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Abstract

We introduce DEMOMATCH, a tool for API discovery that

allows the user to discover how to implement functionality

using a software framework by demonstrating the function-

ality in existing applications built with the same framework.

DEMOMATCH matches the demonstrations against a database

of execution traces called SEMERU and generates code snip-

pets explaining how to use the functionality. We evaluated

DEMOMATCH on several case studies involving Java Swing

and Eclipse RCP.

CCS Concepts •Software and its engineering → Auto-

matic programming; Object oriented frameworks; •Human-

centered computing → User interface programming

Keywords software engineering tools, data-driven, demon-

strations, traces, slicing

1. Introduction

Software libraries and frameworks are ubiquitous in modern

programming practice, delivering rich functionality that sim-

plifies the development of full-featured applications. However,

the expressive power of these frameworks comes at the cost

of a difficult initial learning curve. Mastering a framework re-

quires understanding the concepts comprising the framework

and the ability to select the right combination of components

for a given task. The sheer size of some of these frameworks

contributes to the programming challenge. For example, the

rich client platform used by Eclipse has over 60 million lines

of code spanning over 250 distinct open source projects [1].

We present a new technique to help programmers discover

the APIs necessary to leverage functionality available from a

framework. Specifically, our technique addresses one of the

major challenges in API discovery: how does the tool know

what functionality the programmer wants if the programmer

cannot even name it? This can happen if the terminology that
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a programmer uses to describe the functionality is different

from the terminology used by the framework. For example, the

functionality that many programmers refer to as auto-complete

is called content-assist in Eclipse. The framework may also

implement the functionality at a different level of abstraction

from the way the programmer understands it. For example,

what the programmer understands as syntax highlighting, the

Eclipse framework implements by combining functionality

for lexical scanning with functionality to maintain consistency

between a model of the document and its view.

The key observation behind our approach is that a common

way for programmers to learn about functionality available in

a framework is by observing it in other applications built from

the same framework. For example, even if the programmer

does not know how to use the syntax highlighting in the Eclipse

framework, the programmer knows that it must be there be-

cause many different Eclipse plugins use it. Our central claim is

that demonstrations of functionality from existing applications

can serve as an effective interface for an API discovery tool.

From the user’s perspective, our technique involves three

steps. In the first step, the programmer uses the trace-recording

functionality in DEMOMATCH to record a short demonstration

trace of the relevant functionality being exercised. In general,

the demonstration from the programmer will involve many

different pieces of functionality in addition to the one the

programmer is actually interested in, so in the second step the

programmer needs to help the system identify what aspect of

the demonstration is actually relevant. In the third step, the

system uses that information to generate a list of code samples

that illustrate how to use the demonstrated functionality.

A major challenge for DEMOMATCH is that the setup code

required to use the functionality in the framework often exe-

cutes during initialization of the application, long before the

demonstration of functionality takes place. Therefore, the API

calls that the programmer is interested in are not actually part

of the demonstration trace. DEMOMATCH solves this problem

by leveraging a trace database called SEMERU that collects,

aggregates, and analyzes execution traces of reference applica-

tions utilizing the framework. The database consists of billions

of low-level execution event details obtained by instrumenting

reference applications and recording their heap updates and

method calls. Given a demonstration trace recorded by the user,

DEMOMATCH identifies traces in the database that exercise
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the same functionality as the demo trace. Once those matching

fragments are found, DEMOMATCH then use the information

in the database to reconstruct the setup code that was necessary

to enable that functionality. This code is then sanitized down

to a small code snippet that is presented to the user.

Contributions The ability of DEMOMATCH to discover the

setup code necessary to use a framework by demonstrating its

functionality goes beyond what has been done before both in

the fields of API discovery and programming by demonstra-

tion. Recent work on API discovery requires the programmer

to provide either a desired type or a partial expression, both

of which are hard to provide without some prior knowledge

of the API [7, 11, 17, 37]. On the other hand, recent work on

programming by demonstration relies on careful design of a

restricted language for possible programs as well as domain

specific search procedures [9, 19, 38]. This approach is too

restrictive for API discovery where we expect the system to

work with existing frameworks and APIs.

A third alternative to our approach is to search for docu-

mentation on the Internet using a standard search engine. For

widely used frameworks like Swing or Eclipse, Google can

give very good answers to very high-level queries because

there are numerous blog posts, online tutorials, Stack Overflow

posts and even books explaining the usage of these APIs in

natural language. One of the major benefits of DEMOMATCH,

however, is that it does not rely on this enormous social infras-

tructure, so it can be useful even for brand new APIs or for

APIs that are not as widely used and not as well supported as

Eclipse or Swing.

Our approach to API discovery required a number of tech-

nical contributions which are summarized below.

• We introduce a novel user interaction model for API discov-

ery based on short demonstrations of framework features.
• We develop a new ranking technique to help programmers

identify a feature in their demonstration trace correspond-

ing to the functionality they are actually interested in.
• We develop a technique to match demonstration traces

against a database of complete program traces.
• We adapt dynamic slicing techniques to generate sanitized

code samples from the traces.
• We demonstrate viability of our approach through an empir-

ical evaluation of DEMOMATCH on the Swing and Eclipse

frameworks.

Limitations DemoMatch was designed for API discovery

tasks, where the goal is to discover the setup code that is

necessary in order to access functionality in a framework. This

means that any setup that happens outside the code—for ex-

ample, setup that is done through XML files—will be invisible

to DemoMatch.

The second limitation stems from our reliance on dynamic

execution traces. Despite significant curation effort, the SE-

MERU database contains a small subset of the possible expo-

nential number of framework execution paths. This implies

that unless a framework method is exercised in some trace

stored in the database, SEMERU cannot reason about it. But

on the other hand, the collected paths are obtained from the

observed and likely intended usage of the framework. There-

fore, all the results computed by DEMOMATCH are backed by

concrete evidence of execution of some user code utilizing the

framework.

Finally, while DEMOMATCH produces code, it is not a

program synthesis tool; it is an API discovery tool. The code

snippets produced by DEMOMATCH are not intended to be

code that programmers can directly incorporate into their ap-

plication; they still need to read the documentation of the re-

trieved APIs to understand any subtle details about how to use

these APIs. The goal is to help with the initial discovery phase,

where the user does not even know what the relevant APIs are.

1.1 Illustrative Example

In this section, we walk through an example interaction of the

programmer with DEMOMATCH. Consider the problem of

developing a new language editor for Eclipse. In a modular

system like Eclipse, editors are plugins built on the Eclipse

rich client platform (RCP). The goal of this programming task

is to extend a blank editor plugin with the auto-completion

functionality illustrated in fig. 1(a).

The first step in using DEMOMATCH is to identify an ex-

isting plugin that uses the auto-complete functionality in the

Eclipse RCP. For this example, we use the Eclipse Java editor

as the source of the demonstration. Once the Java editor has

been launched, the user issues a command to DEMOMATCH to

indicate that a demonstration is about to begin. The command

initiates the trace recording functionality, which relies on

online bytecode modification to record all method entries and

exits performed by the running application, excluding those

inside the standard Java libraries.

After issuing the trace recording command, the program-

mer types into the editor, triggering the auto-completion

functionality as illustrated in fig. 1(a). Once the functionality

has been observed, the user issues a second command to DE-

MOMATCH to indicate the end of the demonstration. For this

example, there are over 150K method calls inside this trace

that are triggered by the demonstration. Many of these method

calls are directly relevant to the auto-completion functionality,

but the trace also includes calls to draw additional widgets,

and even to compile the code in the background during the

demonstration. The next step is to identify, with the help of

the user, a subset of the trace that is actually relevant to the

functionality of interest. Obviously, asking the user to classify

150K method calls by hand is out of the question; instead,

DEMOMATCH presents to the user a ranked list of call queries,

signatures of methods or sequences of methods that can serve

as representatives for the different pieces of functionality in

the demonstration trace. The user can aid this ranking by pro-

viding a keyword or by providing an additional demonstration

of functionality that can be combined with the first one.
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a) Auto-completion functionality in eclipse.

class USourceViewerConfiguration extends SourceViewerConfiguration {
@Override IContentAssistant getContentAssistant(ISourceViewer a0) {
ContentAssistant ca = new ContentAssistant();
UIContentAssistProcessor uicap = new UCompletionProcessor();
ca.setContentAssistProcessor(uicap, ??);
return ca;

}}
class UCompletionProcessor implements IContentAssistProcessor {
@Override ICompletionProposal[] computeCompletionProposals(

ITextViewer viewer, int offset) {
ICompletionProposal[] result = new ICompletionProposal[??];
result[??] = new UCompletionProposal();
return result;

}}
class UAbstractDecoratedTextEditor extends

AbstractDecoratedTextEditor {
@Override void doSetInput(IEditorInput a0) {
USourceViewerConfiguration usvc = new USourceViewerConfiguration()

;
setSourceViewerConfiguration(usvc);

}}
class UCompletionProposal implements ICompletionProposal {}

b) User code required to add content assist to an editor.

Figure 1: Auto-completion example

For this running example, the user provides a second demon-

stration of the same functionality with a different Eclipse

editor, such as the ANT build file editor. From the two traces,

DEMOMATCH provides a ranked list of likely call queries. At

the top of the list is the method computeCompletionProposals,

which DEMOMATCH identifies as a good representative of the

functionality that is common to the two demonstration traces.

If the user selects this call query, the system then automatically

generates the code fragment in fig. 1(b).

The actual code for the auto-complete functionality, as

suggested by the Eclipse documentation, requires the fol-

lowing steps. First, the SourceViewerConfiguration must be

extended to return a ContentAssistant. The assistant provides a

IContentAssistProcessor for a source fragment. The processor

supplies the implementation of the method to compute an array

of ICompletionProposals. Finally, the source viewer configura-

tion is set inside the TextEditor doSetInput method. Not all of

the steps listed above took place during the demonstration of

the functionality; several took place when the plugin was first

launched, long before the demonstration started. In order to

discover this code, DEMOMATCH had to match the demonstra-

tion trace with complete traces stored in its SEMERU database

which did include those setup steps, and identify in those

traces the calls and actions that were essential to enable the

functionality observed in the demonstration.

DEMOMATCH depends on an assumption about the design

of object-oriented frameworks in order to be able to identify

the intended framework feature and connect the demo trace

and the traces in the database exercising the same feature.

This DEMOMATCH assumption is that there exists a set of

methods or sequences of methods that uniquely characterize

a framework feature inside its demonstration trace.

In our experience, demonstrable reactive framework fea-

tures generally satisfy this DEMOMATCH assumption. How-

ever, the assumption does not always hold. For example, if the

feature is implemented at a very low level of abstraction (e.g.

as a sequence of drawing commands to a rendering interpreter),

then there is no such set of distinguishing methods to separate

the feature from other features built from the same commands.

In this paper, we focus on Swing and Eclipse RCP graphical

toolkits and a variety of off-the-shelf applications. The frame-

work features best suited for DEMOMATCH are reactive by

nature, requiring user interaction to trigger a behavior, and

involve multiple callbacks from the framework to the user

code as well as set-up code.

We now describe in detail how each of the key components

in DEMOMATCH works, starting with the trace collection and

storage infrastructure.

2. Trace Data Model

DEMOMATCH relies on execution traces to query and generate

code snippets. There are two types of traces: demonstration

traces, which are short and incomplete and are used to interact

with DEMOMATCH, and full traces, which are collected once

and stored permanently as part of the SEMERU database, and

which contain very detailed execution information. In this

section, we describe the common formal model of the execu-

tion traces, their representation in our trace database SEMERU,

and the collection framework used to populate SEMERU. We

also briefly explain the embedded domain-specific language,

implemented in Scala, for querying SEMERU.

2.1 Instrumentation Framework

DEMOMATCH relies on dynamic bytecode instrumentation

to collect traces from live executions of Java applications. A

trace consists of records for each executed instruction in the

application. The instrumentation is implemented using the

ASM bytecode instrumentation framework [4] and the Java

agent facility of the Java virtual machine (JVM).

DEMOMATCH provides a Java agent to be loaded along-

side the target Java application into the Java virtual machine.

DEMOMATCH modifies bytecode by inserting instructions

into the method bodies that invoke static methods from the

collector runtime. The agent assigns every class to one of three

instrumentation domains and applies distinct transformation

rules to classes from different domains. These domains are:

(1) application, (2) library, and (3) exclusion.
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Classes in the application domain and the exclusion domain

are respectively instrumented fully and not instrumented at

all. The library domain includes the common utility classes in

java.util and java.lang. Classes in this domain are instrumented

at the top-most level: only calls to the library and from the

library are recorded, while all internal field, array, and method

accesses are ignored. This is crucial for performance given the

fraction of heap updates that occur inside java.util and java.lang

in some of these applications. The underlying assumption be-

hind the lightweight tracing is that library classes are encapsu-

lated; that is, their behavior is adequately captured by the input

and the output of calls from the application. This is similar to

the idea of the replay interface in [10, 35] for capturing the out-

put of environment functions to minimize recording overhead.

Our recording infrastructure trades off precision for effi-

ciency in several ways. It relaxes the tracking of control flow

inside the bytecode and focuses on the interaction among

object instances. Additionally, local variable instructions are

not recorded in the trace log; instead, our system later infers

how references to objects are acquired and passed down.

Collector runtime The collector runtime accepts static

method calls from the instrumented application and outputs

a sequential log of serialized records. The runtime methods

are synchronized so that the calls from concurrent threads are

serialized into the sequential trace log. An external control

client communicates with the runtime over a socket and has

the ability to start and stop log recording interactively.

Ingestion SEMERU ingests the log output generated by DE-

MOMATCH into a relational database (we use MySQL and

MyISAM engine). A metadata log is ingested first (to create

IDs for Java types, fields, and methods), and the binary trace

log is then converted to a tabular data file.

2.2 Events

The atomic unit of an execution trace in SEMERU is an event.

Events correspond to trace log records sent by the instrumen-

tation code to the runtime, which in turn correspond to instruc-

tions in the code. The full list of trace event types is given in

fig. 2b. A trace in SEMERU is a sequence of events ordered by

counter IDs. SEMERU provides three different views of a trace:

a Declarative view, a Call graph view and a Heap series view.

Each view presents the information in a trace in a different

way suitable for different steps within DEMOMATCH. The

key difference between demonstration traces and full traces

is that demonstration traces only include Call events and only

support the Declarative view and a partial Call graph view.

2.3 Declarative Trace View

The declarative trace view provides ordered access to the in-

dividual events. This view is supported by a simple embedded

DSL we call DeclView where the programmer can invoke a

method select(q: Query) to get an iterator that lazily fetches

events from the database on demand. The query is a boolean

combination of the property-based atomic predicates listed in

Domain Description

E Trace events indexed by counter
Enter Enter events in E

O Instance values including null and unknown
int Primitive values

V Primitive and instance values (O∪int)
Type Java types

Method Java methods

Field Java fields

B=(U ,F) Framework boundary of disjoint subsets

U⊆Type,F⊆Type

(a) Formal model domains

Type Notation Description

C
a
ll Enter call m(p) method entrance

Exit return a method exit returning a

Exception throw e exceptional exit

F
ie

ld

Read a←b.f value a from field f of object b

a← f value a from static field f
Write b.f←a Assignment to field f of b

f←a Assignment to static field f

A
rr

ay ArrayRead a←b[i] Read of value a from array b

ArrayWrite b[i]←a Write to array b at index i

(b) Types of trace events, where a ∈ V , b ∈ O, i ∈ int, f ∈ Field,

m∈Method, and p is a vector of V .

Predicate Semantics

Member(m) member
?
=m for m∈Method∪Field

Receiver(o) receiver
?
=o Where o∈O

Argument(v) Enter with a non-receiver parameter v∈V

Value(v) value
?
=v for v∈V

Children(e) parent
?
=e for e∈E

Thread(t) thread
?
= t for t∈ long

Depth(i) depth
?
= i for i∈ int

At(i) counter
?
= i for i∈ int

Before(e) counter
?

<e.counter for e∈E

After(e) counter
?

>e.counter for e∈E

Stack(e) succ.counter
?

≥e.succ for e∈E

Enter, Exit, . . . matches the event type (see fig. 2b)

(c) Atomic predicates in DeclView query language.

Figure 2: Formal model of SEMERU trace data

fig. 2c. The DSL also provides a foreach method to iterate over

events in execution order.

2.4 Call Graph View

SEMERU also provides a view of traces as forests of call trees

(one per each execution thread). Nodes in a call tree are Enter

events ei∈E and edges connect callers to their direct callees.

SEMERU stores call traces in memory and indexes method

names using Lucene [2].

DEMOMATCH uses the call graph view to compute the

cover of an event e. The cover is defined in terms of the bound-

ary between two categories of classes distinguished by SE-

MERU depending on the package where they are defined: user

classes (Type U) and framework classes (Type F). The cover
of e is an Enter event satisfying the following properties: (a) the
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cover of e is a parent of e in the call tree; (b) the cover and all the

events between it and e in the tree are in the same category as e

(eitherU orF ); finally (c) the cover is either the root of the tree,

or its parent is in a different category. The covers allow DEMO-

MATCH to capture the caller-callee relationships while elimi-

nating internal calls in the respective domains (see section 4.2).

2.5 Heap Series View

SEMERU also provides a view of the evolution of the program

state that we refer to as HeapSeries (similar to the heap series

used in MATCHMAKER [37]). HeapSeries for a time interval

[l,h) is a sequence of heap snapshotsHl,Hl+1,...,Hh−1 where

each heap snapshot Hi is the state of the heap just before

event ei ∈ E . A heap snapshot is a set of triples: (a, f, b) ∈
O×Field×O denoting that the value of the field f of object a

is object b. Intuitively, one can think of Hi as a directed multi-

graph with nodes at objects O and edges labelled by Field.

HeapSeries is represented in SEMERU as a single graph la-

belled by fields and time intervals Field×2int stored in a Neo4J

graph database [31]. Instead of storing each heap snapshot in-

dividually, only one snapshot is stored, but each connection is

indexed by the set of counter values i for whichHi contains the

connection: (a,(f,T ),b)∈ HeapSeries for T = {i | (a,f,b)∈
Hi}∧ |T |>0. The heap series model and the call tree model

are connected by the IDs of the events. This allows us to quickly

jump from a time on some edge in HeapSeries to the call stack

for the corresponding event and vice versa. The HeapSeries

view is important for slicing, which requires knowledge of the

heap structure in order to be effective (see section 4.1).

3. Trace Matching

DEMOMATCH takes demonstration traces as input and

matches them against a collection of complete traces in the

SEMERU database. The basic idea behind the matching pro-

cedure is to identify in the demonstration trace a pattern of

method calls between the framework and the user code that

is characteristic of the feature that the user is interested in1.

Once the characteristic pattern has been identified, the tool can

search for other traces in the database that contain this pattern.

The underlying assumption, which we call the DEMOMATCH

assumption, is that there is indeed a characteristic pattern of

calls for each feature that the programmer is interested in.

The key challenge for this approach to work is to identify

this characteristic pattern, which we refer to as the call query

for the feature. Call queries prescribe patterns of method calls

at the projection boundary—the boundary between the frame-

work and the user code. At a high-level, our approach uses

lattice-based techniques, inspired by the software reconnais-

sance work [6, 34] to produce a ranked list of possible call

queries and asks the user to select the best one. The rest of this

section focuses on the problem of identifying a call query from

the thousands of call events that make up a demonstration trace.

1 We use feature in the sense of software features, not in the machine learning

sense of the term.

3.1 Framework Feature Analysis

Our approach to identifying call queries is informed by three

observations. First, the projection boundary is useful but not

sufficient for identifying call queries. Calls at the boundary

between user code and framework code tend to be good call

queries because they tend to correspond to concepts that

are meaningful to a user of the framework. However, frame-

work features are implemented on top of the features of the

lower-level libraries, and an application written on top of the

framework may choose to bypass the framework and invoke

lower-level libraries directly. For example, the Swing frame-

work is layered on top of its predecessor Java AWT library.

Some applications will combine calls to Swing with calls to

the low-level AWT library. It is also common for applications

to rely on a higher-level custom library that abstracts the usage

of Swing (see fig. 3). As a result, many applications that seem

to exercise the same feature will actually have different calls

at the projection boundary.

lower-level library

Framework

higher-level library

Class A

User code Feature 2

bypass

Feature 1

Class B

overlapabstraction

Figure 3: Relationship between the user code and the frame-

work features

Second, Since there can be many features exercised dur-

ing the demonstration, a single demonstration trace contains

many candidate call queries. Consider a short trace of a user

typing into an editor in the Eclipse IDE. While methods related

to the editor processing the input are expected to appear in the

trace, the demo trace also contains the simultaneous compila-

tion activity (if auto-building is enabled) and update manager

requests. Given a trace, separating these distinct features is a

complex problem. In particular, while the update manager ac-

tivity trace might be a coincidence, the build activity overlaps

with the code input in Eclipse.

And third, call queries may correspond to multiple features.

In addition to the overlap of feature demonstrations, features

themselves overlap in their implementations. We assign a

degree of specificity to call queries reflecting the specificity

of the features they represent. More specific queries are likely

to have high precision but low recall, whereas less specific

queries will have higher recall but lower precision. For ex-

ample, one can imagine the entire demonstration trace as a

call query with very high specificity; it will only match traces

exercising the exact same functionality in an identical way, but
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is unlikely to match any of the complete traces due to minor

variations in the executions. On the other hand, individual

method signatures can be good markers for features if they are

not shared among other features.

To summarize, each demonstration trace has many call

queries, and each call query may represent a subset of features

at varying levels of specificity. Therefore, to isolate a feature

from its demonstration, we are seeking to isolate the most

specific call queries from the trace.

3.2 Concept Analysis

Formal concept analysis [6] provides a general framework to

reason about the binary relationship between objects and their

attributes. In our case, the objects are execution traces, the

attributes are patterns in the call trees, and the formal concepts

capture the intuitive notion of a software feature. Specifically,

we are interested in the following trace attributes:

• the definitions of all extension points (methods, interfaces,

packages) for methods in the call events;

• all framework methods invoked by the trace, or the classes

containing these definitions;

• the framework methods at the projection boundary, or the

classes containing them;

• the types of all object instances.

The binary relationship R between the set of traces T and

their attributes A captures the description of traces as sets of

overlapping attributes. This relationship R has an associated

formal concept lattice. To define this lattice, consider the Ga-

lois operator σ :2T →2A that produces an intersection of the

set of attributes for each trace in a set of traces S⊂T :

σ(S)={a∈A |∀t∈S : (t,a)∈R}
Taking the ideas of the concept analysis, we adopt a simple

approach to specify a framework feature from the demon-

strations. A specific framework feature typically manifests

itself across several user implementations. These attributes

are derived from the following kinds of traces.

• Positive traces D+: a set of traces exercising the same

framework feature (for example, auto-completion invoca-

tion in several Eclipse editors).

• Negative traces D−: a set of traces that definitively do

not exercise the feature (e.g., a baseline trace is a trace in

which the user does not take any action).

• Domain traces T : a set of the framework-specific traces

that hold the superset of all feature attributes (for example,

the Swing tutorials cover a large fraction of its function-

ality); these would correspond to the traces stored in the

database.

In DEMOMATCH, the user of the tool only needs to provide

the positive and negative traces; the domain traces are automat-

ically extracted from the database. The program attributes that

are specific to the demonstrated framework feature are then

contained in the set intersection of the positive trace attributes

and all domain attributes sans the attributes in the negative

traces:
(

σ(D+)∩R(T )
)

\R(D−)
here R(S) = {a∈A | ∃t∈ S : (t,a)∈R}, which is different

from σ(S) due to the different quantifier.

Note that this definition does not capture conditionally

specific feature attributes, that is attributes that are specific

to the feature but not executed in all demo scenarios. For

example, the auto-complete can be triggered via a keyboard

shortcut or automatically by typing the dot character. These

two cases constitute two conditionally specific behaviors for

the auto-complete feature.

It is important to emphasize that the goal is not to identify

all attributes relevant to a feature; only the most specific ones

which can be used to find other traces with the same feature.

In particular, shared attributes that occur in both positive and

negative traces are discarded, even if some of these shared

attributes may potentially be relevant to the feature at hand.

The loss of these attributes is not a problem because the later

phases of code generation will recover them if they need to be

part of the generated code (see section 4.1).

3.3 Types of Call Queries

Now that we set-up the concept analysis framework for the

demonstrations and their call queries, let us formalize the

types of call queries that are useful for DEMOMATCH. A call

query is a pattern of method calls in the demonstration traces.

For each call query type, we define a SEMERU query that

searches for events inside traces that match the pattern. In

DEMOMATCH, we have two basic types of call queries based

on invocation and extension attributes. Invocation attributes

(Invokes(m)) correspond to a call to a framework method m.

The query to the SEMERU database is Enter && Member(m).

Extension attributes (Extends(m)) correspond to a call to a

method in user code that overrides a framework method m.

The query to the SEMERU database is Enter && Member(mU )

where mU is the set of user methods overriding m. In both

cases, the result of the query is a set of method entry events.

SEMERU also includes two forms of query composition,

nesting and grouping. A nested query is a pair of a parent

query a and a child query b. SEMERU resolves this query by

first matching against a, selecting the top-most call node c

in the match, and then matching b inside c. A group query

corresponds to a logical OR query for attributes. For example,

similar methods belonging to the same class form a group call

query for the class.

From the demonstration traces, DEMOMATCH exhaus-

tively generates invocation and extension attributes as basic

call queries, and then for every pair of basic call queries a and

b, SEMERU proposes a binary nested query consisting of a and

b. For example, if the demonstration trace includes a user call

which overrides framework method m, and which internally

calls a framework method n, DEMOMATCH generates a nested

call query: Nested ( Extends(m), Invokes(n) ). The additional
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specificity of the binary attributes is useful for more complex

features that are not identifiable from either the parent or the

child query alone. SEMERU also generates a high-level sum-

mary of all queries in the form of group queries and shows them

side by side to the ranked list of the basic and nested queries.

The concept analysis reduces the number of candidate call

queries by computing the set intersection, but this process

still results in a large number of potential call queries. At this

point, DEMOMATCH relies on human assistance to identify

the specific call query from the list of candidate queries, but

DEMOMATCH aids this process by ranking the call queries

based on the heuristics described in the next section.

3.4 Call Query Ranking

DEMOMATCH ranks queries based on three factors. The pri-

mary factor is the call tree depth. This is the distance from

the cover in the call tree to the event corresponding to this

attribute. Attributes on the projection boundary have depth 0,

while attributes deep inside the framework or the user code

get assigned high depth. For a method m, DEMOMATCH uses

the minimum of the depths for all calls to m.

The second factor is the inverse document frequency (IDF),

the inverse function of the number of domain traces T contain-

ing the attribute a. The IDF determines the term specificity

relative to the domain traces:

log
#T

#{t∈T |(t,a)∈R}

In combination with IDF, the call tree depth fills a role sim-

ilar to the term frequency in the TF-IDF document retrieval

technique [29]; it provides a metric of the relative importance

of the method to a trace in a trace corpus.

We prioritize the extension attributes over the invocation

attributes since the complex part of a feature typically involves

callbacks from the framework to a user extension as opposed

to a simpler direct library call.

The third factor is based on optional keywords provided by

the user. If the user provides DEMOMATCH with keywords,

the system generates a score based on whether the keywords or

their synonyms match against a method name or its documen-

tation. DEMOMATCH also uses method name heuristics to

fine-tune the ranking scheme. The heuristics identify common

design patterns from the method names to de-prioritize the

specificity of the associated call queries.

Overall, DEMOMATCH uses a lexicographic ranking, so

it ranks call queries first on call tree depth, then on IDF score,

and then on the keyword/method-name score.

4. Generating Snippets from Traces

The algorithm for generating code snippets from SEMERU

relies on techniques from program slicing (see section 4.1)

to extract a subset of relevant trace events, and compilation

strategies (see section 4.2) to generate symbolic code from

concrete trace events.

The input to SEMERU snippet generation is a full execution

trace with a set of goal seed events. These events are matches

to the call queries derived by DEMOMATCH from the demon-

stration traces. The third important input is the framework

boundary B specifying the framework F and the user client

code U in the trace. The output is a code snippet that aims

to summarize the setup code implemented by the client that

triggered the execution of the seed events.

The SEMERU snippet generation algorithm consists of the

following phases: (1)EXPAND computes a slice expansion

from a set of initial seeds. (2) PROJECT projects the slice

onto the framework boundary. (3) GENERATE generalizes the

projected slice to code. (4) SIMPLIFY erases redundant in-

structions. (5) COMBINE normalizes and aggregates snippets

across matching traces.

4.1 Dynamic Slicing

Slicing is a technique for computing semantics-preserving

sub-programs. In the case of dynamic traces of SEMERU, we

operate on execution events and track data and inter-method

control dependencies back from goal seeds. A seed is a pair

(e,o) of an event e ∈ E and an object o ∈ O participating in

e (for example, the receiver instance of a method call). Each

seed (e,o) is an obligation for the algorithm to answer the

following question: how does object o arrive to event e?

SEMERU dynamic slicing relies on the container abstrac-

tions to avoid slicing the object histories for the container

objects similar to the thin slicing technique [30]. Specifically,

augmenting an event with an object of interest disambiguates

between two kinds of dependencies: thin dependency of an

element in a container on the container update, and strong

dependency of an element in a container on the producer of

the container reference.

Starting from a set of initial seeds from the call query,

DEMOMATCH computes the fixed point of slicing rule appli-

cations. Each slicing rule expands an individual seed to a set

of its prior dependency seeds. SEMERU uses four rules: Local
finds the local producer event within the method body (field

read, for example); Static resolves to the write to a static field;

Heap resolves to the write to a local field; Cover implements

the idea of asymmetric slicing [22], which improves the slice

quality by categorizing data flows around the user-framework

code boundary; specifically, the slicing rule for the cover

events utilizes this distinction to skip internal events and pro-

duce succinct snippets, and Container resolves to the method

call that adds an element to a container skipping intermediate

operations. The implementation relies on SEMERU trace views

to formulate queries to resolve the output seeds.

4.2 Code Generation

The result of the slicing rule expansion is a set of trace records

{e} from an individual execution trace. The SEMERU code

generation algorithm synthesizes code snippets from the slice

and addresses the inherent challenges of generalizing concrete

execution to code: (1) abstracting concrete values to variables
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and holes; (2) erasing user-specific and framework-specific

details; (3) name assignment; (4) combining multiple slices

into a single code.

Projection to user events PROJECT partitions the slice by

the parent covers. If the parent cover call event method is not a

user method, then the partition is removed. Otherwise, an event

e is kept in its partition at d=cover(e.parent) (d.member∈U )

only if one the following conditions holds:

Field events: Read(e) || Write(e)

Array events: ArrayRead(e) || ArrayWrite(e)

Top-level return: e=d.succ

Framework call: Enter(e) && e.member ∈F

User constructor: Enter(e) && e.member ∈U &&

e.member.name == "<init>"

Notice that the internal calls from the user code to the user

code are eliminated (except for constructors) and the frame-

work calls are flattened. Each partition is turned into a trace

by adding the partition head call d and sorting events.

Generating statements from events GENERATE operates

on individual concrete traces by translating events to symbolic

instructions. The output is a method body for the partition head

call method m. Translation proceeds in the natural event order.

The local variable environment is initialized with this and

fresh argument variables for the method m bound to the literal

object values. For each event, a fresh variable is allocated for

the produced value of the inferred declaration type, and the

consumed values are replaced by the latest bound variables

with the type casts inserted if necessary. Primitive values and

string objects are replaced by their actual values, and unbound

literal objects are kept as unknown holes ??.

Constructor calls appear in the byte code as a chain of

call events to <init> methods. Before applying the transla-

tion above, the entire chain of <init> calls is replaced by the

call to the most specific constructor. User constructors are

replaced by default empty constructors for simplicity. Since

the entire user call is flattened, field initialization becomes the

responsibility of the caller.

Finally, the unbound literal array objects are replaced by

array variables and their allocation statements are prepended

to the method body. The receiver variables are substituted by

this and super.

Code simplification At this stage, the synthesized code is

a set of method bodies. A single method may have multiple

bodies if the trace slice expands to multiple executions of the

same statements. Moreover, the method bodies are derived

by flattening the internal user calls rendering them larger and

adding duplicate statements from executions of the internal

user methods.

DEMOMATCH iteratively runs a set of simplification

phases, each reducing the total number of statements in the

method bodies. These phases include removal of double field

dereferences, unused return variables, unnecessary object

instantiations, and empty method bodies. Locally defined

containers that do not escape the scope of a method body are

detected and erased together with their operations. Similarly,

fields that are only accessed within a single method body

are recognized and their declarations and statements are also

removed.

Code combination Once the set of method bodies is com-

pleted, the snippet generation algorithm produces symbols for

the class, method, and variable declarations. In order for mul-

tiple snippets for similar code to coincide, the symbols must

rely only on the framework definitions as opposed to any user

code specific symbols. For each user class type reference in the

method code, the algorithm computes the typing constraints

based on the usage of the user class type in the code snippet,

and derived the name from the type bound on the framework

super-types. Fields are sorted by a global sorting order using

their full names, and assigned names fi with index i. Multiple

versions of the method body are shown as part of the code

snippet in case the generated code contains several bodies

for the same method declaration (due to multiple method

executions in the slice).

5. Experimental Evaluation

In this section, we summarize our empirical evaluation of the

DEMOMATCH approach and the capability of SEMERU to

support DEMOMATCH queries. Specifically, the evaluation

focuses on three key questions:

• How likely is it that a demo from an application straight

from the Internet will find a match in a database previously

created from other reference applications?

• How effective is the mechanism to select and rank call

queries?

• How effective is code generation mechanism?

In order to address the first two questions, we downloaded

a small set of Swing applications from the web and used them

to produce demo traces without having seen their source code

or knowing how they were implemented (other than knowing

they used Swing). For our selected applications, we performed

a set of demos and labeled each demo with possible intents

(for example, a demo that cuts and pastes could have as intent

cutting or pasting). For each intent, we took a set of traces that

matched that intent and used them as a query. The results of

this experiment are outlined in section 5.4.

In the second part, we address the code generation com-

ponent of DEMOMATCH by seeding the code generation

algorithm (see section 4) with a set of call features extracted

from the demonstration traces. We evaluate the code qual-

ity relative to the programming intent behind the originating

demonstration traces. We also analyze robustness of the slicing

algorithm to different implementations of the features across

applications and executions of the same application. This was

done both in the context of the Swing applications mentioned
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above, as well as in the context of a set of end-to-end case

studies for editor features in the Eclipse platform.

Generality The ability of DEMOMATCH to provide good an-

swers for both Eclipse and Swing without awareness of the spe-

cific mechanisms of either framework shows that our methods

generalize to two user interface Java frameworks. However, we

have restricted our analysis to graphical applications. These are

a good match for our approach both because it is easy to supply

user actions and observe effects, and because of the complexity

of the user code and framework interaction. The generality

beyond this class of applications remains an open question.

Repeatability SEMERU derives its results solely from the

trace data; therefore, the computation is completely determin-

istic. In our examples, we examine variability of the trace

executions, and the degree to which code simplification elides

execution details from multiple runs of the same application,

multiple feature invocations in the same run, and multiple

implementations of the same feature across applications.

Threats to validity The biggest threat to validity of our

evaluation comes from the fact that it focuses on only two

frameworks, Swing an Eclipse RCP. Within those frameworks,

we selected third-party applications without bias. Demonstra-

tions were selected based on our external observations about

what the application does without inspecting the source code.

In particular, we encounter cases where the user code does not

use the framework, and thus, falls out of scope of our synthesis

approach.

Experimental set-up Experimental results are obtained on

a machine with 3.1GHz Intel Core i7 CPU, 512 GB SSD drive,

and 8GB of RAM for SEMERU, JVM and Neo4J. MySQL

database hosting the trace data and SEMERU are co-located on

the same machine.

5.1 Trace Collector Performance

Data collection is a core aspect of our system; the entire ap-

proach relies on our ability to efficiently collect and store

execution data. In this section, we quantify some of the details

of data collection.

Data collection happens offline, but it still must be efficient

enough for the applications to be usable and avoid triggering

timeouts. To illustrate the cost of trace collection and process-

ing, we recorded a trace of Eclipse while we performed typical

user actions such as opening files, and editing the code over 3

minutes of execution time. All user actions succeeded without

triggering timeouts.

During trace recording, the log file size increased linearly

at a rate of about 40 MB per second. The resulting trace (con-

sisting of 127 M events) was then processed by SEMERU in

several steps shown in the table below. As we can see, the

processing time is significantly larger than the trace collection

step. This validates our design choice to separate the trace log

collection from processing as opposed to online ingestion. The

high cost of processing traces amortizes across future queries

since it only has to be done once per complete trace.

Processing step Duration

Execution 3 min

Metadata ingestion 7s

Trace log ingestion 14 min

SQL updates and indexing 18 min

Heap construction 17 min

Heap ingestion 22 min

Lucene index 4s

Statistics

# events 127M

# objects, # edges in HeapSeries 2M, 5M

5.2 Experimental Data

We evaluate DEMOMATCH on an instance of SEMERU

database with over 200 traces, more than a billion events, and

around 300,000 methods in the metadata storage. We use the

official Swing Tutorial [3] to collect reference traces to popu-

late SEMERU for the Swing study. The tutorial consists of short

code projects that illustrate various aspects of the Swing widget

toolkit. For each tutorial, we recorded a full trace by perform-

ing the user actions described on the associated documentation

page. These actions consist of clicking buttons, entering text

in a field, or pressing shortcut key. The total number of lines of

code in the tutorials is 19 663. The size of javax.swing library

itself is 191 984 SLOC, and its underlying java.awt library is

66 324 SLOC (as measured for JDK 7). The total number of the

trace events for the tutorials is 252 011 903 in over 100 traces.

5.3 Swing Experiment Setup

For our Swing experiments, we analyze three open-source

Swing applications downloaded from the web:

1. Movies (1520 SLOC) is a movie log application.

2. Passwordstore (5494 SLOC) is a password storage applica-

tion.

3. Stocks (6330 SLOC) is a stock monitor that groups stocks

by their dynamically updated performance.

For each application, we identified demonstrable features

and recorded short traces by manually triggering them with

user actions—constructive features such as widget layout or

styling are not demonstrable, but interactive features are. For

each demo trace, we annotate the plausible programming

intent, a set of framework features exercised in the demo

traces that we expect DEMOMATCH to isolate. Table 1 lists all

the demonstration traces together with their intent. For each

application we also recorded a baseline trace that was used

as a negative trace and it involved simply moving the mouse

over the application without clicking on anything. Except for

one trace which is 51k events, all other traces have over 100k

events and involve over seven hundred methods each.

5.4 Ranking Call Queries

Using the recorded traces above, we conducted the following

experiment to evaluate the ability of DemoMatch to return
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Action and trigger Plausible intent

M
o
vi

es

Show the add dialog

via Menu

Menu action

Movie entry dialog

Add a movie

via OK button

Button listener

Field validation

Table update

Show the edit dialog

via Double click on a table row

Double click listener

Movie entry dialog

Enter an incorrect rating

via OK button

Button listener

Field validation

Message dialog

Delete a movie

via Menu

Menu action

Table update

Sort movies via Click on the column

header

Table sort

Click listener

Table header update

Table update

Reorder columns

via Drag-and-drop of the column

header

D&D listener

Table header update

P
as

sw
or

d
st

or
e

Select a list item

via Mouse click

List selection

Add a list item

via ˆN shortcut

Keyboard shortcut

List update

Cut a list item

via ˆX shortcut

Keyboard shortcut

List update

Buffer operation

Paste a list item

via ˆV shortcut

Keyboard shortcut

List update

Buffer operation

Edit the host field in the list view

via Text field

List update

Text field edit

Filter the list

via Filter text field

List update

List filter

Switch to the table view

via Menu

Table update

Menu action

Sort the table view

via Click on column header

Table update

Table sort

Generate a password

via Menu

Menu action

List update

Password generation

Undo cut of a list item

via ˆZ shortcut

Undo

Buffer operation

Keyboard shortcut

List update

S
to

ck
s

Refresh stocks

via keyboard shortcut

Web service connection

Keyboard shortcut

Table update

Refresh stocks

via toolbar button

Web service connection

Toolbar button action

Table update

Enter invalid stock in a text field Field validation

Select a stock filter

via click on a tree node

Tree node action

Table update

Collapse stock filters

via click on a tree folder

Tree collapse

Save dialog

via toolbar button

Open dialog

Toolbar button action

Portfolio dialog

via ˆE shortcut

Open dialog

Keyboard shortcut

Sort stocks

via click on table header

Table sort

Table update

Drag toolbar out of the window Draggable toolbar

Stock name tooltip Table tooltip

Stock text field tooltip Text field tooltip

Table 1: Demonstrations of Swing features in Movies,

Passwordstore, and Stocks

meaningful call queries and rank them close to the top. First,

for each application, we took each of the intents from table 1

and took as positive traces all the demonstration traces that

included that intent; all the traces that did not include that intent

were used as negative traces. So for example, for Passwordstore

, one experiment consisted on assuming that the intent was to

learn how to do a Menu action, so the two traces that involved

the Menu served as positive traces; all those that did not

include that intent served as negative traces. The table below

summarizes the result. For each application, the table lists how

many such experiments were performed, and in what fraction

of them the relevant call query appeared in the top 5 ranked call

queries and in the top 10 ranked call queries. The ranking takes

only a couple seconds despite the fact that computing the IDF

measure involves a series of queries into the SEMERU database.

Application Experiments top 5 top 10

Movies 9 7 8

Passwordstore 10 6 9

Stocks 11 10 10

Figure 4a shows in more detail the result of the experiment

on Passwordstore. Only the ‘list filter’ feature failed to match

because the application bypasses the framework and performs

the operation on the custom list model class. The remaining

features utilize the framework facilities without bypassing

them and the correct code query is always in the top 10 results,

and often in the top 5.

In general, the few cases where DEMOMATCH failed to

rank a desired call query highly were due to one of the follow-

ing reasons:

– Incorrect association between a demo trace and the pro-

gramming intent. In some of these cases, modifying the

sets positive and negative traces improved the result.

– Incomplete coverage of the framework features by the do-

main traces leads to zero IDF score. This can be mitigated

by expanding the set of domain traces.

– Application bypassing the framework leads to generic

methods in the demo results list.

– Framework methods that rely on the arguments or the

return value to modify the framework behavior appear as

common features.

The first two failure modes can be mitigated with addi-

tional input. The third falls is scope of our tool, while the last

one is a current limitation of DEMOMATCH. Nevertheless,

our results provide empirical evidence in support of DEMO-

MATCH hypothesis in the context of Swing, and indicate that

the lexicographic ranking score is sufficient to identify the key

implementation methods as one of the top 10 proposed queries.

5.5 Code Generation for Swing

We evaluate the search and snippet generation components

of DEMOMATCH by taking as input the call queries for five

separate tasks, extracted from the demonstration traces, and
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Feature Traces Rank

Keyboard shortcut 2,3,4,10 6/418

List filter 6 70

Buffer operation 3,4,10 1/16

(just paste) 1/7

(just cut) 1/36

Menu action 7,9 7/48

8/48

Table update 7,8 1/144

List update 2,3,4,6 2/153

1/153

Table sort 8 1/100

Password generation 9 7/17

Undo 10 1/8

2/8

Text field edit 5 1/1

(a) Summary of feature extraction

for Passwordstore

ANT JDT PyDev TeXlipse

Total time 1.712 s 2.732 s 950.911 ms 3.568 s

Full trace size 30 760 335 48 492 132 25 671 324 16 205 594

Final statements / initial stmts 13 / 15 6 / 9 4 / 4 10 / 12

% eliminated statements 13% 33% 0% 17%

Number of seeds and dependencies in

the slice graph

342 / 984 160 / 392 107 / 221 310 / 873

Overrides createPartControl? X X X

Instantiates ProjectionSupport? X X X

Calls support.install? X X X

Calls viewer.doOperation? X X* X X

Overrides createSourceViewer? X X X X

Returns ProjectionViewer? X

Irrelevant statements? 0 0 0 0

(b) Evaluation of the synthesis results for the Eclipse editor folding demonstration across full traces

of the plugins

Figure 4: Results from feature extraction of passwordstore and eclipse editor folding experiments.

addressing the following experimental question: Does DE-

MOMATCH generate useful code snippets given call queries

extracted from demonstrations?

Text component example This experiment focuses on auto-

complete functionality available through the JTextArea. The

two parts of the functionality involve the system proposing a

completion for a word (demo #1) and pressing enter to accept

it (demo #2). We recorded both demonstrations, and extracted

their respective call queries.

The two demonstrations matched against the swing demo

named TextAreaDemo, producing 32 and 18 lines of code re-

spectively. The code snippets are missing two important lines

of code, but otherwise convey the right classes and methods

to use. Moreover, the original tutorial was 152 lines of code,

so DEMOMATCH does a good job of focusing attention on the

parts of the tutorial that are relevant for the desired functional-

ity. Query #2 also matches on the TextFieldDemo tutorial and

produces code that is correct and illustrates the functionality

in the context of JTextField instead of JTextArea used in the

demonstration.

Field validation example Consider the call query extracted

from the field validation example in Stocks:

Extends(InputVerifier.verify)

DEMOMATCH matches this query to a single tutorial on the

focus subsystem that has two example code projects. There

are 15 matches to the call query. We synthesize code for each

match to the call query. The resulting code snippets form 5

distinct groups, that describe two distinct behaviors:

– Binding an input verifier to a text field. This code has 4

variations in the run method depending on which field gets

assigned the verifier, and the statement ordering.

– Binding an action listener to a text field which then explic-

itly performs a call to verify.

An interesting observation in this case is that the combi-

nation algorithm effectively groups snippets even if they are

derived from several executions, since the simplification pass

successfully elides execution-specific details.

Cut-copy-paste examples Consider the call query for the

buffer paste feature extracted from passwordstore:

Extends(TransferHandler.importData)

The synthesized code for this call query forms 8 distinct

variants from 33 matches in 7 different tutorials on drag-and-

drop. One tutorial (ListCutPaste) generates three distinct code

snippets. Thanks to simplification, though, the generated code

is identical for several tutorials. In general, the variants fell into

two categories: one where the binding happens via the method

setTransferHandler, and one where the cut and paste actions

were managed manually by a listener. However, the combined

cut-copy-paste feature did not produce a match in tutorial suite.

Tooltip examples The tooltip demonstrations from the

Stocks application produced three call queries that are re-

lated to the tooltip functionality in Swing. DEMOMATCH

identifies 126 matches for these call queries and synthesizes

25 distinct code snippets from these matches.

The call queries proved not to be specific enough, because

in many tutorial applications, the getToolTipText was invoked

whether or not the tooltip functionality was used. Filtering for

those where the returned value is not null, however, produced

useful code.

There is significant variety on how tooltip functionality

is used, leading to many different code snippets. For ex-

ample, even within a single tutorial on how to use tables 2,

DEMOMATCH identified two distinct ways to add tooltips

to tables: (a) Call method setToolTipText on the default ta-

ble cell renderer, and (b) extend JTable and override method

getToolTipText.

Table sorting example The characteristic call query for the

table sorting Swing feature is:

Invokes(DefaultRowSorter.toggleSortOrder)

2 https://docs.oracle.com/javase/tutorial/uiswing/

components/table.html
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class URunnable implements Runnable {
@Override void run() {
JFrame jf = new JFrame(??);
UContainer uc = new UContainer();
Object o = new Object();
JTable jt = new JTable(o);
jt.setAutoCreateRowSorter(??);
JScrollPane jsp = new JScrollPane(jt);
uc.add(jsp);
jf.setContentPane(uc);
jf.pack();

}}
class UContainer extends Container {
static void main(String[] a0) {
URunnable ur = new URunnable();
SwingUtilities.invokeLater(ur);

}}

Figure 5: Synthesized code for the table sorting feature

There is one matching tutorial on “how to use tables” which

generates the code in fig. 5 which constructs a table and a

container for it, and enables the feature. There is only one

boolean argument which is presented as a hole value due to the

general policy of hiding primitive values from the synthesized

code (highlighted in the figure).

5.6 End-to-End Eclipse Examples

We also evaluated the code generation capabilities of the

system in the context of Eclipse. Eclipse applications are

structured as collections of plugins that are connected to

each other via OSGI. The Rich Client Platform (RCP) is a

minimal set of plugins that are used to develop feature-rich

applications. Some of the notable RCP applications are inte-

grated development environments (IDEs) consisting of editors,

builders, debugging tools, navigation tools, and etc. In our

study, we focus on the common framework functionality that

Eclipse provides for constructing IDEs. We have selected the

following language plugins for our evaluation:

1. Java development tools (JDT);

2. ANT plugin for project build files;

3. Mylyn task management and its WikiText editor;

4. PyDev environment for Python;

5. TeXlipse plugin for LATEX files.

For this phase, the evaluation strategy was as follows. First,

we selected four features present in some or all of these plu-

gins: editor folding, auto-completion, auto-edit, and outline

navigation. For each feature, we recorded demonstrations

and identified the call queries using DEMOMATCH. Then

we synthesized code from full traces of the Eclipse plugins.

Independently, we searched the web for tutorials and docu-

mentation for each of these features and made a checklist for

each feature listing all the elements that are important in order

to use that functionality. We then evaluated the generated

code based on how many of the important elements in the

checklist appear on each code snippet. Note that unlike the

Swing examples, in this case the demonstrations and reference

traces came from the same set of plugins.

editor folding Figure 4b summarizes the results from the

editor-folding example. One important observation is that

some of the elements outlined in the checklist execute during

setup time, long before the demonstration begins. Another

interesting observation is that the JDT plugin does not call

the doOperation method, but instead calls another method

enableProjection that achieves the same effect but is not men-

tioned on the tutorial (hence the star next to the check mark in

the figure). The most common missing element was a missing

return statement in one of the relevant methods.

auto-completion This is the introductory example. The

top results from all the plugins perform all the necessary

steps to enable the auto-completion feature. However, there

are some differences between them depending on the plu-

gin they come from. For example, the location of the call

to setSourceViewerConfiguration inside TextEditor was some-

times in the constructor, sometimes in the method doSetInput,

and sometimes in initializeEditor. The way the content assist

processor is attached to the content assistant was also different

for the WikiText because the category descriptor is retrieved

from a separate document provider feature as opposed to a

constant value in the other three plugins.

auto-edit This corresponds to the functionality where a user

enters an opening bracket, and the closing bracket is inserted

automatically immediately after the cursor. We demonstrated

this functionality by typing "(" or "{" in three different editors;

the plugins for ANT and WikiText do not provide this feature.

On average, each search and synthesis task takes 450ms (with

two outliers at around 2s) execution time.

The most common generated code (generated by 13 sep-

arate matches) installs a VerifyKeyListener inside the editor’s

createSourceViewer method body. This listener observes key

events, and inserts strings into the IDocument under certain

conditions. A reference for the document is obtained from

the editor text viewer that is created as the return value of the

method (the return statement is missing, however).

Interestingly, this example was not a complete success

according to our criteria, since the approach used by the

plugins was different from the approach suggested by the

Eclipse documentation, which suggests using extensions of

IAutoEditStrategy as the mechanism for the auto-insertion of

brackets. Nevertheless, the generated snippets provide insight

into an alternative approach to implement the functionality.

We believe this mismatch between documentation and imple-

mentation is a good example of the strength of our approach

that relies purely on executions.

outline navigation In the outline navigation feature in

Eclipse, the navigator shows the document outline as a tree

of sections and declarations. The goal is to discover the glue

for the outline view using DEMOMATCH. To accomplish this,

we selected four editors with an outline, and demonstrated the
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functionality where a mouse click on an item highlights the

related document section.

For this example, DEMOMATCH failed to generate a good

call query. Part of the reason turned out to be that the ideal

call query shares many attributes with the negative call traces;

additionally, the diversity in implementations was signifi-

cant enough that by taking intersections across many positive

traces, we were losing important attributes. Therefore, this

was a rare example where having fewer traces, both positive

and negative, actually improved the resulting call query.

For the synthesis task, we select the following query:

Nested(Extends(selectionChanged),

Invokes(TextViewer.setSelectedRange))

Interestingly, Eclipse JDT plugin has a distinct implementa-

tion of this feature by relying on a helper method linkToEditor.

PyDev does follow the same implementation as ANT and

TeXlipse, but it dispatches an intermediate Runnable task in

between the two calls in the query. This splits the call tree in

the middle, and thus, prevents the algorithm from extracting

the call query above. This is a limitation of the current algo-

rithm for cases involving a job queue that disrupts the call tree

hierarchy.

Given the proper call query, DEMOMATCH produced code

snippets from ANT, PyDev and TeXlipse. Each of the code

snippets illustrated a different approach of implementing the

functionality; all of them performed the necessary steps for

the feature and would allow someone to search for the missing

details, but all of them had structural quirks that made them

distinct.

Overall, of the four experiments, the first two had strong

positive results, with the system behaving exactly as expected.

The third one produced code that was useful, but was signif-

icantly different from the recommended approach to imple-

menting the functionality, and this was due to the fact that

none of the reference plugins used the recommended approach.

Finally, for the last experiment, DEMOMATCH was able to

produce useful code, but only after significant effort was put

into crafting a call query. The interested reader can find more

details about these experiments, including complete code

snippets in Kuat Yessenov’s thesis [36].

6. Related Work

We believe our approach combines ideas from code mining,

program tracing, program understanding, and synthesis.

Mining Code The idea of using large corpus of data for

program understanding has seen many incarnations in the past

few years. Prospector [17], XSnippet [28], MAPO [33, 39],

PARSEWeb [32], Strathcona [13], and InSynth [11] mine

source code repositories and assist programmers in common

tasks: finding call sequences to derive an object of one type

from an object of another type, complex initialization patterns,

and frequent API usage patterns. They do so by computing

relevant code snippets as determined by the static program

context and then applying heuristics to rank them. Since they

primarily utilize static analysis, the context lacks heap con-

nectivity information. These tools are geared towards code

assistance and do not produce full templates of the program

that may span multiple classes.

Another category of tools focuses on inferring specifica-

tions from code snippets and data. PRIME [21] is a code search

tool that consolidates generalized typestate-based temporal

summaries. The generalized type state automata have been

formalized in the subsequent work [23]. Buse[5] synthesizes

high-quality usage examples from software corpus by us-

ing program analysis techniques that make output examples

sufficiently general, succinct, and representative.

Statistical language models have been applied to short

sequences of call operations on an object to predict missing

method calls [25], estimate types in binaries [14], and infer

program properties (e.g. symbol de-obfuscation) from source

code [26]. These approach rely on static analysis to extract

tracelets from code snippets and/or binaries and construct gen-

erative statistical models. SEMERU synthesis would benefit

from incorporating these models to improve the quality of the

synthesized code by predicting missing values and statements.

Type-Directed Search Jungloid mining [17] is the most rel-

evant synthesis project in the context of large scale systems.

This project focuses on the problem of chaining API calls to

derive an object of the goal type from an object of the source

type. The approach is to build a graph where each node corre-

sponds to a type and each edge corresponds to API calls, and

then run a reachability query on this graph. SEMERU attempts

to provide a richer query language to enable synthesis of more

expressive programs (that may, for example, have heap ef-

fects). Type-based code search has been applied to provide

completions with arbitrary compositions of expressions and

ranking inferred from software corpora [11], as well as to a

general “partial expression” query language [24] with holes.

MatchMaker [37] uses two object types to derive the glue

code that facilitates their interaction. Like DEMOMATCH, it

uses detailed execution trace to search for heap connections

between type instances. SEMERU database could serve as

a common foundation for both tools. Unlike MatchMaker,

DEMOMATCH relies on short demonstration traces as queries

without requiring the knowledge of the particular types in-

volved in the framework feature, which is the requirement for

MATCHMAKER.

Programming with Keywords and Natural Language Key-

word programming [16] is a technique for translating key-

words to API calls. Portfolio [20] shows benefits of semantic

knowledge for improving free-form queries using a model of

functional call chains. Additional improvement to keyword

search is described in [27], which is obtained by executing the

snippets and testing them on the user-supplied cases. Smart-

Synth [15] applies programming with natural language to

smart phone development environment by hand-crafting a

DSL around its API. DEMOMATCH supports keyword search

on method identifiers and the documentation for events in the
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demonstration traces as part of the ranking score for the call

queries.

Program Execution Query Languages The existing work

on execution query languages focuses on discovering design

defects [8, 18]. While achieving similar goal, SEMERU pro-

vides a query language that is tailored for the synthesizer to

analyze program executions.

Dynamic Analysis for Program Understanding FUDA is

closely related in its goal of producing program templates

from example traces [12]. Like SEMERU, FUDA leverages the

distinction between user and framework code to project slices.

However, the API trace slicing used in FUDA only uses shared

objects in argument lists of calls to detect dependencies in the

heap. FUDA does not keep track of the heap updates. Unlike

SEMERU, FUDA does not aggregate many traces; instead, it

applies instrumentation to example programs for each query.

7. Conclusion

DEMOMATCH presents a new approach to API discovery

based on direct demonstrations of behavior on existing appli-

cations build from the same APIs. The paper showed that for

functionality related to the UI, this approach is viable even

for complex frameworks such as Eclipse. The most significant

challenge, and the biggest opportunity for future work, lies

in the need to involve the user in selecting meaningful call

queries in order to disambiguate among the many behaviors

occurring in an application.
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