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ABSTRACT The throtule is defined as follows. Upon arrival of a class-i
We present an input-regulation throtte to allocate capacity Job, i = 1,.., N, if bank i contains a token, then the job is
among multiple classes of jobs, where the allocation is admiticd and the bank is decremented by 1 token. If bank i is
enforced only when the total offered load is beyond capacity. cmpty, then the job overflows to a shared, overflow bank,
The design uscs a rate control throtile with a dedicated token bank 0, where it gets a second chance to be admitted. If bank
bank for cach class and a single, sharcd overflow bank. The 0 conuains a token, then the job is admitted and bank 0 is
per-class  blocking and throughput are computed via decremented by 1 token. If both banks i and 0 are empty,
aliernative, approximate analyscs. For the important, special then the job is rejected by the throule. (Herein, we consider
case of two priority classes of Poisson job arrivals, we the job 10 be lost, though alternatively it could be queued or
present an exact analysis. marked and admitted.) As for the tokens, class-i tokens
arrive deterministically, evenly spaced, at a rate r;, 10 bank i
1. INTRODUCTION of finite capacity C;. If bank i is full, then the token

overflows to bank 0 of capacity Cy,. If both banks i and 0 are

In this paper we introduce and Investigate a rate-control full, then the token is dropped and lost.

throttle for regulating the admission to a system of jobs of

multiple classes. The jobs arrive randomly in an unknown The dedicated banks provide the allocation for each class,
and possibly nonstationary manner. We must decide, and the overflow bank provides a sharing of excess capacity.
immediately upon arrival, whether or not to admit each job. The decision maker chooses the parameters: {riv...,ry}
We assume that the jobs that are not admitted are lost (do not and {Cy, Cy,..., Cyj}. The r;’s determine the maximum,
enter the system) without affecting future arrivals. sustaincd, admission rate for each class. The C;’s limit the

instantancous burst of arrivals that may be admitted. Given
the stochastic nature of the job arrival processes, both the
token rates and the bank capacities influence the steady-state
per-class blocking and throughput, as well as the transient
response. This paper begins the analysis of this input-
regulation throttle by computing the per-class blocking and
throughput as a function of the design parameters, assuming
stationary job processes.

We want a policy or mechanism for deciding whether or not
to admit each job. We have scveral goals. First, we want to
be able 1o guarantee a specified input rate to each class,
which may differ from class to class. However, if the total
offered load is less than system capacity, then we want all
jobs admitted, regardless of class allocations. We want a
simple control, which requires minimal monitoring of the
arrival strcams and minimal data processing. Also, it should
not necd rcal-time feedback from the system that the jobs

enter. The control should be robust; e.g., over a range of 2. SPECIAL CASE OF TWO CLASSES WITH PRIORITIES:

offered load, it should perform well with constant paramcter EXACT ANALYSIS
scuings. Finally, it should respond rclatively quickly to This scction considers the important, special case in which
changes in the offered loads. one class (or group of classes) is to be given preference

(priority) over another class. The input rcgulation throttle
can give priority to class 1 by sctting the token arrival rate at
bank 1 cqual to the desired maximum sustained admittance
rate from both classes and setting the token arrival rate at
bank 2 cqual 10 zcro. Thus, class 2 jobs arc admitted only via
tokens from class 1 that overflow to bank 0.

The proposed control is a ratc-control throtue based on token
banks. Thc token banks arc counters that increment up
periodically and decrement at job arrivals. A throttle basced
on token banks for a single class of jobs was proposcd and
analyzcd by Doshi and Heffes [1]. More rccently, the
singlc-class token-bank throte and the closcly related

Icaky-bucket throttle have been investigated as potential We assumc in this scction that the job arrival processes are
policing mechanisms in broadband networks, c.g. Eckberg et Poisson. Let X*(¢) be the number of tokens in bank i at time
al. [2] and Sidi ct al. [3]. The purpose of the present paper is ,i=0,1. Let 7, be the cpoch of arrival of the n® token.
o inroduce and analyzc a token-bank throttle for multiple Lastly, let X, = X‘( T ), the number of tokens seen in bank ;
classes. We thank our collcague R. Milito for suggesting the by the n* 1oken arrival, i=0,1. Given Poisson Jjob arrivals,
use of the token-bank throtile for regulating the admission of {X%, XL} forms an embedded Markov chain.

muluple classes.
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Define P[@,j). (kI),x]1 = Prob( X%(T,+x) = k and
X'(T,+x) = I, given that X3 = j and X! = j
and0O<x<1/r;). When x = 1/ry, we interpret T, +x as
T,, in which case, P[(i,)), (k,I), x] is an element of the
transition matrix of the embedded Markov chain {X9, X1
(For x less than 1/ry, P[(,j), (kl),x] is used in the
calculation of the number in system at arbitrary time epochs,
equation (2).) The following expressions for
PL (), (k1), x ] are given in terms of:  A%(n,x) = Prob( n
jobs of class i arrive to the throttle over an interval of length
x) and B* {(n,x) = Prob( at least n jobs of class i arrive to the
throttle over an interval of length x), i=12. Af(n,x) and
B‘(n,x) are respectively point mass and tail probabilities
from Poisson distributions. The derivation follows from the
definition of the throttle and the assumption of Poisson job
arrivals. The details are tedious and are omitted. For brevity,
the argument x is suppressed in A’ (n.x), Bi(n,x) and
PLG.J), (K1), x 1.

Fori=k=0: P[(@)), kD] = (1a)
Al(min(j +1,C1) - 1) - B¥((j+1-Cy)*)

+ BY(min(j + 1,C;) + 1) - 1,{0}

Fori=1,..,Co-1, k=0: P[G.j), kD] = (1b)

A'(min( +1,C)=1)-B¥(i+ (j+1-C))*) +
i=-14+0G+1-C)
)X Al(j+1+i-m) - B¥(m)] - 1,{0}

m=l

[Bl(j+1+i) +

Fori = Co, k=0: P [ (ivj)’ (k’l)] = (lc)

Al(mingj +1,C,) = )+ B¥(Co) + [ B'@in(j +1,C) + Co)
Co-1
+ T A'(ming +1,C1)+Co—m)- B2m)] - 1,{0)

m=]

For i=0,...,,Co~1, k=1,..,i+1, letn=i-k: (1d)
P[(.J), (k1)1 =AY (min(j+1,Cy) = 1) - A2(n+(j+1-C,)* )

n-l+(i+l-C1)’
+{ X AWG+1+n-m) A% (m)]- 1,40)
m=l
Fori =C0 , k=l,...,Coi P[(ivj)v (kvl)] &=

Al(minG +1,C,) - 1) - AX(Co - k)

Co-k-1
Y A'(minG +1,Cy)+Co -k -m)- A%(m)] - 1,{0}
m=0

(le)

+{

For i=0,...,Co~2, k=i+2,..,.Co: P[(i.)), (k,)]=0 61y

In equation (1), j and ! vary from O to C; and A!(-) is taken
to be zero when its argument is negative. Likewise, the sums
are zero when the summation is vacuous. Lastly, 1,{ - } is the
indicator function, which equals 1 if the argument equals z
and otherwise equals 0.
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The Markov chain is irreducible, aperiodic and positive
recurrent. Denote its limiting distribution as: v(i,j), i =
0...Co and j = 0....,C;. To obtain the steady state
distribution, at an arbirary tme + p&kl) =
Prob(X°(f)=k, X'(1)=1), condition on the age since the
last token arrival and on the state of the Markov chain seen
by that token arrival. This yields:
Ury Co Cy
plkl) = ry I T 3 PIGS). (D), x1-v6.j)de
i=0 j=0
Since the jobs are assumed to arrive as Poisson processes,
and Poisson arrivals see time averages (PASTA), (4], then,
p(l,k) is also the distribution for number in system seen by
job arrivals. A class 1 job is blocked iff banks 0 and 1 are
empty and a class 2 job is blocked iff bank 0 is empty (as
bank 2 is always empty). Denoting the probability a class i
job is blocked as B; and the throughput of class i jobs
admitted by the throttle as 0;, then

Cy
B1=p0,0) B.=3 pO.)).
=0

@

(3a)

=M(1-B1) O2=20(1-B;) (3b)

3. GENERAL CASE: APPROXIMATE ANALYSIS

In this section, we return to the general case of Section 1 with
N classes of jobs, each with a dedicated token bank and
associated token arrival stream. We assume that all the token
amrival streams are deterministic with constant spacing, but
the rates may be different. We assume that the job arrival
streams are N independent renewal processes partially
characterized by the first two moments of the inter-renewal
time or, equivalently, the rate (the reciprocal of the mean)
and the squared coefficient of variation (SCV, variance
divided by the square of the mean) of the inter-renewal time.
We are primarily interested in the case of Poisson job arrival
streams, but we include the more general renewal case to
provide approximations for non-Poisson streams. Since there
are multiple token arrival streams with possibly different
rates, even with Poisson job arrival streams there are not
convenient regeneration points; ie., we cannot do the
embedded Markov chain exact analysis that we did for two
priority classes in Section 2.

As before, our goal is to determine the job blocking
probabilities B; and throughputs 9; for each class. We
develop approximations using the familiar parametric-
decomposition approach (S]. In particular, we treat the
dedicated banks and the overflow bank separately. We act as
if all the token and job overflow streams coming into the
overflow bank are mutually independent, and partially
characterize each stream by one or more parameters. We then
analyze the overflow bank given such inputs.

Even though the dedicated banks are assumed to be
independent, the overflow independence is an approximation,



because the token and job overflow streams associated with
any one class are clearly dependent. However, overflow
independence is a natural approximation because one of the
two overflow streams for each class will often dominate.
Moreover, as the number of dedicated banks increases, the
effect of the dependence obviously decreases.

We first analyze the class-i dedicated bank with token arrival
rae r;, job arival rate A;, and job arrival SCV ¢?. We
calculate, either approximately or exactly, the job overflow
rate A; and the token overflow rate r;, plus any additional
parameters to characterize partially these overflow streams.
(In this paper, we only consider SCVs of inter-overflow
intervals in renewal process approximations, but other
parameters could also be considered with this approach.)

We then analyze the overflow bank with mutually
independent job and token arrival streams having rates A, and
r;, 1<i<N (possibly plus additional SCV parameters for each
stream). We calculate an approximate class-i job overflow
rate from the overflow bank A; for each class. The class-i job
blocking probability is then B; = A; /A; and the class i
throughput is 6; = A;(1 - B;).

We have developed several, different, separate
approximations for the dedicated banks and the overflow
bank, which can be put together in various ways to make
composite approximations. We now describe three
composite approximations.

3.1 A Deterministic Fluid Approximation

The first scheme is a simple deterministic fluid model: We
act as if both jobs and tokens armive at each bank
continuously and deterministically like a fluid with the given
rates, i.e., we let
: d-r) N
6; = min(k;, ri+———-3 (r;-A)" ).
z aj - ri)-r j=1
j=l
This is the most elementary approximation, because it does
not represent any stochastic features.,

@

3.2 Markov-Chain-Poisson Approximation

In our second scheme, we first fit the job arrival strcam
parameters at each dedicated bank to a specific renewal
process and then approximate the stochastic process
representing the number of tokens in each dedicated bank by
the queue length process in a D/G/1/C model. We use this
model to calculate the overflow rates from the dedicated
banks. We then act as if the overflow streams are mutually
independent Poisson processes and analyze the overflow
bank by using an M/M/1/C model. In the case of Poisson job
arrival streams, this Markov-Chain-Poisson approximation is
a one-parameter method that attempts to capture the
stochastic behavior.

When the job arrival stream is Poisson or batch Poisson, the
D/G/1/C model for the dedicated bank is an exact analysis,
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but otherwise it is an approximation, because in the token
bank the job amrival process keeps running when the token
bank is empty, whereas in the D/G/1/C model service begins
when there is an arrival to an empty system.

Since the D/G/1/C analysis is exact when the job arrival
process is batch Poisson (BP), it is natural to use a BP
renewal process, i.e., a BP process with a geometric batch-
size distribution. This BP process is a two-parameter
renewal process, characterized by the batch arrival rate A}
and the mean batch size m} ar, equivalently, the geometric
parameter g;; i.e., the batch-size probability mass function
(omf) is bi(n)=(1-g,)q}~', n21, where m’=1/(1-q;,) and

gi=(m} —1)/m}. We relate these parameters to the specified
mean A7! and SCV c? of an interarrival time by
A=Atm} and c}=2m}-1. ©)]

Given the D/BP/1/C model, we obtain the token overflow
rate by solving for the equilibrium  vector
%; =(m(0),...,m(C;) of the embedded discrete-time
Markov chain (MC) describing the queue length process just
prior to token arrivals, as in [6), from which we obtain the
exact token blocking probability at the dedicated bank

rilr= (C) .

©)

Since the rate of accepted tokens at the dedicated bank r; -7
must equal the rate of accepted jobs A; —A;, the associated job
blocking probability at the dedicated bank is

Mild = 1=(r-r)ik. ™

If ¢?<1 or if another renewal process is deemed more
realistic with c?>1, then we can use a phase-type renewal
processandcalculatemeoverﬂowratesasin@andmafter
applying a MC analysis to a D/PH/1/C model [7]. (Now the
phase is part of the state of the MC and 7;(C;) is the
probability of having C; tokens in the bank, obtained by
summing the probabilities of all possible service-phase
states.)

Given the job overflow rates A; and token overflow rates r;
from the dedicated banks, we analyze the overflow bank
using an M/M/1/C model. We use the fact that the
superposition of independent Poisson processes is again
Poisson. Let A'=Aj+.+Ay, R =r| +.+ry, p =R IN',
A =A{+.+Ay and R"=r] +.+ry, where the double
prime indicates overflows from the overflow bank. The exact
blocking probabilities under the Poisson assumption are
N 1-p iR 1-(p)!

MA@ TR ey ®

where as before C, is the capacity of the overflow bank.
Combining (6)~(8) gives A; .

3.3 A Full Two-Parameter Procedure

Our most elaborate approximation procedure determines
SCVs partially characterizing the overflow streams and uses
them to determine the blocking at the overflow bank. We



first use the D/BP/1/C or D/PH/1/C analysis in Section 3.2 to
determine the overflow rates from the dedicated banks.

To determine an approximate SCV c% for the class-i token
overflow stream from the dedicated bank, we use the
D/BP/1/C model. Then the token overflow process is a
renewal process and the inter-overflow time is distributed
exactly as the first passage time from state C; to state C; in
the ergodic discrete-time MC with states {0, 1,....C;). The
mean inter-overflow time is 1/r;, which we can obtain from
(6). From [8], we obtain

¢t = Wilgxc, - m:(CP -1, )

where [Wilc,xc, is the (C;xC;)® element of the matrix of
second moments of the first passage times (measured in
number of steps of the Markov chain) given by

W = M(Z4A~ 1)+ 22M - E@M),,) (10)

with M the matrix of mean first passage times and Z the
fundamental matrix, i.e.,

M=(I1-Z+EZ4)A, Z=(-(P-4))", (11)

P the one-step transition matrix of the Markov chain, A the
square matrix with each row being the equilibrium vector of
P, A the diagonal matrix whose diagonal elements are the
reciprocal of the equilibrium probabilities, I the identity
matrix, E the square matrix with all entries equal to 1 and
(- )4 a diagonal matrix whose diagonal equals that of the
argument matrix.

The job overflow process associated with a D/BP/1/C model
isnotarenewalprocess,soitisnotmymanalyzeor
partially characterize. To obtain an approximating SCV c2
for the class-i overflow stream from the dedicated bank, we
use an M/M/1/C model for the dedicated bank: ie., we
approximate both the token and job arrival processes at the
dedicated bank by Poisson processes. The job overflow
process then becomes a renewal process and the SCV is

2C,-2+4C,'+3
3C;+3

(1+p )1 -p™"*%) - 4(C; + 1)(1 - p,)pF*™!
(1-p)1-p°* 2

To derive (12) and higher moments, let J; be the time
between successive job overflows and let B; be the length of
a busy period for tokens (the interval beginning when a token
arrives at an empty token bank until the bank is next empty
again). Then

ifp; =1

2 _
C5i=1

(12)

d
Si=X; + (1 -L)B;+J), (13)
d
where = denotes equality in distribution, the four random
variables on the right in (13) are independent, X; is
exponential with mean 1/(A; +r;) and P(I=1) = 1-P =0 =
A/(A;+r;). We obtain (13) by considering what happens
after a job overflow. The time until the next event is X ;» Then

ifp,'¢l.
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I=1 if the next event is a job arrival, in which case J;i=X;. If
I=0, then the next event is a token arrival. Then the
remaining time until the next job overflow is the sum of a
token busy period plus the time until the next job overflow
after the system becomes empty (which is distributed the
same as J; given Poisson-job arrivals).

We are now ready to analyze the overflow bank. We first
partially characterize the superposition token arrival process
with rate R =r) +..+ry. A simple approximation for the
associated SCV is the asymptotic method approximation
from [9],ie.,

N 2,
chy = 2; (riIR)cks
ft )
but to reflect the convergeace to Poisson as N gets large, we
suggest the refinement in (4.16) of [9], i.e.,
N
cF=1+(ch - l)iZE iRy . as)
We partially characterize the token superposition arrival
process by its rate R” and its SCV in (15). Then we fit a
renewal process to these parameters. In particular, we make
the first two moments of the inter-renewal interval be 1/R’
and (c3+1)/R?. If c} > 1, then we use a mixture of two
exponentials (hyperexponential, H,) with balanced means as
in (3.7) of [9]; if 1/2 < c% < 1, then we use a convolution of
two exponentials with different means as in (3.10) of [9]; if
0<c#<1/2, then we use an Erlang (E,) distribution with c2
= 1/2 or we use a convolution of more exponential
distributions to match c% exactly.

In order to be able to calculate easily the per-class blocking,
we approximate the per-class job overflow processes by batch
Poisson processes. (This approach was used for multi-server
loss systems by van Doorn [10].) To obtain a two-parameter
renewal process, we use geometric batch sizes, just as in
Section 3.2.

However, prior to applying the analog of (5), we first deflate
the SCVs to reflect the smoothing due to superposition.
Moreover, the variability in streams with lower rates should
have less impact. Hence, we replace c}; by

=2
Cri =

(14)

4

(16)

We are now ready to calculate the approximate distribution
of the number of tokens in the overflow bank at an arbitrary
time. We use the fact that a superposition of independent BP
processes is again a BP process. The superposition batch-
size distribution is a mixture of the component batch-size
distributions, where the weights are proportional to the rates,
i.e., the final batch-size pmf at the overflow bank is

N
b'(n)= % (M/AYbi(n), n21.
i=l

Assuming that tokens arrive to the overflow bank (bank 0) as
a phase-type renewal process and that jobs arrive as a batch

A;
l+r:(c},-—l), 1<SisN,

an



Poisson process, the vector {X°(), J (1)} is the state of a
continuous-time Markov chain, where X°(¢) is the number of
tokens in bank 0 at time ¢, and J (r) is the state at time ¢ of the
transient Markov chain associated with the phase-type
distribution. The equilibrium vector can be solved for
numerically, and then the steady-state number of tokens in
bank 0, py, is obtained by summing over the states associated
with the phases. The class-i overflow rate from bank 0, A}, is
the rate A} that class-i batches arrive at the overflow bank
times the expected number of overflows from an arbitrary
class-i batch. Let B; be the number of overflows from an
arbitrary class-i batch. The class-i batch-size distribution is
bim)=(1-g)g)™™, n21, where g;=(m} -1)/m? .

Hence
C. ,
PB;=n)= ¥ (1-g)g)** ' pok), n21, (18)
k=0
- Co
E[B])= Y nP(B;=n)=(1-¢})™ Eo q¥ po(k) 19
a=]

andA; = APE[B;).

4. ILLUSTRATIVE RESULTS

In this section, we that assume that the job arrival processes
are Poisson. As a first comparison of the accuracy of the
three approximations in Section 3.3, consider the special case
of only one class of jobs and thus only one dedicated bank.
In this case, the overflow bank is artificial and the epochs of
blocking and admittance equal those from a throttle with a
single bank of capacity Co + C,. This case is potentially
stressful for the approximations since they do not explicitly
capture the negative correlation of token and job overflows.
That is, when tokens are overflowing from a dedicated bank,
jobs can not be, and vice versa. Also, because of the
equivalence to a single-bank throttle, the true blocking is
easily calculated, using equations (6) and .

Table 1 compares the blocking from the three approximations
with the exact blocking for a range of normalized job arrival
rates, A;/ry. The three approximations of Section 3.3 are
labeled respectively "fluid," "MC-Poisson” and "two-
parameter.” Note that for A;/r; outside of the interval @9,
L.1), even the simple fluid approximation gives reasonably
accurate blockings (in terms of the absolute, not relative,
error). However, as the bank capacities are decreased
towards 1, the accuracy of the fluid approximation declines.
For Ay /ry =1, none of the models are exceptionally accurate.
However, if an absolute error in blocking probability of 0.005
is tolerable for an initial design, then one could use the two-
parameter approximation to explore the parameter space and
then use simulation for fine tuning. As for the relative error,
note that for light loads where the blocking is small, the
relative error is orders of magnitude. Lastly, note that the
stochastic MC-Poisson approximation is not much of an
improvement over the deterministic fluid approximation. To
obtain reasonable estimates for blocking when A, /ry =1, 0ne
needs to use the two-parameter, or more accurate,
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approximations.
FRACTION BLOCKED, B,
(One class of jobs, Cy = C, = 10)
APPROXIMATIONS
MC- Two-pa-

Airy fluid Poisson rameter | EXACT
S0 | 00000 | 99e-62 | 21e-8 8le-11
5 | 00000 | 23e27 | 3le4d 46e-5
90 | .00000 | .66e-11 002458 | .001671
95 | 00000 | .50e-6 009877 | .007614

1.00 | .00000 | .00440 02495 02459
1.05 | 04762 | .04762 05134 05507

1.10 | .09091 09091 09096 09271

1.50 | .33333 | .33333 33333 33333

2,00 | .50000 | .50000 50000 50000

TABLE 1.

As a second comparison, consider the more interesting
scenario of three classes of jobs where the decision maker
wishes to guarantee each class a minimum admission rate but
not restrict any class when the total arrival rate is below
capacity. In particular, suppose the guaranteed admission
rateisthesameforallthreeclasses;_letr, =ry=r3=1,and
let all bank capacities be 20. Suppose class 1 is over its
allocation, A, =1.2, and class 2 is under, A, = 0.5, and let A3
yary.

PER-CLASS BLOCKINGS, B;

Three classes of jobs: A, = 1.2, 4, =0.5;
all token arrival rates = 1.0, & all bank capacities = 20

APPROXIMATIONS

MC- Two-pa- | SIMU-
A; | Class | fluid | Poisson | rameter | LATION
12 1 0000 | .00039 0114 0082
12 3 0000 | .00039 0114 0082
13 1 .0000 | .00794 0198 0200
13 3 0000 0110 0295 0251
14 1 0278 | 0284 .0326 0365
14 3 0476 | .0487 0599 0554
20 1 0972 | .0973 .0950 103
20 3 292 292 293 288
30 1 129 129 128 134
30 3 515 515 516 513

TABLE 2,

The per-class blocking of jobs is given in Table 2, where the
blocking for class 2 is omitted since it is less than 1071°, The
approximations are compared with a discrete event
simulation written in FORTRAN. For each case, the




simulation is run for 5 million time units; the 95% confidence
intervals are around + 0.0006. In Table 2, significant digits
from the simulation are displayed. (Note that for Ay = 1.3,
the total arrival rate of jobs equals the total arrival rate of
tokens.) Again, if initial or exploratory designs only require
blockings to within 0.005, then the eter model is
adequate. Note that for A3 =2 and 3, all three models predict
similar, though biased, blockings. The overall blocking,
however, from all three models agrees with that from the
simulation to 3 significant digits: .189 and 362 respectively
for A3 equal to 2 and 3.

For this scenario of three classes, and using the two-
parameter approximation, the throughput for each class
versus A4 is shown in Figure 1. These throughputs illustrate
the general behavior of the throttle: as desired, the excess
tokens from class 2 are shared by classes 1 and 3.

1.6

CLASS 3

14
12
1.0
0.8
0.6

HOUINQAComnA

04 |

0.5 1.0 15 20 25 30

ARRIVAL RATE FOR CLASS 3,2,

Fig. 1. Throughput versus arrival rate for class 3, given
three classes where Ay = 1.2, 4, = 0.5, all token
arrival rates are 1.0 and all bank capacities are 20,

2. SUMMARY AND FUTURE WORK

We introduced a multi-class input-regulation throttle and
presented approximate analyses for the per-class blocking
and throughput and an exact analysis for the special case of
two priority classes of Poisson job arrivals. The simple fluid
approximation does surprisingly well, except in the case of
roughly equal token and job arrival rates and small bank
capacities. Interestingly, the stochastic Markov-chain-
Poisson approximation yields only modest improvement over
the fluid approximation. Thus, approximations that
reasonably capture at least the second moment of the
overflow processes are needed for accurate estimates of
blocking for the important case when the offered load is near
the regulated limit. The two-parameter approximation of
Section 3.3, plus simulation for fine tuning, seems adequate

for most engineering purposes. Additional approximations
are under study that use the interrupted Poisson Process.
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The input-regulation throttle seems to be a promising
candidate for meeting the goals stated in the introduction.
Moreover, the design presented herein could be enhanced in
obvious ways. If jobs of different classes use different
amountsofsystantesmncm,thenthetokmsandjobs
overflowing to bank O could respectively deposit and
withdraw a class dependent number of credits. Also, the
decision maker would have more control over the allocation
of the excess capacity if there were more than one overflow
bank and/or tokens could overflow to a dedicated bank of
another class.
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