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Abstract—Necessary and sufficient conditions are presented
for the existence of coordinating prices in coupled dynamic
systems. The formulation includes a coordinator with a
non-separable payoff, and a coupling system with dynamics.
New insights are obtained by examining three entities-to-
price—the subsystem control, the subsystem output, and the
coupling system state.

1. Introduction

IN MOST price coordination methods, the entities priced are
the input/output variables of the subsystems (Mesarovic et
al., 1970; Findeisen et al., 1980). An exception, though, is
the work by Wierzbicki (1972) where the entity priced is the
subsystem control. Another exception is the work by Calvet
and Titli (1980), who considered a coupling system with
dynamics and a coordination method that iterates on the
coupling system state, amongst other variables. The above
papers make the traditional assumption that the
coordinator’s payoff is separable, and in particular, is the
sum of the subsystem payoffs. Cohen (1980), however,
considered non-separable payoffs, and, assuming the
coordinating price exists, presented algorithms that converge
to this price, where the entity priced is a general function of
the subsystem control. Thus, price coordination schemes are
known for different entities priced, but are derived under
different assumptions and problem formulations.

The contribution of this paper is to study, under a single
problem formulation, the existence of pricing mechanisms
for different entities priced. For non-separable payoffs, we
present necessary and sufficient conditions for the existence
of coordinating prices for three entities to price: (1) the
subsystem output, (2) the subsystem control, and (3) the
coupling system state.

2. Formulation of the problem

Consider a dynamic system consisting of n subsystems
connected via a coupling system. The subsystems are
modeled as

X =fi(x, u v;), x(to) given i=1,...,n (1a)
yi=cilxnuv), i=1,...,n (1b)

and the coupling system is modeled as
Xo=folxo, ),  Xo(to) given (1c)
0 = CO(xOy Y, U) (ld)
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where u;(t)e R™ is the control vector for subsystem i;
x(H)eR™ is the state vector of subsystem i, or of the
coupling system for i =0; v(¢) € R% is the vector of inputs
from the coupling system to subsystem i; and y;(f) € R is the
vector of outputs from subsystem i to the coupling system;
m;, n;, k;, r, are € positive integers, i=1,...,n.
Furthermore, let “&”’ denote the vector of all the u;’s, i.e.
u'=(uj,...,u,) where ' denotes transpose. Similarly,
X' =y Xt LX) Y=L Ly vEQL ., ).

Associated with each subsystem there exists a decision
maker called a controller (infimal, follower, agent) with a
criterion function

%
max [ 13, 0) + ol (23)
0
where [,(-) represents individual i’s monetarily measured
satisfaction index or the negative of a cost function. The term

o
f piq;dt

£

constitutes the pricing mechanism (side payment, induce-
ment). p; and g, respectively the price vector and the entity
priced, and are chosen by another decision maker called a
coordinator (suprimal, leader, market maker). Herein, g; is
either u;, y; or xo,. The coordinator, in turn, wishes to
maximize the criterion

1
maxf L(x, u,y, v)de (2v)
to

subject to the constraints of the dynamic system, equation
(1). Thus, for g; € {«;, y;, Xo}, the problem of the coordinator
is to choose a corresponding p;, i=1, ..., n such that the
resulting optimal control of the controllers will coincide with
the optimal control of the coordinator. When such a choice
exists for p;, we say “the pricing mechanism exists” when the
entity priced is g;.

The above formulation, when viewed in terms of game
theory, is a simple, deterministic, single stage, Stackelberg
incentive problem. In the vocabulary of game theory, and
for a given entity priced, the information set of the
coordinator is empty and the coordinator acts once by first
announcing the price vectors p;, i=1, ..., n and the values
of exogenous parameters of the controllers’ optimizations,
see below. The information set of controller i is the relevant
portion of the act of the coordinator, and the controller acts
once by announcing its optimal, open loop control law. The
strategy of controller i, which is a mapping from its
information set to its optimal control law, implicitly solves
the subsystem optimization. Thus, we have three simple
Stackelberg incentive problems, one for each of the possible
entities priced: v;, y; and x,. However, it turns out that the
game theory formulation is not convenient for the present
note, because to compare the entities priced, it will be
advantageous to consider the model equations (1) explicitly,
as opposed to implicitly as part of the players’ payoffs. By
deviating from the standard game theory formulation, we are
able to obtain new conceptual insights. For further discussion
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on the relationship of the present problem to Stackelberg
incentives, see Berger (1983), and for further information on
Stackelberg incentives, see, e.g. Basar and Olsder (1980),
Ho et al. (1982) and Zheng et al. (1984).

The optimization of the non-linear criterions (2a) and (2b)
subject to the non-linear systems (1) is in general a difficult
problem. Since the interest of this paper is not to solve these
optimization problems, per se, but rather is, given the
existence of the optimal control, to induce it via a pricing
mechanism, we make the following simplifying assumptions.

Al. The input/output relations (1b) and (1d), are well
defined; i.e. given x and u, then y and v are uniquely
determined.

A2. The functions fi(:), l,(:), and ¢,(-), i=0,...,n, are
differentiable with respect to their arguments.

A3. The optimal control exists, is unique and is determined
by Pontryagin’s maximum principle.

Sufficient conditions for the validity of assumption A1l are
given in Berger (1983). Assumption A3 holds, of course, for
linear systems with quadratic payoffs where the resulting
Riccati equation has a solution. Moreover, on p. 567 of Hsu
and Meyer (1968) it is shown that the necessary conditions of
Pontryagin’s maximum principle are sufficient conditions for
a class of systems with non-quadratic payoffs and with
dynamics nonlinear in the control.

Likewise, since the concern of this paper is the existence of
the pricing mechanism, as opposed to its computation, we
assume the hypothetical coordinator has perfect knowledge.

A4. The coordinator knows the subsystem models, as well as
the coupling system, and hence has perfect knowledge.

Lastly, we assume that:

AS. For any choice of p; and gq;, controller i solves the
resulting optimization, as opposed to not-playing-the-game,
or shutting-down.

Hence, the pricing mechanisms presented here are relevant
for shaping the controllers’ marginal behavior.

3. When the entity priced is the output of the subsystem

This section examines the case where the entity priced is
the output of the subsystem: ¢;=y,, i=1,..., n, and where
the controllers consider the input to the subsystem from the
coupling system, v;, to be exogenous.t It is assumed that the
perfect-knowledge coordinator tells the subsystems the value
of the exogenous input v, in addition to the exogenous input
p;- Furthermore, the value for v; that the coordinator
transmits is the coordinator’s optimal value. Thus, controller
i’s optimization becomes

o
max f Li(x, w, v}) + ply, de (3a)
to
such that
x‘i =fl:(xi? U Ui‘), xi(t()) given (3b)
Yi=ci(x;, yi v}) (3¢)

where p,(f) and v}(f) have been specified, ¢ € [¢,, L], and “*”
denotes the optimal value of the coordinator.

Theorem 1. If the entity priced is the output of the
subsystem g;=y;, then, under assumptions A1-AS, there
exists a pricing mechanism for subsystem i if and only if there
exists a function p,(¢) that satisfies the condition

Sfi dc| oL’| &l

: —_— =)= — —t
Su; .g‘+8u,- .(p ol Su; |+

(4a)

1 Berger (1983) discusses the case where the subsystem
controller considers the value of v; to be endogenous and
where both y; and v; are priced.

where l means the term is evaluated at the optimal value of

the coordinator, and where u} is the Lagrange multiplier
associated with subsystem i’s output relation, equation (1b),
and where g,(¢) is determined by

. of]
8= 3.

1

aL’
-t ghadind
(pi—u})+ o,

al!

% 9
. Ox;

R oz, |- , &(t)=0.

. (4b)

Furthermore, if such a p;(¢) exists, it is the price.

The proofs of Theorem 1, and of Theorems 2 and 3 below,
are based on finding the condition such that the Pontryagin
necessary conditions of the controller match those of the
coordinator. The proofs are straightforward, and have been
omitted for the sake of brevity.

Theorem 1 states a necessary and sufficient condition for
the existence of a price that will induce the individual’s
optimal control to match that of the coordinator. The
condition can be veiwed as finding an input, p,, for a
dynamic system (4b) such that the output, the left-hand side
of (4a), exactly tracts a given trajectory, the right-hand side
of (4a). Such a condition is a type of controllability known as
servomechanism controllability (see p. 75 of Brockett
(1970)).

3.1. Satisfaction of condition of Theorem 1 given no
knowledge of subsystems. Dropping assumption A4, consider
a real coordinator who does not have perfect knowledge and
who would like to know a priori whether the condition of
Theorem 1 is satisfied. Typically, such a coordinator does
know the coupling system model, and thus we can ask
whether there are special cases for the coupling system where
the condition of Theorem 1 is guaranteed to be satisfied. In
general, L(-) is unrelated to the /(-)’s, though, an important
special case is the linear social welfare function, where L(-) is
the sum of the /,(*)’s

L(x, u y, v) = 2 1iCea s v2) + o) ®)

where a separate term for x, can be included without
complication.

Corollary 1. Special casei for linear social welfare, L(-) as in
(5), the condition of Theorem 1 simplifies and is satisfied
trivially when p;, is chosen to be u?.

Note: from the necessary conditions of social welfare
8¢cq i) )
= (=0 2o
H; <ay' Bo + ayi )'0

where yu, is the Lagrange multiplier associated with the
coupling system equality constraint (1d) and A, is the costate
vector associated with the coupling system dynamics (1¢).

-

4. When the entity priced is the subsystem control

Returning to arbitrary L(-), when the entity priced is the
subsystem control then no condition need be satisfied as
there always exists the desired price.

Theorem 2. If the entity priced is the control of the
subsystem, g; = u;, then, under assumptions A1-AS5, there
exists a pricing mechanism for subsystem i where the price,
P;» is chosen as

_(3L_3Y| Lol . of
pi_(au, aui) . ow|," By ‘g,- (6a)
and where g, is given by
. of; dc; (aL 81-)"
==L L * = . (2 =0.
5= "% | 8V 5, e e |, 8:(¢)
(6b)

1 The fact that there exists a pricing mechanism for linear
social welfare is well known (Findeisen et al., 1980). The
interest here is that although pricing mechanisms exist for
more general cases, it is linear social welfare that requires
minimal knowledge by the coordinator.
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5. When the entity priced is the coupling system state

In order that the controller’s optimization problem be well
defined when the entity priced is the coupling system state,
the coordinator will inform the controller how the
subsystem’s output affects x,. Thus, the ith controller’s
optimization becomes

t
max [ 15, 1, 07) + pixo At (73)
o
such that
x'i =f;'(xi’ U;, U,!), xi(to) given (7b)
yi=ci(x;, u;, v}) (7c)
%o=folxo, Y y%:), Xo(to) given (7d)

where the subscript “—i” denotes all the components of the
vector except for i.

Controller i could interpret (7d) to mean that the entity
priced is some, given function of y,. Note that the
coordinator knowing y*; follows from the perfect knowledge
assumption, A3, as does knowing v}. (As an aside, if
the coupling system were linear, %, = Agxo+ L B;y; then the
entity priced could be the subsystem’s contribution to
the state, x{, defined by: xg = Agxo — B;y;; in which case, the
coordinator would not need to tell the subsystem the output
from the other subsystems.)

Theorem 3. If the entity priced is the state vector of the
coupling system, g; = x,, then, under assumptions Al1-AS5,
there exists a pricing mechanism for subsystem i if and only if
there exists a function p,(¢) that satisfies the condition

au, | 5" B, 3y, | B0
(22 25, 22
'(au,.(ay,.*'ay,. Ho)* 5, " om) |,
where g;(f) and go(t) are determined by
s = il , _8i| ¥
S I e
ac;(aL' ac) ) aL’ az;)
LS y o, V+ = TV | g(t)=0  (8b
(ax,. o) e )| B (80)
. fo (aL’ acy )
=20 +|—+=—2 - P t)=0. (8
8o axo |, S axo#o . P 8o(t) (8¢)

Furthermore, if such a p; exists, it is the price.

Theorem 3, like Theorem 1, states a necessary and
sufficient condition for the existence of a price that will
induce the individual’s optimal control to match that of the
coordinator. However, unlike Theorem 1, the condition does
not trivialize when L(-) is a linear social welfare function.
Thus, the condition for existence of the price is more
restrictive when the entity priced is x, as opposed to y;.

5.1. Satisfaction of condition of Theorem 3 given no
knowledge of subsystems. As in Section 3.1, consider a real
coordinator who does not know the subsystems and who
would like to know whether the condition of Theorem 3 can
be guaranteed to be satisfied based on information of the
coupling system model. Indeed it can, though under more
restrictive assumptions than in Theorem 1.

Corollary 3. Special case: for linear social welfare, L(-) as in
(5), and for cy(-) not dependent on y,, the condition of
Theorem 1 simplifies and is satisfied trivially when p; is
chosen to be

2% 4 25)
(axo Hot 3xy

*

6. Comparison of entities priced

We compare the entities priced from two perspectives: (1)
the range of systems for which the pricing mechanism exists
and (2) the coincidence of costate vectors and Lagrange
multipliers.

6.1. Range of systems. When the entity priced is the
subsystem control, there always exists a pricing mechanism,
Theorem 2 (for the class of systems under discussion:
equations (1) and (2) subject to assumptions Al-AS5). In
contrast, when the entity priced is the subsystem output or
the coupling system state, then the existence of the pricing
mechanism is conditional. Furthermore, the condition is
more restrictive for the coupling system state than the
subsystem output. Thus, from the viewpoint of the range of
systems for which the pricing mechanism exists, the
subsystem control is a better entity to price than the
subsystem output, which in turn is a better entity than
the coupling system state.

6.2. Coincidence of costate vectors and Lagrange
multipliers. The range of systems is only one perspective
from which to compare the entities. It has the drawback that
it says nothing about particular systems where the pricing
mechanism exists for multiple entities. We obtain another
perspective by noting that the basic idea of a pricing
mechanism is to induce the individual’s view of the overall
system to coincide with that of the coordinator. A deeper
coincidence of world views is attained if, in addition to the
optimal control, the pricing mechanism also induces the
controller’s costate and Lagrange multipliers to be equal to
those of the coordinator.

From the perspective of matching costates, x, would seem
to be a better entity to price than y;, since the subsystem’s
optimization contains more costate vectors. However, it is
not a priori clear whether the subsystem’s optimal value for
the costate equals that of the coordinator. In this regard, the
state variables g; and g, in the pricing mechanism theorems,
equations (4b), (6b), (8b), and (8c) have particular import-
ance. In all cases, g(t)=A"—2* and go(t)=Ag%— A3,
where superscript “ind” denotes the optimal value of the
individual controller. Moreover, g;(!) and gy(¢) are
identically zero for the special cases in Corollaries 1 and 3
above. In Corollary 3, where the entity priced is x,, the
controller’s optimal value for A;, u; and A, coincide with that
of the coordinator; while in Corollary 1, where the entity
priced is y;, just A; and p; coincide. Lastly, when the entity
priced is p;, costate and Lagrange multipliers coincide only
for degenerate cases.

7. Conclusion

For the classic case of pricing the subsystem output and of
the coordinator’s payoff being linear social welfare, we show
that the pricing mechanism, in addition to inducing a
coincidence of optimal controls, also induces the optimal
costate vector of the subsystem to match that of the
coordinator. The matching of costate vectors, in addition to
the control, represents a fuller coincidence of world views
than matching the control alone. When the classic case is
generalized to arbitrary coordinator payoffs, then the pricing
mechanism continues to exist for cases where a servo-
mechanism controllability condition is satisfied, but at the
expense of the coincidence of costate vectors.

When the entity priced is the subsystem control, the
pricing mechanism exists for a larger class of systems than for
the subsystem output, for which in turn, the class of systems
is larger than for the coupling system state. On the other
hand, for special cases where the conditions for existence of
the pricing mechanism are guaranteed to be satisfied based
solely on the form of the coupling system model, pricing the
coupling system state induces a coincidence between the
coordinator and the subsystem of both the costate vectors of
the subsystem dynamics and the coupling system dynamics.
Pricing the subsystem output, however, only induces a
coincidence of the costate vector of the subsystem dynamics;
and pricing the subsystem control induces no coincidence at
all.
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