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Motivated by extreme-value engineering in service systems, we develop and eval-
uate simple approximations for the distributions of maximum values of queue-
ing processes over large time intervals. We provide approximations for several
different processes, such as the waiting times of successive customers, the
remaining workload at an arbitrary time, and the queue length at an arbitrary
time, in a variety of models. All our approximations are based on extreme-value
limit theorems. Our first approach is to approximate the queueing process by
one-dimensional reflected Brownian motion (RBM). We then apply the extreme-
value limit for RBM, which we derive here. Our second approach starts from
exponential asymptotics for the tail of the steady-state distribution. We obtain
an approximation by relating the given process to an associated sequence of
i.i.d. random variables with the same asymptotic exponential tail. We use esti-
mates of the asymptotic variance of the queueing process to determine an
approximate number of variables in this associated i.i.d. sequence. Our third
approach is to simplify G1/G/1 extreme-value limiting formulas in Iglehart [25]
by approximating the distribution of an idle period by the stationary-excess dis-
tribution of an interarrival time. We use simulation to evaluate the quality of
these approximations for the maximum workload. From the simulations we
obtain a rough estimate of the time when the extreme-value limit theorems begin
to yield good approximations.

1. INTRODUCTION AND SUMMARY

This paper is motivated by extreme-value engineering in the performance anal-
ysis of service systems. Instead of considering the delay or queue-length distri-
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bution in a service system at a particular time, we can consider the distribution
of the maximum delay or queue length over a time interval. To use extreme-value
engineering effectively in the performance analysis of service systems, we need
to be able to describe the distribution of maximum values over relevant time
intervals in queueing models of interest. This requirement is a major difficulty,
because the exact distributions are unavailable except in very special cases.

We were specifically motivated by a desire to compare two open-loop flow
control mechanisms that might be used in emerging high-speed communication
networks: the sliding window and the leaky bucket. The leaky bucket can be
represented as a G/D/1 queue, hence our interest in the maximum queueing
processes. In Berger and Whitt [13] we apply the results here together with
results about the sliding window in Berger and Whitt [12] to deduce that the slid-
ing window admits larger bursts than the leaky bucket for given peak rate and
given sustainable rate and to quantify the difference. Here we only discuss
queues.

To describe extreme-value distributions, it is natural to apply extreme-value
limit theorems as in Leadbetter, Lindgren, and Rootzén [29]. Even though the
extremes represent unusual behavior for the system, the extreme-value limit
theorems show that a certain statistical regularity emerges from considering
extremes of stochastic processes (see, e.g., Castillo [16] as well as Leadbetter
et al. [29]). However, a queueing model is not an elementary setting for extreme-
value limits, because the successive variables in the queueing processes are quite
strongly dependent. Nevertheless, extreme-value limit theorems have been
proved for queueing processes (see, e.g., Cohen [20], Iglehart [25], Pakes [32],
Serfozo [36,37], McCormick and Park [30], Asmussen and Perry [9], Sadowsky
and Szpankowski [34,35], Sadowsky [33], and references therein). However,
even for relatively simple models such as M/G/1 the exact formulas tend to be
somewhat complicated. Moreover, the standard extreme-value limits typically
do not even exist for the queue-length processes. (There are bounds and differ-
ent kinds of limits for the queue-length process, however; see Serfozo [37].)
Finally, even when an extreme-value limit theorem applies, it remains to eval-
uate the quality of the approximation. Most of the previous work on extreme-
value limits in queues has not included an examination of the quality of the
resulting approximations. (Serfozo [37] is an exception, but he considers a dif-
ferent maximum, in particular, over n busy cycles.)

Our first purpose in this paper is to investigate the quality of the approxi-
mations for maximum values in queues provided by the limit theorems when
they apply. We find that the extreme-value limits provide excellent approxima-
tions for long time intervals (corresponding to thousands or millions of arrivals,
which is appropriate for our intended application to communication networks).
As part of this investigation, we seek to determine when the time interval is suf-
ficiently long for the limit to become a good approximation. We identify a can-
didate approximate point where the extreme-value limits begin to kick in, as can
be seen from Figures 11-14 (discussed in Section 7). Relative to the remarkably



small number of i.i.d. summands needed to have the normal approximation
provided by the central limit theorem perform reasonably well, the length of the
interval is quite long however.

Our second purpose is to develop and evaluate relatively simple approxima-
tions for the parameters in the limiting extreme-value formulas. Our goal is to
obtain simple approximate formulas that are sufficiently accurate for engineer-
ing applications. The formulas should capture the essential features of the
queueing process and yet not be too complicated. We seek approximations
that perform as well for maximum values as previous approximations for
steady-state queueing distributions (see, e.g., Whitt [40]). Overall, we regard our
quest as a success. We hope that the simple approximations will help facilitate
extreme-value engineering.

To be more concrete, let W, be the waiting time of the nth customer, and
let Q(¢) be the queue length at time 7 in a stable queueing model starting with
a proper initial distribution, such as empty or in steady state. We are interested
in approximate distributions for the associated maximum random variables

Wi =max{W,:0<k < nj, nz=0, 1.1)
and
Q*(t) =max{Q(s):0=s=<1t}, t=0, 1.2)

for suitably large values of n and ¢, respectively.

For the following discussion, let Q(¢) be a generic queueing process with
associated maximum process Q*(¢). The extreme-value limit theorems suggest
that the approximations should be of the form

Q*(t)=~v(logt + logB + Z), (1.3)

where ¢ is understood to be relatively large, log is the natural logarithm (base e),
Z has the Gumbel c.d.f. (classical type-l extreme-value c.d.f.)

P(Z =x)=A(x) =exp(—e™), —o < x< ™, (1.4)

and v and @ are positive constants. For a discrete-time process such as W,, we
would replace 7 in Eq. (1.3) by n. The specific parameters 8 and v in general
should depend on the process.

Properties of the Gumbel c.d.f. A in Eq. (1.4) are given in Leadbetter et al.
[29], Castillo [16], and Chapter 21 of Johnson and Kotz [26]; e.g., EZ = 0.5772
(Euler’s constant), Var Z = 72/6 = 1.645, median (Z) = 0.3667, and mode(Z) =
0.9624. As a consequence of Eq. (1.3), we obtain the following approximations
for the mean and standard deviation:

EQ*(t) = ylogt + v(log 8 + 0.577) (1.5)
and

SD(Q*(1)) = 1.28, (1.6)
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again for ¢ suitably large. Particularly significant is the form of Eqgs. (1.5) and
(1.6): The mean should be linear in log t, while the standard deviation should
be independent of t.

Note that log 8 + 0.577 can be negative, so that the approximation for
EQ*(¢) in Eq. (1.5) can easily be negative for ¢ < 1, underscoring the fact that
the approximation is only intended for suitably large 7. Note that v is typically
the dominant parameter. A candidate approximation for 7 is the steady-state
mean EQ (). Roughly speaking, Egs. (1.5) and (1.6) say that Q*(¢) has ap-
proximately a mean of (log ) EQ(c) and a standard deviation of EQ(x).

We aim to investigate the quality of Eqs. (1.3), (1.5), and (1.6) and develop
approximations for the constants v, 8, and £ = (log 8 + 0.577)y. (We use £ in
addition to 8, because Eq. (1.5) can then be rewritten as £+ vyloget;ie., yis
the slope and £ is the y intercept for the linear relation in logt.)

We now provide a quick overview of our proposed approximations. (The
simulation experiments are described in Section 7.) We present three different
approaches. Our first approach, yielding the quickest and crudest approxima-
tions, follows Whitt [38], where simple heuristic formulas are developed to
determine the approximate simulation run lengths required to achieve desired
statistical precision in simulations of queueing processes. As in that paper, with
our first approach we specify the class of models and processes we consider
by directly assuming that the queueing process can be approximated by one-
dimensional reflected (or regulated) Brownian motion (RBM). (RBM is or-
dinary Brownian motion with a negative drift and a reflecting barrier at the
origin.) See Whitt [38] for additional motivating discussion. For other recent
work on Brownian motion approximations for queueing processes, see Asmus-
sen [8], Berger and Whitt [11], and Harrison and Nguyen [24].

To carry out this first approach, we need an extreme-value limit theorem
for RBM. Surprisingly, we could not find this result in the literature; hence, we
prove it here. Let {R(¢): ¢ = 0} be canonical RBM, i.e., RBM with drift coef-
ficient —1 ard diffusion coefficient +1. Let the associated maximum process be

R*(t) = sup{R(s):0 <5 =< ¢}, t=0. 1.7
Let = denote convergence in distribution.

THEOREM 1: Let R(t) be canonical RBM, where R(0) has a proper initial dis-
tribution, and let Z have the distribution in Eq. (1.4). Then,

2R*(t) —log2t=2 ast— oo,

It is easy to see what the statement of Theorem 1 should be by introducing
the appropriate scaling of space and time in the known extreme-value limit theo-
rem for the M/M/1 workload process, as we show later in Section 3, but it
seems difficult to develop a rigorous proof by this method, because there is an
interchange of the limits 7 — oo and p — 1, where p is the traffic intensity. Hence,
we prove Theorem ! a different way in Section 3.
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We mention that the exact distribution for R*(¢) when R(0) = 0 is avail-
able in the form of a Laplace transform from an early result of Darling and
Siegert [21]. A corresponding result for the M/M/1 queue length process is due
to Bailey [10]; see Theorem 3.4 and Corollary 3.4.1 of Abate and Whitt [71.

Our second approach builds on exact and approximate asymptotic exponen-
tial tail behavior for steady-state distributions of queueing processes; see Abate,
Choudhury, and Whitt [2,4,5], Asmussen and Perry [9], Choudhury and Lucan-
toni [17], Choudhury, Lucantoni and Whitt [18], and references therein. For
example, suppose that W has the steady-state waiting time distribution. In con-
siderable generality,

P(W>Xx)~ae™ asx— oo, (1.8)

where 7 and o are positive constants called the asymptotic decay rate and
asymptotic constant, respectively, and f(x) ~ g(x) means that J(x)/g(x) =1
as x — co. The asymptotics in Eq. (1.8) is the starting point for our second
approach; i.e., we assume that Eq. (1.8) holds. (It is important to note that this
need not always be the case, see, e.g., Abate, Choudhury, and Whitt [3] and ref-
erences therein.)

The key idea in this second approach is that W should have the same
extreme-value limit as

X['3"J=maX[XkZOSkS I_enJ}, nZO, (1-9)

where { X} is an i.i.d. sequence with X, distributed the same as W. The
parameter 6 in Eq. (1.9) is introduced to account for the dependence in the orig-
inal sequence { W, }. The idea is that n dependent random variables should be
regarded as approximately equivalent to 6n independent random variables.
Because the queueing variables tend to be strongly positive correlated except at
low traffic intensities, we anticipate that § < 1.

We hasten to point out that the idea of an associated i.i.d. sequence is not
new. Indeed, this associated independent sequence is a fundamental notion in
extreme-value theory (see Chapter 3 of Leadbetter et al. [29]). In nice situations
(without much dependence), the extreme-value limit for a dependent sequence
will be identical to the extreme-value limit for the independent sequence (with
6 = 1). However, that is not to be expected with queueing processes, because
the dependence is quite strong. In particular, condition D’(u,) on p. 58 of
Leadbetter et al. {29] typically does nor hold.

Under general conditions, which seem hard to verify (see Corollary 3.7.3
of Leadbetter et al. [29]), this second approach is correct for some 6. Indeed,
it is consistent with the extreme-value limits for queues (e.g., in Iglehart [25] and
Asmussen and Perry [9]). Hence, this approach seems to be a natural heuristic
more generally. It leads to tractable formulas, because given Eq. (1.8) the
extreme-value limit for the associated independent sequence is easily determined.
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It depends on the distribution of W only via the parameters « and 5 in Eq. (1.8).
In particular, the resulting limit is

nW; —log(abn) =Z asn-—» oo, (1.10)

where 7 and « are the asymptotic parameters in Eq. (1.8), 4 is the parameter in
Eq. (1.9), and Z has the Gumbel c.d.f. in Eq. (1.4). Deducing Eq. (1.10) from
Egs. (1.8) and (1.9) is a standard extreme-value argument. We note that the
asymptotic parameters « and 5 in Egs. (1.8) and (1.10) are readily computed
from transforms by numerical inversion in many cases (see Choudhury and
Lucantoni [17]).

Because queue-length processes are integer-valued, we do not quite have
Eq. (1.8). Then we have the analog of Eq. (1.8) only as x runs through the inte-
gers, which leads to the bounds

a < lim e®P(Q > x) < lim e™P(Q > x) < ce™. (1.11)
X— Q0 X—>Q0

The lower bound leads to the analog of Eqs. (1.10) and (1.3) with v = 5~" and
B = af. For the upper bound we replace 8 by ae”d, which simply increases
Q*(¢t) by 1. For integer-valued processes we allow for this error of 1.

To make the second approach work, we need to estimate the parameter
in Eqgs. (1.9) and (1.10). For this purpose we use the asymptotic variance

o = limn™! Var( M) (1.12)
&

n—oo =1
In particular, we estimate 6 by
6 = Var W/o3,. (1.13)

We partly justify Eq. (1.13) by a cloning heuristic. We consider the i.i.d. [ X, :
k = 1} and let each variable be repeated (cloned) m times; i.e., we consider the
sequence Y, :k = 1} where Y _y)uy; = Xi for j = 1,...,m. For such
sequences obviously § = 1/m and o2/Var Y, = m. This is a basis for Eq. (1.13).

Given Eq. (1.13), we need to estimate Var W and o3,. For some models
these can be computed (see, e.g., Neuts [31], Whitt [39], and references therein).
However, as in Whitt [38], we also suggest using RBM approximations to
approximate Var W, ¢7,, and thus . With RBM used to approximate 6, this
second approach can be related to the first approach. We find that they support
each other, because the resulting formulas are not too different.

Our third approach is based on exact extreme value results for the GI/G/1
queue. We simplify exact formulas for the GI/G/1 queue derived by Iglehart
[25]. Under conditions equivalent to Eq. (1.8), Iglehart derived the limit of
Eq. (1.10) and obtained explicit expressions for the parameters. Here 5 and
« are just as in Eq. (1.8), but 8 is the exact value (not based on the heuristic
Eq. (1.13)). We develop simple approximations for these parameters. We also
consider the GI/G/1 approximation applied to non-GI/G/1 queues.
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It turns out that all three approaches lead to approximations of the form
of Eq. (1.3). This is to be anticipated, because the steady-state distribution of
RBM is exponential, consistent with Eq. (1.8). In the first approach, the key
parameter 7 in Eq. (1.10) is replaced by what turns out to be exactly the first
term in the asymptotic expansion for 5 in powers of (1 — p) (see Abate et al. [4]
and Choudhury and Whitt [19]). In general, we would use the parameter ]
defined by Eq. (1.8) if it is available and its heavy-traffic approximation if not.
The parameter 7 is often not too difficult to obtain, so that the most difficult
part is determining 8 in Eq. (1.10). From Eq. (1.10) we see that we actually need
to be able to approximate log 6.

Here is how the rest of this paper is organized. In Section 2 we briefly
review the extreme-value limit for the M/M/1 workload process. In Section 3
we use the M/M/1 workload result to develop a heuristic derivation of the
RBM extreme-value limit in Theorem 1 and then prove Theorem 1. In Section 4
we describe RBM approximations for generic queueing processes and develop
the associated approximations for the queueing maximum processes. In Sec-
tion 5 we discuss the second “associated i.i.d. sequence” approach further. There
we develop the RBM approximation for § and describe the full approximation.
In Section 6 we develop special approximations for the GI/G/1 queue, draw-
ing on the extreme-value limit theorems of Iglehart [25]. A summary of the
approximations is given in Table 1. In Section 7 we evaluate the approximations
for the special case of the workload by making comparisons with simulations.
Finally, in Section 8 we state our conclusions.

2. THE M/M/1 MAXIMUM WORKLOAD PROCESS

Consider an M/M/1 queue with arrival rate p and service rate 1, where 0 <
p < 1. Let {W(t):t= 0} be the stationary workload process, i.e., initialized by
giving W(0) the steady-state distribution

P(W(t) > x) = pexp(—(1 - p)x), 2.1
for all ¢. Let the maximum workload process be defined by
W*(t) = sup{W(s):0 <s < t}], t>0. 2.2)

Let Z be a random variable with the Gumbel c.d.f. in Eq. (1.4). By Theorem 3
of Iglehart [25] or Cohen [20],

(1 —p)W*(1) —log(p(1 —p)’t)=Z ast— oo, 2.3)

The approximation based on Eq. (2.3) is Eq. (1.3) withy = (1 —p) 'and 8 =
p(l —p).

To obtain Eq. (2.3) from Eq. (9) in Iglehart [25], note that his Eq. (9) is
equivalent to

lim P(yW™*(t) — log(Ab*t/m) < x) = A(x), 2.4
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because
A(x + loge) = A(x)'~. Q.5)

Then note that y =1 — p, N\ =p, m = 1/(1 — p), and b* = (1 — p), because
Eevo=(1-vy)"'=p~", Eev==p/(p+v) =p, a(0) =p, and b(0) = p(1 — p).

3. THE MAXIMUM OF CANONICAL RBM

The M/M/1 workload process reveals the basic form of Eq. (1.3) and shows the
effect of the traffic intensity p. We now consider RBM in order to approxi-
mately describe the impact of the variability (possible departure from i.i.d.
exponential random variables) in the arrival process and service times.

Hence, let R(#; u,02) be stationary RBM on the positive real line with drift
coefficient u and diffusion coefficient o2, where u < 0. A stationary version is
achieved by letting R(0;u,0?) have the steady-state exponential distribution
with mean ¢%/2| u|. Let R(t) = R(t;—1,1) be stationary canonical RBM. These
processes are related by

aR(bt;u,0%) £ R(1;—-1,1), 3.1

where £ denotes equality in distribution, a = || /02, and b = ¢2/u? (see, e.g.,
Section 2 of Abate and Whitt [6].

Let the maximum of stationary canonical RBM be defined as in Eq. (1.7).
From Eq. (2.3) and a heavy-traffic limit for W*(¢), we obtain a heuristic der-
ivation of Theorem 1. The supporting heavy-traffic limit is

(I-p)

s WQ2t/(1~p)") = R(1) asp—1, (.2)

where W,(¢) indicates the dependence upon p (see Section 4 of Whitt [38]
for informal discussion and references). By the continuous mapping theorem
(in a function space context, as in Billingsley [15]) with the mapping f(x) =
sup{x(s):0 = s =<1}, we also have

(I-p)

3 Wy(2t/(1 —p)?) = R*t) asp—1 3.3

for each 1.
Combining Egs. (2.3) and (3.3), we have

(1-p)
2

_ log(2pt) + Z _log2t+Z

R*[z ’
(¢) > >

W2t/(1 — p)?) 3.9)
which corresponds to Theorem 1. This argument, however, does not yield a
proper derivation of Theorem 1 because we have not justified the interchange

of the limits p — 1 and ¢ — o. Hence, we give a direct proof for RBM.
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PRroOF oF THEOREM 1: Just as Iglehart [25] treats the GI/G/1 queue, we break
up RBM into contiguous i.i.d. cycles and determine the asymptotic tail behav-
ior within each cycle. We let RBM start at 0 and let the cycles be determined by
the first passage from 0 up to 1 and then back down to 0. Let M be the maxi-
mum during such a cycle, and let T be the length of a cycle. Clearly, M > x if
and only if RBM hits x before it hits 0 starting in 1. By using formula (5) on p.
153 of Kemeny and Snell [27] for simple random walks and a heavy-traffic limit,
we see that

(e — 1)e %

P(M>x)=—l_e7-, XZI, (3.5)
so that
PM>x)~ (e’ = 1)e™®* asx— o. 3.6)

(With Eq. (3.5) there is no interchange of limits.) To do the limiting argument
to get Eq. (3.5), let the times between steps be 1/, the size of steps be +1/v7,
and the probability of a step up be p, = (1 — (1/vn))/2 in the nth random
walk. This yields canonical RBM in the limit.

By the standard argument (e.g., Lemma 2 of Iglehart [25]) the maximum
over n cycles has the limit of Eq. (1.10) with 7 =2 and af = (e? — 1). Next we
apply Eq. (3.7) of Abate and Whitt [7] to conclude that the expected length of
each cycle is

ET = (e?2-1)/2. 3.7

From renewal theory, if N(¢) is the number of cycles in [0,¢], then N(¢)/t >
I/ET as t —» o, Finally, we apply Theorem 3.2 of Berman [14] to treat a ran-
dom number of cycles, just as in Theorem 2 of Iglehart [25].

So far, we have assumed that RBM starts at 0, but the limit for any other
proper initial distribution is the same, because the probability that RBM hits 0
before it hits x + log 2¢ approaches 1 as r — oo. Just condition on whether or not
the process hits 0 before x + log 2¢. The maximum during the first exceptional
cycle is dominated by the maximum over [0,%0) of ordinary BM (Brownian
motion) with drift —1 and this same initial condition. This last maximum is
distributed as the initial state plus the independent maximum of BM starting
at 0. The maximum of BM starting at 0 is known to have a proper (exponen-
tial) distribution.

4. THE RBM APPROXIMATION

As in Whitt [38], we consider a generic stationary queueing process { Q,(1):t=0}
indexed by p. This might be a queue-length process, a waiting-time process, or
something else. We focus on the associated maximum process

Q)(t) =sup{Q,(s):0=s=1¢}, t=0. “.1)
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As our starting point, we assume that the RBM approximation
(1 =p)Q,(t/(1 = p)*) = R(t;a,b) 4.2)

is appropriate for some parameters @ and b.

The great virtue of Eq. (4.2) is that the complex structure of the queueing
process Q,(¢) is characterized approximately by the two parameters @ and b,
together with the traffic intensity p. Such approximations tend to perform bet-
ter when p is close to 1; indeed, they often are asymptotically correct as p — 1.
As discussed in Whitt [38], this RBM approximation is at least roughly appro-
priate for a large class of single-server queues when p is not too small. It is also
appropriate for multiserver queues if the number of servers is not too large. For
example, for the standard GI/G/m model in which the service time has mean
1, heavy-traffic limit theorems (in which p — 1) dictate that for the queue-length
process @ = —m and b = m(c? + c¢?), where ¢ and ¢? are the squared coeffi-
cients of variation (variance divided by the square of the mean) of an inter-
arrival time and service time, respectively (see Section 5.1 of Whitt [38]). If the
sequence of interarrival times or service times is not i.i.d., then we would replace
¢? and c? by the corresponding asymptotic variability parameters ¢} and c,
i.e., the asymptotic variance (e.g., see (1.12)) divided by the square of the mean.

The same heavy-traffic approximation applies to the continuous-time work-
load process and associated embedded sequences (the waiting times and queue
lengths just before arrivals and just after departures) when the mean service
time is 1. The fact that these processes have identical RBM approximations is
an indication of the coarseness of the approximation. Of course, further heu-
ristic refinements can be added.

Given Eq. (4.2), Eq. (3.1), and Theorem 1, we obtain the associated
approximations

b

————— R(a*(1 — p)*t/b 4.3
i) @ = pyub) @.3)

Q,(1) =

and
b
o)1) = [*—-]R*(az(l — p)2t/b)
la|(1 — p)

b
= | ——— | (log(2a?(1 — p)2t/b) + Z), 4.4
[2Ia|(1 - p)]
where a and b are the drift and diffusion parameters in initial RBM approxi-
mation (4.2) and Z has the Gumbel c.d.f. in Eq. (1.4). Note that Eq. (4.4) can
be expressed in the same form as Eq. (1.3) by writing the log term as a sum of
two log terms. In particular, the parameters for form (1.3) are
2a*(1 — p)?

and = ———. 4.5)

YT 2al1 =) b



We remark that v in Eq. (4.5) coincides with the RBM approximation for
EQ,(t) in Eq. (4.3) if we use ER(a*(1 — p)?t/b) = ER(o0) = 1. This explains
the simple approximation y = EQ,(¢) in Section 1.

From Choudhury and Whitt [19], we know that, in considerable general-
ity, 2|a|(1 — p)/b is the heavy-traffic approximation, i.e., the first term in an
asymptotic expansion in powers of (1 — p), for the asymptotic decay rate  in
the analog of Eq. (1.8). We would always use 4 in Eq. (1.8) if it is available. We
regard 2|a|(1 — p)/b as a convenient approximation.

It is also important to note that, mathematically, for Eq. (4.2) we rely only
on the limit p — 1, whereas for Eq. (4.4) we rely on the two limits p — 1 and
t — oo. The asymptotic correctness of formula (4.4) requires not only that p be
suitably close to 1 but also that p approach 1 in proper relation to ¢ as  — oo,
As in Whitt [38] and Asmussen [8], we argue that the RBM time scaling indi-
cates that we should relate time ¢ to (1 — p) 2.

Formally, we can do this by defining a family of models indexed by p. For
the RBM approximation to be meaningful, ¢ should be of order (1 — p)~2.
Hence, we can proceed as follows. First, we choose #* suitably large for the
RBM extreme-value limit provided by Theorem 1 to yield a good approxima-
tion to R*(¢) for ¢t = ¢*. Then, we let ¢ in model p be

~

. bt
t =), 4.6
(0) 20— 4.6)
where 7 = ¢*. Then, under regularity conditions, we will have
.2 b ..
(I =p)Q;(£(p)) = _Ial R¥) asp-1, @.7)
so that, for suitably high p and this #(p).
Qi) =~ —2— R¥(}) @.8)
? |a|(1 = p) )

and Eq. (4.4) should be good approximations.

If t(p) is much smaller than Eq. (4.6), then the RBM extreme-value limit
may not yield a good approximation. On the other hand, if #(p) is much larger
than Eq. (4.6), then different extreme-value behavior for the queueing process
with fixed p may dominate. Whether or not #(p) growing faster than Eq. (4.6)
will cause a problem no doubt depends on the model. Choudhury and Whitt
[19] show that for the asymptotic decay rate 4 the limits f - o and p — 1 can
be interchanged when the steady-state distribution has an exponential tail. Hav-
ing t(p) as in Eq. (4.6) will produce the exponential tail in the double limit even
when it is not present as f — o for fixed p. See Glynn and Whitt [22] for addi-
tional discussion.
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We now see how RBM approximation (4.4) applies to the M/M/1 work-
load process discussed in Section 2. By Eq. (3.1), Eq. (3.2) is equivalent to

(1 =)W, (t/(1 = p)?) = R(£;~1,2). 4.9)

Hence, Eq. (4.9) satisfies Eq. (4.2) with @ = —1 and b = 2. We thus can apply
Eq. (4.4) to get

1
Wit) = (1

—p

) (log((1 = p)*t) + Z), 4.10)

which agrees with Eq. (2.3) asymptotically as p — 1. As in Section 4.4 of Whitt
[38], we can use Egs. (2.3) and (4.10) to develop an M/M/1 refinement to
Eq. (4.4); i.e., we insert a p inside the logarithm in Eq. (4.4) to obtain

* = —b_ 2 EPRY
o)(t) = 212l =) (log(2a®p (1 — p)*t/b) + Z). “4.11)

We regard Eq. (4.11) as our refined RBM approximation for the maximum
of the queueing process Q,(¢). For example, for the queue length, workload,
and waiting time processes in the GI/G/1 queue (with mean service time 1), we
would use Eq. (4.11) with e = —1 and b = ¢2 + c?. By the preceding discussion,
our M/M/1 refinement makes this formula exact for the M/M/1 workload
process for all p, 0 < p < 1. Even though the M/M/1 queue-length process does
not have an extreme-value limit of form (2.3), we obtain approximations for it
from Eq. (4.11) as well. As in Egs. (1.5) and (1.6), Eq. (4.11) immediately yields
associated approximations for the mean and standard deviation of Q,(¢),
based on properties of Z stated in Section 2, namely,

* ~ _b— 2 — a\2
EQ () = 3l =p) (log t + log(2a“p(1 — p)*/b) + 0.577) 4.12)

and

0.64b

SDQp(t) = -Ial(l—_p).

4.13)

5. THE ASSOCIATED i.i.d. SEQUENCE APPROXIMATION

In this section we complete the development of the approximation based on an
associated i.i.d. sequence begun in Section 1. As in Section 4, we start with a
generic stationary queueing process Q,(¢) and consider the associated maxi-
mum process Q,(¢) in Eq. (4.1). Our key assumption, as in Eq. (1.8), is that
Q,(0) has an exponential tail; i.e.,

P(Q,(0)>x) ~ae™ asx— oo, 5.1

where x runs through the integers if Q,(0) is integer-valued. Now the different
processes in the same model need not have the same parameters. (However,
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quite a bit is known about the relations among the asymptotic parameters of the
standard queueing processes; see, e.g., Abate et al. [2,5].)

Given Eq. (5.1), we reason as in Section 1 (thinking of continuous-valued
processes) and let our approximation be

log(aft) + Z, 5.2)

o;(1) =
where « and 4 come from Eq. (5.1), Z has the Gumbel c.d.f. in Eq. (1.4), and
the parameter § is approximated by

0 = Var Q/0}, 5.3)

where Var Q is the variance of the steady-state variable Q,(0) and oé is the
asymptotic variance, i.e., Eq. (1.12) for discrete-time processes and

{

ob = Ilim t~! Var (f 0,(s) ds) 5.9
el ]

for continuous-time processes.

If we can calculate 7, o, aé, and Var Q, then we are done. If not, then we
resort to further approximation, depending on what is still needed. If we do not
know any of these four parameters, then we would rely on the RBM approxi-
mation in Eq. (4.11). The RBM approximation also yields approximations for
the individual parameters. In particular, given RBM approximation (4.2), we
let » coincide with v in Eq. (4.5) and o = 1. Given Eq. (4.3) and the fact that
the steady-state distribution of RBM is exponential, we would approximate
Var Q, (0) by

bz

Var Qp(o) = (EQp (0))2 = m . (5.5)
Finally, given Eq. (4.2), we would approximate the asymptotic variance by using

the known asymptotic variance of RBM, i.e., by
ol = b3/2a*(1 — p)*, (5.6)
just as in Eq. (36) of Whitt [38]. From Egs. (5.3), (5.5), and (5.6), we obtain
the approximation
6 = a?(1 — p)%/2b. 6.7

Combining Eq. (5.2) with all these individual RBM approximations, we
obtain the RBM approximation in Eq. (4.11) except that the argument in the
logarithm is aft = a®(1 — p)*¢/2b instead of 2a%p (1 — p)2t/b, i.e., the argu-
ment there is 4p/c times the argument here. Because p = o for M/M/1, these
approximations can be made consistent by modifying our approximation for 6
in Eq. (5.3), i.e., by replacing Eq. (5.3) with

9 =~ 4 Var Q/0}, 5.9
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and we make this heuristic refinement. Note that this changes the numerator of
Eq. (5.2) by log 4 = 1.38. If ¢ is suitably large, then this change will not be too
great relatively. The fact that the two approximation methods yield similar
results lends support to both of them.

In summary, the associated i.i.d. sequence approximation plus additional
RBM approximations (5.5) and (5.6) and heuristic approximation (5.8) yield the
simple approximation

6 =2a?(1 — p)%/b. 5.9

In many cases, it will be appropriate to approximate « in Egs. (5.1) and
(5.2) by 1, but we note that is not always so. In a queue with an arrival process
that is the superposition of many independent non-Poisson processes, the
asymptotic constant « can be far from 1 (see Choudhury et al. [18]). Abate et al.
[4] propose the approximation

o = 1£Q,(0), (5.10)

which is useful if approximations are already available for  and the mean.

6. APPROXIMATIONS FOR THE GI/G/1 QUEUE

Consider a GI/G/1 model with i.i.d. service times independent of i.i.d. inter-
arrival times. Let U be a generic interarrival time having Laplace-Stieltjes trans-
form (LST) fy (s) = Ee~*Y and mean p~!, and let V be a generic service time
having LST £, (s) = Ee~" and mean 1. Let W and L be the steady-state wait-
ing time and workload, respectively. For a large class of GI/G/1 queues, Igle-
hart [25] proved that limit (1.10) for the waiting times and the workload is
correct, where the parameters # and « are the asymptotic decay rate and asymp-
totic constant in the tail asymptotics of Eq. (1.8). The asymptotic decay rate 5
is the same for the waiting time and workload. The asymptotic constants are
related by
4
o = SwplEel — 1) ©6.1)
N

where the subscript W (L) indicates waiting time (workload) (see Theorem 2 of
Abate et al. [5]).

For the GI/G/1 queue, the asymptotic decay rate % is the root of the
equation

Ees") = fy(=s)fu(s) = 1. ©.2)

The key condition is that such a root exists. We also require that the distribu-
tion of ¥ — U be nonlattice and that 0 < E[(V — U)e""~Y] < . Algorithms
for computing %, ay, and o, in GI/G/1 and BMAP/G/1 queues are described
in Abate et al. [1,2,4] and Choudhury and Lucantoni [17]; we use them.
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From Theorems 2 and 3 of Iglehart [25], we see that the remaining param-
eter § in Eq. (1.10) is

0w = P(W =0)(1 — Ee™™) 6.3)
for the waiting times and
6, = pP(W =0)Ee" (1 — Ee™) 6.4)

for the workload, where in both cases P(W = 0) is the steady-state probability
that an arrival finds an idle server, which is the reciprocal of the mean busy
cycle. In both cases [ is an idle period.

For M/G/1 the idle periods have the same distribution as the exponential
interarrival times. Hence, for M/G/1

1—EewW=_1_ (6.5)

pt+n
For the M/G/1 queue we also have P(W = 0) = 1 — p. Hence, for M/G/1,

Oy = (1 — p) —— (6.6)

for the waiting times and

Ui
ptn
for the workload. As shown in Section 2, , 8, = p(1 — p)? for M/M/1.

Following Halfin [23], we suggest approximating the distribution of I more
generally (within GI/G/1) by the stationary-excess (or equilibrium residual
life) distribution associated with U, i.e., with LST p(1 — f,(s))/s. Thus, for
GI1/G/1 we obtain the approximation

0, =p(1 —p)Ee"”

6.7)

(1—Ee)y=1- M. 6.8)

For the M/G/1 queue f,(s) = p/(p + 5), so that p(1 — f,(5))/s = f, (), as
it should.

Following Kraemer and Langenbach-Belz [28], we approximate the steady-
state delay probability P(W > 0) by

P(W >0)=p+ (cZ— Dp(l —p)h(p,c2,c?), 6.9)
where
1 2 2
1+ p(c? —+l§a++p€21€2 +c2)’ =1
h(p,c2,c?) = 4 c v (6.10)
p c2> 1,

c2 + p2(4ck + c2)’
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and as before ¢2 and ¢? are the squared coefficients of variation of an inter-
arrival time and a service time. (An algorithm for the exact value of P(W > 0)
is also given in Abate et al. [1].) Using Eqgs. (6.9) and (6.10), we obtain concrete
approximation formulas for the GI/G/1 waiting times and workload in terms
of the transform values f, (), f (—n), the asymptotic parameters y and oy
and o, , and the basic parameters p, c2, and c¢?.

Following Abate et al. [4], we can develop further approximations for the
transform values fy, (1) and fv(—n) by expanding in Taylor series; i.e.,

2
N 1
fV("?)=1+77+172(—c%)+0(172) asn—0 6.11)
and
2
. 2 4]
fum=1-1 442 arD +0(n*) asn-0. (6.12)
o 2p?

Combining Eqs. (6.9) and (6.12), we obtain

n(cs + 1)

1 — Ee") =
( e™™) 2

(6.13)
Abate et al. [4] also develop approximations for the waiting-time parameters 7
and ay, e.g., ay = nEW. The first two terms of an asymptotic expansion for
n for waiting times in GI/G/1 are

_2(1—p)

TP = oyt — )2 5
n= Zrc (I1-(0=p)n"+0(1 —p)*) asp-1, 6.14)

where

. vy —3c2(c?+2)) — (Qus — 3c2(c? +2)
T 3(c+ )

with »; = E[V?] and u; = E[(pU)*?] (see Theorem 3 of Abate et al. [4] and
Choudhury and Whitt [19].

In summary, the exact GI/G/1 formulas for the waiting time and workload
are Eq. (1.10) with Eqgs. (6.3) and (6.4), where the two asymptotic constants are
related by Eq. (6.1). We then approximate P(W = 0) by Eq. (6.9) and (1 —
Ee ) by Egs. (6.8) and (6.13). This produces an approximation for 8 that
depends only on the parameters 7, p, ¢Z, and c?. We give an approximation for
7 in Eq. (6.14) as well that depends on p, ¢2, and ¢2 and the third-moment
parameters ¥ and »;.

Finally, we indicate how we can apply the GI/G/1 approximation in this
section to non-GI/G/1 queues. We assume that Eq. (1.10) still applies. We start
with the asymptotics in Eq. (1.8), assuming that the asymptotic decay rate 4 and
the asymptotic constant « are available. For example, these asymptotic param-
eters are available for BMAP/G/1 queues [2] and other models whenever the

(6.15)
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transform of the steady-state distribution is available [17]. Then our first approx-
imation is to act as if Eqgs. (6.3) and (6.4) are valid. A simple approach is to
apply Eqs. (6.9) and (6.13), either directly or with ¢2 and ¢ replaced by the
asymptotic variability parameters ¢2 and cZ (e.g., ¢ is the asymptotic variance
of the interarrival times divided by the square of the mean). As an alternative
to Eq. (6.9), we often can calculate P(W = 0). (This is so for BMAP/G/1 mod-
els. For multiserver G1/G/m queues, an approximation is given in Whitt [40].)
For the idle time we can use Eq. (6.8) or (6.13).

7. SIMULATION EXPERIMENTS

In this section we describe simulation experiments conducted, first, to determine
whether or not linear relations (1.5) and (1.6) tend to be valid for some param-
eters y and § and, second, to evaluate the quality of the proposed approxima-
tions. For this purpose we used a simulation program written in C and run on
a SUN SPARC-2 workstation.

In the basic experiment we consider the workload process in seven different
single-server queueing models (M/M/1, M/D/1, M/H,/1, H,/D/1, H,/H,/1,
MMPP/D/1, and MMPP/H,/1) each for two traffic intensities (o = 0.7 and
o = 0.9). In all cases the mean service time is EV = 1.

The H, (hyperexponential) distribution is the mixture of two exponential
distributions, i.e., with density function

S(xy=phe™™* + (1 — p)he ™% x> 0, .1

with balanced means (p/\, = (1 — p)/\,) and squared coefficient of variation
c? = 4. The third parameter is determined by the mean (see, e.g., Abate and
Whitt [6, p. 592]).

The Markov-modulated Poisson process (MMPP) is an example of a non-
renewal arrival process. The MMPP is a Poisson process in which the rate itself
evolves as a continuous-time Markov chain. The state space of this underlying
Markov chain is called the environment. Extreme-value limit theorems for M,
H, and MMPP arrival processes with phase-type service were established by
Asmussen and Perry [9]. Our MMPP has two environment states with the mean
holding time in each being 10. The arrival rates in the two states are 1.6p and
0.4p, respectively. Hence, for the traffic intensities we consider, the instanta-
neous traffic intensity (the arrival rate in that environment state) in one state
exceeds 1. For traffic intensity p = 0.7, the squared coefficient of variation of a
single stationary interarrival time is ¢Z = 1.44, whereas the asymptotic variabil-
ity parameter (the asymptotic variance of the interarrival times, as in Eq. (1.12),
divided by the square of the mean) is ¢Z = 3.52. The fact that ¢} > c? reflects
the nonrenewal property, i.e., ¢ includes all the autocovariance terms. For
p = 0.9 these parameters are ¢ = 1.48 and ¢} = 4.24.

For each case we performed 20 independent replications of a simulation of
duration 2'* x 10° = 16,384,000 time units and recorded the maximum work-
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load in the queue at the 15 epochs 2% x 10% for k = 0,1, . ..,14. (The expected
number of arrivals in each run is thus about 16.4p million.) We then calculated
the sample means and sample standard deviations of the 20 data points for each
of the 15 time points. We fit regression lines (i.e., by least squares) to these sam-
ple means and sample standard deviations. We crudely estimate the statistical
precision of slope and intercept estimates by using standard regression formu-
las, which assume that the errors are i.i.d. Clearly, the errors at successive times
are not independent here, so that our estimates of 95% confidence intervals for
the slopes and intercepts are only rough approximations, which may signifi-
cantly underestimate the true variability.

Figures 1 and 2 display simulation results for the sample means and the
sample standard deviations in the M/M/1 queue. The 15 time values are dis-
played along with 95% confidence intervals and a regression line in each case.
(For the individual time points, the confidence intervals are approximately valid,
because the random variables at single time points are independent. However,
they are likely to have approximately the Gumbel distribution in Eq. (1.4) rather
than the assumed ¢-distribution.) In Figure 1 we also display one of the 20 indi-
vidual sample paths. The linear relation in Eq. (1.5) is not so evident from a
single run, because of the random fluctuations on individual sample paths.
However, the linear relations in Egs. (1.5) and (1.6) are clear when we look at
the data from 20 independent runs.

g - M/M/1, occupancy = 0.7
— regression line

g ------- a single sample path .
z ° - - appmxlma'nn RASiiiit?s ~ il bl
2 <
i=
5
3 (=3
1 ™
5
E
-
o
E o

N

L] 1 T L) T

8 10 12 14 16

log of observation interval, ¢

FIGURE 1. Mean of maximum work in system realized over 20 sample
paths.
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2 - M/M/1, occupancy = 0.7 .
————  fOgTEsSION line
= =« approximation

® o

Q -

® *
Dl N R DU N / et ——3--1=
e ® [ 3
N -

| ¥ | ¥

8 10 12 14 16

SD of maximum work

log of observation interval, ¢

FIGURE 2. Standard deviation of maximum work in system realized
over 20 sample paths.

Figures 1 and 2 also show approximations. Only one approximation is
shown in each case because all three approximations coincide with the approx-
imation provided by the extreme-value limit theorem in the M/M/1 special case.

We now consider more general models. The different approximations are
summarized in Table 1. Figures 3-10 show both the simulations and the approx-
imations for the mean of the maximum workload as a function of time in 8 of the
14 cases. The six cases omitted in Figures 3-10 are the ones for which the approx-
imation performs best. The figures in these six cases show strong agreement,
essentially the same as for the H,/H,/1 queue with p = 0.7 shown in Figure 6.
In all 14 cases the linear relation in Eq. (1.5) is clearly present. For all 14 cases,
the simulation estimates and approximations for the slope and intercept are given
in Tables 2 and 3, respectively. As background, we also give the values of the
asymptotic constant « (for the workload analog of Eq. (1.8)) in Table 2.

In this experiment the associated i.i.d. sequence approximation for the
mean performs well in all cases. The GI/G/1 approximation is also excellent for
all GI/G/1 queues, but its extension to non-G1/G/1 queues does not perform
so well for the MMPP arrival process. The RBM approximation is excellent for
some models, but not all. In particular, the RBM approximation for the slope
v degrades dramatically when the service-time distribution is deterministic
(M/D/1, H,/D/1, and MMPP/D/1). (The deterministic service-time distribu-
tion is known to be a difficult case for heavy-traffic approximations for
GI/G/m queues; see Berger and Whitt [11] and Whitt [40].) Consistent with
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TasLE 1. Summary of the Parameter Approximations for the Expected
Maximum Workload in Eq. (1.5)

Method Slope v B
Crude mean EL -0.577
b 2a% (1 — p)?
Refined RBM (4.11) 7 2ate —p)
2la|(1 - p) b
Associated i.i.d. sequence 1/9 for decay rate g af for o in Eq. (1.8)
with Eq. (5.9) in Eq. (1.8) 6 = 4 Var L/o}
=2a%*(1 — p)%/b
Gl/G/1 1/q for decay rate 5 af, for o in Eq. (1.8)
in Eq. (1.8) 0, =poP(W =0)Ee" (1 — Ee~")
GI/G/1 approximation 1/q for decay rate 5 af, for o in Eq. (1.8)
in Eq. (1.8) 6, = pP(W =0)Ee" (1 — Ee ")

P(W =0) from Eq. (6.9)
(1 — Ee~') from Eq. (6.8)

or (6.13)
G1/G/1 approximation 1/4 for decay rate g Gl/G/1
for non-G1/G/1 in Eq. (1.8) approximation

plus Eq. (6.13) with c3
instead of c?

intuition, the RBM approximation for the slope improves as the traffic inten-
sity increases. Hence, with D service, the RBM approximation for the slope vy
is not bad at p = 0.9 but rather poor at p = 0.7. Nevertheless, the simple RBM
approximation for v may serve as a useful rough approximation, because it is
much easier to calculate than the exact asymptotic decay rate 5 in Eq. (1.8). The
experiments here give a good idea about the accuracy to expect.

Even in cases where RBM’s rough approximation for the slope is not suf-
ficient, the RBM approximation for log 8 may still be useful. In particular, the
approximation obtained by combining the reciprocal of the asymptotic decay
rate with the RBM approximation for log 8 is very close to the associated i.i.d.
sequence approximation with Eq. (5.9), as could be anticipated by comparing
Eqs. (4.11) and (5.9). (Both are based at least in part on RBM.)

Because the GI/G/1 extreme-value formulas do not apply directly to non-
GI/G/1 queues, we investigated the GI/G/1 approximation to the MMPP/G/1
queues more carefully. The specific GI/G/1 approximation shown in Table 3
and Figures 8-10 is Eq. (1.10) with the exact asymptotic parameters o and 7
computed using the program described in Abate et al. [2] plus Egs. (6.4), (6.9),
and (6.13) with ¢ replaced by the asymptotic variability parameter ¢ in both
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TasLE 2. A Comparison of Approximations with the Exact Asymptotic
Value and Simulation Estimates of the Slope v in Eq. (1.3)
for the Workload Process in Several G/Gl/1 Models

vy=1/y Mean Asymptotic
Traffic  Simulation Exact RBM Steady-State  Constant
Model Intensity  Estimate  Asymptotic Approximation Workload o
M/M/1 0.7 3.33 £ 0.065 3.33 333 2.33 0.7000
0.9 9.99 + 0.37 10.00 10.00 9.00 0.9000
M/D/1 0.7 1.43 + 0.064 1.48 1.67 1.17 0.7990
0.9 4.62 +0.14 4.83 5.00 4.50 0.9333
M/H,/1 0.7 9.68 + 0.37 10.00 8.33 5.83 0.5727
09 260 +1.0 26.56 25.00 22.50 0.8452
H,/D/1 0.7 4.31 + 0.10 4.35 6.67 3.16 0.7269
0.9 18.49 + 1.0 17.94 20.00 16.28 0.9074
H,/H,/1 0.7 13.08 + 0.38 13.43 13.33 8.36 0.6163
0.9 39.78 + 1.8 40.03 40.00 34.83 0.8693
MMPP/D/1 0.7 4.43 £ 0.26 4.26 5.87 2.79 0.6443
0.9 18.33 + 0.52 19.63 21.20 17.04 0.8667
MMPP/H,/1 0.7 11.97 + 0.46 13.12 12.53 7.90 0.5905
09 4156+19 4]1.44 41.20 35.61 0.8575
Average percent difference 3.0% 10.4% 21.0%

Eqs. (6.9) and (6.13). Table 4 describes alternative approximations for the
y-intercept using ¢Z instead of ¢3 and/or the exact value P(W = 0). From
Table 4 we see that formula (6.9) with c2 and ¢2 tend to bound the exact prob-
ability P(W > 0) above and below. Overall, we find that all these approxi-
mations for the y-intercept are roughly reasonable, without any one clearly
dominating the others.

Table 5 compares the approximations for the standard deviation based on
Eq. (1.6) with the simulation estimates. We do not display figures correspond-
ing to Figures 3-10 for the standard deviations, because the remaining cases are
similar to the M/M/1 case displayed in Figure 2. These approximations also
perform well, with the exception that RBM does not predict v well for D ser-
vice times and p = 0.7. Also notice that neither approximation for p = 0.9 in the
H,/H,/1 case is close; we attribute this largely to variability in the simulation.
(This is supported by our experience: A repeat of the simulation with a differ-
ent set of seeds yielded a sample mean of 56.8 for the standard deviation of
maximum work.)

The experiment we have just described shows that the linear relations in
Eqgs. (1.5) and (1.6) and the good approximations are remarkably accurate for



0°0€Z— (€1'9-) 067z—  (81'9—) 0'TeT—  (88'S—) 0°0TT— 0'€CF 07— 60
1°9p— 60't—) 0'tv— (92'v—) €8p— (16'¢—) Lev— 9 F 1'9€— L0 1/°H/ddININ
6'S6— (ov's—) 9'¢ol1—  (0§'s—) 996— 62°s—) vT6— 9 F €6L— 60
L= (€c'€—) 91— ave-) 171— (69'7—) L6°'8— ¢ F 8¢l- L0 1/a/ddNIN
01— 01'9-) 012~  (€1'9-) 0'TTt—  ($6'S—) 0'sIT— 0'ZCF 0072 60
0'8v— S1v—=) LLy— 8Tv—) Lé6v— @1v-) €8p— 9y F §Sp— L0 1/°H/*H
$'98— (or's—) $96— (ov's—) §98— (8¢°s—) T'98— 0ELF 016— 60
94 B (ov'¢—) 61— (te-) ver— (ze'e-) 6'11— 9l F 6’ 11— L0 1/a/*H
TYEl— (€9°s—) zoti—  (69°s—) 8s€1—  (SL'$—) v ig1— 0UF 0CEI— 60
0 1g— (89°€—) 67— (88'¢—) 0¢g— (90'v—) 6vE— v F OI'lg— L0 1/°H/N
9°91— Tov—) TL1- 86°¢—) ¥91— (s6'€—) €91— LT F OSEl—- 60
17— (Lo'z-) 62— w6'1-) 20— (T8 1-) v8°'1— LL'O0 F 60— L0 1/7A/W
€1y arv-) €iv— aLv-) €1v— (ILy=) €1v— ¥y F 6 1v— 60
67 L— (LL'T-) 6T L— (LLz-) et L— LLz-) 6T L— 6L°0 FI8L— L0 I/W/IN
A onodwAsy yirp nng (6°6) ‘bg ynum uonewixolddy Irewnsy Aysuajuy [9POIN
‘PI'l pateossy 1/9/1D uolre|nuig Jyjery
gy

1dao1a1ul-4" 2y) Jo sajewNISH UonRINWIS Yum suopewrxolddy jo uostedwio) y ¢ ATEV]

(suonewnixorddy ay) ur sasayjuared ut sieaddy ¢ Sof 10) uonewxoiddy ayi)
SPPOIN 1/1D/D [BISASS Ul PBO[YIOA WNWIXRA oY) 10] UONIB[Y JeduI] ay) ui



TasLe 4. A Comparison of Approximations with the Exact Values
of P(W > 0) and with the Simulation Estimates
of the y-intercept in the MMPP/G/1 Models

Model MMPP/D/1 MMPP/H,/1

Traffic intensity p=0.7 p=0.9 p=0.7 =09
P(W>0)

Exact 0.812 0.945 0.775 0.933

Eq. (6.9) and c? 0.760 0.925 0.741 0.916

Eq. (6.9) and ¢} 0.842 0.958 0.820 0.949
y intercept —13.81 -79.3 —36.1 =222

Simulation estimate +3.2 +6.4 +5.6 +23

y intercept
Exact P(W = 0)

Plus ¢? in Eq. (6.13) —10.87 —101.7 —48.9 -239
Plus c2 in Eq. (6.9) -8.24 —-87.0 —40.8 —208
y intercept
Egs. (6.9) and (6.13)
With ¢? —9.82 —95.5 —47.1 -230
With ¢ —8.97 -92.4 —43.7 —220

the times we consider. It is natural to ask next how small the times can be and
still have these properties. From Figures 1-10 we see that the relations hold rea-
sonably well at the initial time points. To examine this question further, we
performed additional experiments with shorter times. We now describe an exper-
iment involving the M/M/1 model with different traffic intensities. We consider
50 independent replications of 100,000 time units, allowing 100,000 time units
to warm up to reach steady state before collecting data. (For such shorter times
the initial conditions obviously play a bigger role.)

From this experiment, we find that the local slope of the simulation esti-
mates decreases as the time ¢ decreases (i.e., the true curve should be convex).
To illustrate, we display the estimates of mean maximum workload for the cases
o =0.7 and p = 0.9 in Figures 11 and 12. For each time point we include esti-
mates of the 95% confidence intervals. From such figures it is tempting to
estimate when the asymptotics do in fact begin to take effect. The experiment
shows that the change is continuous, but nevertheless we try to estimate the knee
of the curve. Our rough estimates of the knee of the curve appear in Figures 11
and 12 plus Table 6. For the case p = 0.7 the slope of the regression line through
the first 31 points (below the estimated knee) is 1.85, while the slope of the



TasLE 5. A Comparison of the Mean of the 15 Sample Standard Deviations
with the Approximations Based on Eq. (1.6)

1.28/y
Traffic Simulation Exact
Model Intensity Estimate Asymptotic RBM
M/M/1 0.7 3.72 4.26 4.26
0.9 11.40 12.80 12.80
M/D/1 0.7 1.88 1.89 2.14
0.9 6.23 6.18 6.40
M/H,/1 0.7 12.31 12.80 10.66
0.9 31.88 34.00 32.00
H,/D/1 0.7 4.73 5.57 8.54
0.9 22.36 22.96 25.60
H,/H,/1 0.7 18.37 17.19 17.06
0.9 38.48 51.24 51.20
MMPP/D/1 0.7 5.50 5.45 7.51
0.9 22.10 25.13 27.14
MMPP/H,/1 0.7 16.82 16.80 16.04
0.9 53.44 53.04 52.74
a
E me the knes is al the vertical, dotted kne
g 8 of regression line for points 1o the left of the knee 1.85
2 of regression line for poinis (o the right of the knee 3.36
- 4 Approximation: slope is 3.33
e &
g o
L4
k-]
§ e
w
10 100 1000 10,000 100,000

Observation interval, ¢

FIGURE 11. Mean of maximum work in system realized over 50 sample

paths. M/M/1, p = 0.7.
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ume the knee is at the vertical, dotted line
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mean of maximum work in system
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FIGURE 12. Mean of maximum work in system realized over 50 sample
paths. M/M/1, p = 0.9.

regression line through the last 69 points (above the estimated knee) is 3.36,
where ! = 3.33. For the case p = 0.9, the slope of the regression line through
the first 48 points (below the estimated knee) is 3.69, while the slope of the
regression line through the last 52 points (above the estimated knee) is 8.97,

TasLE 6. Estimated Location of the Knee of the Maximum Mean Workload
Curves for the M/M/1 and H,/H,/1 Models as a Function
of the Traffic Intensity p

Location of Knee

Number Knee

Traffic  of Points Knee Knee (1-p)?

Model Intensity  from Left Time X (1-p) x(I - p)? 4(c? + c2)
M/M/1 0.5 14 33.5 16.7 8.4 1.05
0.7 31 163 48.9 14.7 1.84
0.9 48 793 79.3 7.9 0.99
H,/H,/1 0.7 43 498 149 44.8 1.40

0.9 60 2420 242 24.2 0.76
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where 7~! = 10.00. Hence, we conclude that indeed the estimated knee is ap-
proximately where the extreme value limits begin to take effect.

The RBM approximation in Eq. (4.11) suggests that the knee should be pro-
portional to b/2(1 — p)2a?, because that is how the knee for RBM would be
transformed to the queueing processes. This estimate is supported by the fact
that, for the estimates, the knee X (1 — p)? is approximately constant, whereas
knee X (1 — p) is not. As a tentative general rough approximation for the time
where the approximation begins to take effect, drawing on Eq. (4.3), we sug-
gest the associated RBM approximation

4b
a*(1 - p)?’
which is 8/(1 — p)? for M/M/1. This rough approximation is supported by
Table 6.

Qualitatively, this approximation formula for the knee implies that the knee
is increasing in both p and the model variability (through the parameter b). The
first property is evident from Figures 11 and 12. The second property is evident
from similar figures for the other models we have considered, such as H,/H,/1.
The case of H,/H,/1 with p = 0.7 and p = 0.9 is shown in Figures 13 and 14.

We conclude this empirical section by considering a case for which extreme-
value limits support a different approximation than Eq. (1.3). In particular, we
consider an M/G/1 queue with a Pareto service-time density

knee of curve = (7.2)

100

me the knee is at the vertical, dotted line

of regression line for points 1o the left of the knee 8.11
of regression line for poinis to the right of the knee 12.7
h Approximation: siope is 13.4

mean of maximum work in system
20 40 60 80

10 100 1000 10.000 100,000
Observation interval, ¢

FIGURE 13. Mean of maximum work in system realized over 50 sample
paths. H,/H,/1, p = 0.7.
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FIGURE 14. Mean of maximum work in system realized over 50 sample
paths. Hy,/H,/1, p = 0.9.

r—1

fr(x) =r< )x“’*”, xz(r—=1/r 1.3
which has a mean of 1 and ¢ = 1/r(r — 2) (see Johnson and Kotz [26, Ch. 22]
and Abate et al. [3, Section 2]).

Paralleling Figure 1, Figure 15 plots the sample means of the maximum
workloads for 20 independent replications in the case r = 3.5 (¢ =0.19) and
p = 0.9. In contrast to the previous examples, Figure 15 clearly shows that the
linear relation in Eq. (1.5) does ot hold for this example: in this case, the mean
of the maximum workload is not linear in log ¢ for large ¢.

However, consistent with the discussion in Section 4 following Eq. (4.6), the
linear relation may hold for a range of times neither too small nor too large.
For example, there is a pretty good linear fit to the first 9 points in Figure 15.
A regression analysis yields an estimated slope of 6.2, while the RBM approx-
imation based on Eq. (4.11) indicates a slope of 6.0.

For this example, the extreme-value theory [29] indicates that the maximum
workload should in fact be linear in /2 instead of log ¢. Hence, in Figure 16
we replot Figure 15 in this scale. Again we see that there is not linearity for all
times, but there seems to be a linear relation for the last 6 points. Consistent
with experience with steady-state tail probabilities [3], a comparison of Figures
1 and 16 indicates that the extreme-value asymptotics does not take effect as
quickly with long-tail service-time distributions such as the Pareto distribution
as it does for the “standard” service-time distributions in the domain of approx-
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FIGURE 15. Mean of maximum work in system realized over 20 sample
paths. x-axis scaled to log(#).
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FIGURE 16. Mean of maximum work in system realized over 20 sample
paths. x-axis scaled to #°4.



imation (1.3). We have not attempted to thoroughly discuss the Pareto exam-
ple in this paper. This example does motivate further investigation of long tail
distributions.

8. CONCLUSIONS

We have developed three approximation methods for the distribution of the
maximum of a queueing process: the RBM approximation in Section 4, the as-
sociated i.i.d. sequence approximation in Section 5, and the G1/G/1 approxi-
mation in Section 6. All three are based on extreme-value limits, as in Leadbetter
et al. [29], but extra approximations are involved. The first two rely at least
in part on being able to approximate the queueing process by RBM. Because
RBM approximations are often roughly appropriate, the methods have wide
applicability.

The asymptotic behavior of the maximum of a stationary process depends
critically on the tail behavior of the marginal distribution. The approximations
proposed here are primarily for the case in which the steady-state distribution
has an exponential tail, as in Eq. (1.8). Steady-state distributions of queueing
processes often do have exponential tails, but the conditions are not as general
as for RBM to be the heavy-traffic limit. Developing approximations based on
exponential tails seems very reasonable, but this property is not universal, as was
illustrated here by the final example in Section 7 involving an M/G/1 queue
with a Pareto service-time distribution.

Having made appropriate qualifications, we conclude that for “standard”
examples (e.g., as in Table 2 here) the extreme value limits provide excellent
approximations and that our approximations here for the parameters also per-
form well. Moreover, our approximation for the knee developed in Section 7
seems to give a good idea when the extreme value limits start to become good
approximations for the mean.

Finally, the more elementary RBM approximation is appealing as a rough
approximation, because it applies very generally and because it can readily be
used for back-of-the-envelope calculations. Through the examples with deter-
ministic service times, we have given an indication of its limitations. As in pre-
vious studies (e.g., Berger and Whitt [11], Whitt [40]), we found that the RBM
approximation does not perform as well when the service times are deterministic.
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