to be samples at xk = x0i , we set q0i = pk. At level j > 0, the
coefficient qij at a point xk = yji for which a sample does not exist
is given by a multi-linear combination of coefficients q(j−1)

i at the
coarser level j − 1.

Figure S2 compares our method (depicted in the top row) with the
approach of creating virtual nodes and then using bilinear interpo-
lation on each sub-element (shown in the bottom row). The figure
highlights the difference in the effect of p5. In our technique, if j
is the coarsest level such that xk ∈ Ij , then the influence of the
sample xk is limited to the support of basis functions at level j. As
we have shown in this supplemental material, this property is used
to prove locality. Therefore, this property gives us the advantage of
being able to define a simple refinement algorithm that updates the
approximation while constructing a k-d tree.

Notice that the same result on the top row of Figure S2 can be
achieved by the following steps: first, use a set of basis functions
at the coarsest level, setting P (x) =

∑
i=0,2,6,8 φ

0
i pi; then, use

the refinement relations to rewrite this expression as
∑8

i=0 φ
1
i q

1
i ;

finally, replace q15 in this expression, which was originally (p2 +
p8)/2, with p5. The second advantage of expressing this interpola-
tion as basis functions with refinement relations is that this method
can be extended to higher-order basis functions, such as cubic B-
splines.


