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Abstract—A standard, hierarchical control formulation is
used for the economic problem of price coordination of
subsystems connected by a general coupling system. With
this formulation, where the coordinating price for a given
input or output a priori may be different for each subsystem,
we determine conditions on the coupling system whereby the
coordinating prices are the same for all subsystems. We show
that the coupling system does not need to be specialized to
the constraint that the sum of the outputs minus the sum of
the inputs (the excess supply) be zero. On the other hand, a
coupling system with symmetrically appearing input—output
vectors is not restrictive enough. Rather, there exists a
common, coordinating price vector for all subsystems if the
coupling system is a general function of excess supply.

1. Introduction

IN CLASSICAL economic theory, the market-clearing price (the
price at which supply equals demand) is the same for all
producers and consumers. In contrast, in hierarchical control
theory, the coordinating dual variable is not so constrained
and, in general, is different for different subsystems; see for
example Cohen (1980), Findeisen ez al. (1980) and Mesarovic
et al. (1970). The contribution of this paper is to use a
general formulation from hierarchical control theory and to
determine conditions where the coordinating prices to all
subsystems are the same for a given output, or the same for a
given input and conditions where, in addition, the price
vector for output equals the price vector for inputs (herein
called market-clearing prices). One can view the market-
clearing price herein as equilibrating supply and demand
where the equilibration is the satisfaction of contraints that
are more general than the excess supply being zero. It
coincides with the standard definition, given the particular
coupling system that constrains the sum of the outputs to be
the sum of the inputs.

The conditions below only require knowledge of the
coupling system, and thus, from the viewpoint of hierarchical
control theory, the coordinator can know a priori whether
there exist market-clearing prices. If the conditions are
satisfied and if the coordinator uses an iteration to determine
the coordinating, dual variables, then the iteration can be
over a common vector for all subsystems. From an economic
viewpoint, the coordinator of the hierarchical control
formulation is an artifice to determine the existence of
market-clearing prices. If the solution to the coordinator’s
optimization is such that all price vectors are equal, then
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there exists market-clearing prices for the competitive
market of the price-taking subsystems.

The following section, Section 2, presents the problem
formulation. Section 3 gives the results, and Section 4
illustrates the results with four examples.

2. Problem formulation
We consider a dynamic system consisting of n subsystems
connected via a coupling system. The ith subsystem is

modeled as:
'y

f
max | {L;(x;, w, v;) + py.y; — pyvi} At + ¢i(xi(t)) (la)

) (1b)
(19)

where u,(t) € R* is the control vector for subsystem i, and
x,(t) € R™ is the state vector of subsystem i. v,(t) e R™ is the
vector of inputs from the coupling system to the subsystem i
and is called the interaction input or factor input or simply
the input. y,(¢t) € R™ is the vector of outputs from subsystem i
to the coupling system. p, € R™ is the price vector for the
outputs of subsystem i, and p, € R™ is the price vector for
the interaction inputs for subsystem i. m, n;, k; € positive
integers, i =1, ..., n. Furthermore, let y denote the vector
of all of the ys, i.e. y'2(y} ...,y where ' denotes
transpose. Similarly, v’ = (vi,...,v;), and u’ 2. .. u).
The subsystem decision maker (agent, controller) optimizes
over the control variable and interaction input and considers
the prices as given, exogenous inputs.

The problem of the coordinator (market maker) is to
choose p, and p,, so that the individual agent’s optimal value
for v, ind and the optimal control, ™, match

‘ii =f;'(xir u;, vi) xl(to) p‘ven
Yi=clx;, u;, v;)

enoted v;"°,
those from the coordinator’s optimization:

max [ {1z v, 1+ 3 s )} @+ 3 00 @0

i=1

X =fi(x;, ui, v;) xit,)giveni=1,...,n (2b)

%,=fo(x,0 ¥, ¥)  X,(8,) given (20
yi=cxpu, v)) i=1...,n (2d)
0=c,(x,, ¥, ¥) (2¢)

where x,(1) € R™ is the state vector of the coupling system.
The coupling system is characterized by the terms:

&)

2.1. Economic interpretation of the problem. The sub-
system decision makers are price takers, since they consider
the prices as given, exogenous inputs. The common
dimension of the vectors y;, v;, p,, and p,, equals the number
of goods in the model, m. Considver for the moment, a model
of one good, m=1, and subsystem i being either a firm
producing the good at level y;, or a consumer consuming the
good in the amount v;, (If subsystem i is a firm. then v;

lo(xo) y> ¥)s fo(x05 ¥, ¥) and €o(x,, ¥, ¥)
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would be set equal to zero, and likewise, if subsystem i is a
consumer, then y; =0.) For the case of one good, the firm’s
factor inputs are modeled implicitly by the firm’s cost
function. In particular, if subsystem i is a firm, then let /,()
be the negative of the firm's cost function. If we further
suppose that the firm can directly control the level of output
(i.e. suppose f(-)=0 and y,=c,(-)=u;), then /,(-) can be
written as —cost; (y;) and the model for the subsystem, (1),
reduces to the static optimization:

max — cost; (y) + p,. ¥, ¥:=0, 4)

which is the classic profit-maximization criterion for a
price-taking firm. Likewise, if subsystem i is a consumer,
then let /,(-) be a monetarily measure satisfaction index, and
given that the consumer directly controls the level of
consumption, v;, then the subsystem optimization (1)
reduces to the analogous static optimization:

max Ii(vi) - pv,-viy v; =0. (5)

Thus, for given prices p,, and p,,, the total amount supplied
is _}"'jl y™ and the total amount demanded is _El vi™, where

im im
the superscript “ind” means the individual agent’s optimal
value. By varying the prices, the above sums become supply
and demand curves, respectively.

The above description easily generalizes to a vector of
goods, m > 1. Also, the product of one firm could be a factor
input of another firm, in which case, (4) becomes:

max — cost; (y;, v;) + p,, ¥ — P, ¥i=0, v,=0, (6)
Yi-vi
where cost; (y;, v;) represents the cost to produce level y,,
which depends on the firm’s production possibilities set and
possible additional factor inputs besides v;. Likewise, one
could reintroduce the dynamic constraints (1b) and the firm
would control the level of output through (1b) and (1c).

A question of economic interest is whether there exists a
market-clearing price: a price p° such that if p, = pv,=p°
for all i=1,...,n, then the total supply equals the total

no no
demand: .El ymd= .El v™. This question is answered by the
i= i=m

solution to the coordinator’s optimization, (2). One can think
of the coordinator’s optimization as an artifice to determine
the existence of market-clearing prices. When the solution to
(2) is such that all the price vectors are equal, Py, = Py for all
i,j=1,...,n, then there exists market-clearing prices for
the competitive market of the n price-taking subsystems. In
particular, a special case of the coupling system is the
equality of supply and demand:

L()=0, () =0and ()= Xy~ 3 vi-
i=1 i=
For this coupling system, suppose the coordinator solves (2),
and let 3™ be the Lagrange multiplier associated with (2¢)
evaluated at the coordinator’s optimal control. If the
coordinator chooses the price vectors to be Py =Py, =t "
for all i=1,..., n, then the agent i’s optimai values, yind
and v{", will coincide with the coordinator’s, and

f: yind — f:l v™ will equal 0 (see Lemma 1 below). Thus,
im] =

there exists a price vector, namely uS°°" such that the total
supply equals the total demand.

For the general coupling system, (3), and under reasonable
assumptions (assumptions 1-3 below), the coordinator
indeed can choose p, and p, such that ui™=u®" and
v = v{** However, in general, the prices will not be the
same for all subsystems. The interest of this paper is to
determine those coupling systems where the coordinating
prices are equal for all subsystems. This corresponds to the
existence of market-clearing prices in the competitive market
of the n price-taking subsystems.

2.2. Game theory interpretation of the problem. From the
viewpoint of game theory, the above problem formulation is
a simple Stackelberg incentive problem, a topic that has

received much attention; see, for example Bagar and Olsder
(1980), Ho er al. (1982), Zheng er al. (1984). In the
vocabulary of game theory, the coordinator is the leader.
The leader’s information set is empty, and the leader acts
once and first by announcing the price vectors p,, and p,
i=1,...,n The subsystem decision makers are the
followers. The information set of follower i is {pys PV}, and
follower i’s action is the open loop control law that solves
(1). An optimal choice for the leader’s action would induce
the followers’ actions to solve (2) also. Thus, from the
viewpoint of game theory, the interest of this paper is the
form of the leader’s optimal action; namely, whether it is the
same for all followers.

3. Conditions for coordinating, uniform and market-clearing
prices

Definition. Price vectors are called coordinating prices if
they induce v and «{™ to be equal to the optimal values,
u*°* and vi*>, of the coordinator’s optimization (2).

With coordinating prices, the constraints of the coupling
system are satisfied; however, this is accomplished with
prices that for a given good may be different for each
subsystem. The following two definitions place additional
requirements on the choice of the price vectors.

Definition. Particular choices for Py and p,, i=1,...,n
are called uniform prices if:

1. they are coordinating prices, and

2. p,,,.=p,.l.foralli,j=1,... , n, and

3. pvi=p‘,iforalli,j=1,...,n.

Definition. Particular choices for py and p,, i=1,...,n
are called market-clearing prices if:

1. they are coordinating prices, and

2. py,.=pviforalli,j=1,... , n.

Note that market-clearing prices are also uniform prices;
however, uniform prices are not necessarily market-clearing
prices.

Although the optimizations (1) and (2) are stated for
nonlinear dynamics and output relations, we are not
interested here in the difficulties of solving such problems,
but rather, given that the optimal control exists, what is the
form of the coordinating prices? Thus, we make simplifying
assumptions that guarantee the existence of the optimal
control:

Assumption 1. the functions f(-), I(-) and (), i=
0,..., n, are differentiable with respect to their arguments.

Assumption 2. The optimal control exist and is unique and is
determined by Pontryagin’s maximum principle.

Assumption 3. For any choice of py, and p,, agent i solves
the resulting optimization, as opposed to not-playing-the-
game, or shutting-down.

Assumption 2 holds of course for Linear systems with
quadratic payoffs where the resulting Riccati equation has a
solution. Moreover, Hsu and Meyer (1968, p. 567) show that
the necessary conditions of Pontryagin’s maximum principle
are sufficient conditions for a class system with nonquadratic
payoffs and with dynamics nonlinear in the control.
Assumption 3 implies that the pricing mechanisms presented
here are relevant for shaping the agent’s marginal behavior.

3.1. Coordinating prices. Given assumption 2 and that the
Ii(-)s appear as a sum in (2a), it is well known that there exist
coordinating prices (Findeisen er al., 1980). If the /(-)s did
not appear as a sum in (2a), then the coordinating prices do
not necessarily exist. Berger and Schweppe (1989) consider a
coordinator with an arbitrary objective function, which may
or may not be a function of the /(-)s, and they present
necessary and sufficient conditions for the existence of
coordinating prices. The interest there is a comparison of
three potential entities-to-be-priced: the subsystem control,
the subsystem output and the coupling system state. For the
present model, we have the following lemma.

Lemma 1. Under assumptions 1-3. the individual
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subsystem’s optimal controls, 4, vi* equal the

coordinator’s optimal values, uf>, v{°, i=1,... n, if the
prices are chosen to be:
' al,  ,ac af)
=24y =2 + Al =22
Pr (ay: Ho 3y, % 3%/ | coor (7)
(%, .3, ., afa)
pv; = (aV, + Bo aV, + "a aV, coor (7b)

where g, is the Lagrange multiplier associated with the
coupling system output relation, (2¢), and A, is the costate
vector associated with the coupling system dynamics, (2c),
and |oo, means the expression is evaluated at the
coordinator’s optimal value.

The proof of Lemma 1 chooses the prices so that the
necessary conditions of agent i’s optimization match those of
the coordinator’s. The proof is straightforward and has been
omitted for the sake of brevity.

Lemma 1 confirms the heuristic idea that the prices ought
to reflect how the subsystem influences the outside world; in
particular, the price is the marginal effect of the input and
output variables on the coupling system. In the degenerate
case where /,(-), c,(-) and f,(-) are not functions of y; or v,
for some i, the prices are zero; as they ought to be, since the
subsystem is decoupled from the rest of the overall system.

3.2. Uniform prices. In general, the coordinating prices of
Lemma 1, equation (7), are different for different
subsystems. However, in the special case when the functional
form of the coupling system is such that:

3, (e 39+ B 3, V) + o2 3, 9)

=%(lo(xo, PV RL5or 3 V) + s (5ar 3, V) (83)

then the prices p,, and Py, are guaranteed to be equal when
(8a) is evaluated at the coordinator’s values. Furthermore,
we have the following lemma.

Lemma 2.
a r ’
a (Io(xor Y, V) +_l'ofa(xor Y, V) + ”aco(xot Y V))

s%(lo(x.,, PV + R 3, V) iCo(kar v, ¥))  (82)

and
3 , ,
a_V, (Io(xor Y, V) + Aof;(xor y) + I‘aco(xo’ Y, V))

a ’ ’
!a_VI Io(xot Ys V) + laf;(xa: y) + I‘aco(xo’ ¥, V)) (8b)

foralli,j=1,...,nif and only if there exist functions I, (),
£,(-) and &, such that:
Io(xor Y, V) = ia(xor 340 VT) (93)
JACHSA v) =f;(xo’ yr» vr) (9b)
ca(xm Y V) = éo(xo’ yrs VT) (90)

A A 1
where y, = r§1 y;and v = :§1 ;.

Outline of proof of Lemma 2: given (9) then (8) holds by a
simple application of the chain rule. The reverse direction is
more involved. The idea is to show that (8) implies that the
isoclines of

L(xo, ¥, V) + 2 £5(x0s ¥) + BiC, (%o, ¥, ¥) (10)

n
with respect to y are the surfaces -21 ¥; = a constant. Hence,
i-

(10) can be expressed as terms where the y;s appear only as a
sum. The details are fairly mechanical and are omitted for
the sake of brevity. An analogous argument applies to the
v;s.

Lemmas 1 and 2 imply the following theorem.

Theorem 1. If the output variables appear as a sum in the
coupling system, (3), and the interaction inputs also appear
as a sum in the coupling system, then there exist coordinating
prices that are uniform; i.e. if there exist functions 7,(-), f,(-)
and ¢,(-) such that:

Io(xot s V) = io(xar yYr, VT) (98)
L(xa» Ys V) =f;(xor yr» VT) (9b)
ca(xot Y, V) = éa(xo’ yYr» VT) (90)

n n
where y,2 :21 y; and vo2 'gl v;, then there exist choices for

py,and p, i=1, ..., n that are uniform prices. Moreover,
the functions /,(-), f,(-) and &,(-) are the only functional
forms that guarantee the existence of coordinating prices that
are uniform.

Theorem 1 shows that to guarantee uniform prices it is not
restrictive enough for the input and output variables to
appear symmetrically in the coupling system, rather they
ought to appear as a sum. The converse of Theorem 1 does
not hold. It is possible that although (8) and (9) are violated,
when the coordinator’s optimal values are plugged in, the
prices turn out to be the same. One can construct simple
examples where this is the case. However, these examples
are highly dependent on the subsystem models; with a slight
change in parameter values, the prices become unequal.
Thus, although strictly speaking Theorem 1 is only a
sufficient condition for uaiform prices, if one allows for
unknown variations in the subsystem models, then, as a
practical matter, Theorem 1 can be treated as a necessary
condition as well. Thus, in a practical situation where the
coordinator does not know the subsystem models and is
iteratively searching for coordinating prices, Theorem 1 can
be used as both a necessary and sufficient condition for
uniform prices. Note that the condition for uniform prices,
equation (9) depends only on the functional form of the
coupling system, information typically known by a real
coordinator.

The proof of Lemma 2 easily generalizes to cases where
only a subset of the input and output vectors appear as a sum
in the coupling system. Hence, we have the following
generalization of Theorem 1.

Theorem 2. If for a subset of the subsystems Ic {1, ..., n}
the output vectors appear as a sum in coupling system, then
there exist coordinating prices such that £y, = p,, for all
i,jel

The analogous statement applies for interaction inputs.

3.3. Market-clearing prices. In analogy to Lemma 2, we
have: ‘

Lemma 3.
a ’ ’
a_y' (lo(xo: b4 V) + Aoﬁ:(xat Y 'V) + “oca(xm Y V))
i

ad
= = a_V (lo(xa’ Y V) + A;L(xo» Y, V-) + “;xa(xo» Y, V))
1

foralli,j=1,..., nif and only if there exist functions i,(-),
£,(-) and é,(-) such that:

la(xal y’ V) = ia(xa’ z)

L(xar Y, V) =f¢.z(xor Z)

ca(xo: Y, V) = ea(xor Z)

A n
where 2= ¥ y, — v,
i=1

From an economic viewpoint, z is known as the excess
supply. The proof of Lemma 3 is analogous to that of
Lemma 2.

Lemmas 1 and 3 imply:

Theorem 3. If the coupling system (3) is a function of excess
supply (if output variables and interaction inputs appear as a
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difference of sums in the coupling system), then there exist
coordinating prices that are market clearing, i.e. if there exist
functions /,(-), f,(-) and &,(-) such that:

L(x,, y, v) =1, (x,, 2) (11a)
£&0r 3, V) = (x50 2) (11b)
(X, Y1 V) =E,(%,, 2) (11¢)

n
where z2 ¥ y, - v,, then there exist choices for p,, and p,.
i=] i i

i=1,..., n that are market-clearing prices. Moreover, the
functions [,(-), f,(-) and é,(-) are the only functional forms
that guarantee the existence of coordinating prices that are
market clearing.

Theorem 3 shows that the classical supply-demand equality
constraint (excess supply =0) is not a requirement for the
existence of a common, coordinating, price vector. Rather,
the market mechanism (coupling system) could be more
intricate, and as long as it is a function of excess supply, then
a common, coordinating, price vector exists. Also, note that
the condition for market-clearing prices, (11), satisfies that
for uniform prices, (9).

In analogy to Lemma 2, Lemma 3 also generalizes to a
subset of the input-output vectors. Thus, in analogy to
Theorem 2, we have:

Theorem 4. If for a subset of the subsystems Ic (1,..., n}
the coupling system is a function of excess supply (the output
vectors and interaction inputs appear as a difference of sums
in the coupling system), then there exist coordinating prices
such that p, = Py, foralli,jel

4. Illustration of results

Example 1. The interaction matrix. In hierarchical control,
the classical coupling system is the interaction matrix given
by: v=H -y. The components of H are either one or zero,
depending on whether a given component of an output
vector equals a given component of an interaction input
vector. For the interaction matrix, the general coupling
system (3) specializes to:

L()=0, £,()=0, c,()=H-y-w

Note that for this coupling system the y;s do not appear as a
sum, nor do the v;s. Applying Theorem 1, we see that, in
general, the prices are not uniform prices.

As an aside, there are properties that are known about
these prices (Findeisen et al., 1980). Partitioning H into
submatrices and p, into subvectors, we can write )¢ () as:

By (H-y—v)= 2] S,l voH:y: — 21 movy
j=li= j=

Applying Lemma 1, we obtain the prices for agent'i to be:

Py= ,}-31 Hjp,; and p, = p,;. Hence, p, = i§l H;p,,. Thus, if

Py, i=1,...,n are known then so are p, i=1,...,n
Another property is that the sidepayments sum to zero:

n
sum of all sidepayments = Y, p;,y, — P,V
i=]

b 2 (2 I‘c’»iHji))’i = oV
i=1 \j=l
=p Hy — pov =p,(Hy — v)=0.

The interaction matrix is quite general; all of the following
examples can be packaged into the form v=Hy by
considering the coupling system as another subsystem. The
interaction inputs to this additional ‘“subsystem,” denoted
v,, are y, and the outputs, denoted y,, are v. From this
viewpoint, the expanded interaction matrix is:

-2 )

However, we have obscured the relevant structure. All that

has been done is to introduce two dummy composite vectors,
¥, and v,, and the question whether there exist uniform or
market-clearing prices for subsystems 1 to n still hinges on

the form of /,(), £,(-) and c,(-), which have been packaged
as a Oth subsystem.

Example 2. Classical market equilibrium with transaction
costs. Consider the classical supply-demand constraint where

the total supply equals the total demand: )'f y;= i v,.
=] im]

Suppose the market maker incurs linear transaction costs,
then the coupling system is:

L()y=-a'y=B'v=3 —aly,—Biv, £()=0,

i=1

n n
()= E Yi— E Vi
im] =]
where a and B are non-negative vectors equal to the unit
transaction costs.

Since /,(-) is not a function of y; and v, then by Theorem
1, the coordinating prices are not, in general, uniform prices.
However, if the unit costs are such that for all i, &; equals a
given vector, say «., and B; equals a given vector 8., then
the coupling system is a function of y, and v, and there exist
coordinating prices that are uniform. If, in addition,
a, = B. =0, then the transaction costs are zero, the coupling
system is a function of excess supply and there exist
market-clearing prices.

Example 3. Subsystems feed a downstream process. Suppose
the outputs of the subsystems feed into a downstream
process. A possible coupling system that models the
downstream process is:

lo(x5), %, = f5(x,, ).

Applying Theorem 1, if the subsystem outputs y; enter f£,(-)
as a sum then there exist prices that are the same for all
subsystems.

As an illustration, suppose the subsystems are manufactur-
ing plants, and are charged dumping fees for discharging
waste, y;, into a river. Let x, be a measure of the status of
the river, such as oxygen concentration, or bacteria counts,
and —/,(x,) be a measure of social cost. If x, is affected by
just the total discharge, then f,(-) would be a function of y.
If, however, the spatial location of the plant along the river
mattered, then f,(-) would not be a function of y, and the
unit dumping fees should not be uniform.

Example 4. Electric power systems. This example is based
on work of Bohn, Caramanis, Schweppe and Tabor (1984,
1988) who develop a theory of electricity pricing that
accurately reflects the underlying physical and engineering
properties of electric power systems. Let subsystem i be
either a generator producing power y; or a load consuming
power v,. The key, coupling-system equation is the power
balance equation: sum of generation=sum of demand +
losses in the transmission network. Thus, the coupling is:

L()=0 £,()=0 c,()= > y=3 v-Loss(y,v)
generators loads

There are other constraints, which for simplicity are ignored

here; for details, see Bohn et al. (1984), Schweppe et al.

(1988).

For those generators and loads that are connected to a
common bus of the transmission network, the generation and
demand appear as a difference of sums in the Loss function.
Thus, for a transmission network of N buses, the Loss
function has the form:

2 Yi— Vi, 2 Yi— Vi)

Loss (y, ¥) = Loss

ge;euum generators
loads & loads
at bus 1 atbus N

(Loss is a nonlinear function of its arguments. and is
frequently approximated as a quadratic form.) Thus, y and v
appear in the coupling system as a difference of partial sums.
Thus, from Theorem 4, the price for electricity is the same
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for all generators and loads connected to a common bus, but
the price differs between buses.

5. Conclusions

We have considered a standard, hierarchical control
formulation for the economic problem of price coordination
of subystems connected by a general, coupling system. We
have determined conditions where the coordinating prices to
all agents turn out to be the same for a given output, or the
same for a given interaction input (termed uniform prices),
and conditions where, in addition, the price vector for
outputs equals the price vector for inputs (called
market-clearing prices herein). One can view the market-
clearing price herein as equilibrating supply and demand
where the equilibration is the satisfaction of constraints that
are more general than the excess supply being zero. It
coincides with the standard economic definition, given the
particular coupling system that constrains the sum of the
outputs to be the sum of the inputs.

To guarantee the existence of market-clearing prices, we
have shown that the general coupling system does not need
to be specialized to the constraint that the excess supply be
zero. On the other hand, a coupling system with
symmetrically appearing input-output vectors is not
restrictive enough. Rather, there exist uniform prices if the
coupling system is a function of the sum of the output vectors
and the sum of the interaction inputs, and there exist
market-clearing prices if the coupling system is a general
function of excess supply. This result expands the classical
excess-supply-equals-0 market to a larger class of systems
where the market maker can know a priori whether there
exist uniform or market-clearing prices.
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