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Abstract

A necessary and sufficient condition is given for the existence of
prices that induce coordination in coupled linear dynamic systems. The
condition is shown to be equivalent to the servomechanism controllability of
an adjoint system.

1. Introduction

A characteristic of today’s modern technological society is the growth
of complex interconnected systems whose operation is influenced by the
independent actions of many people. Much studied examples are electric
power systems, telecommunications systems, computer networks and
economic systems. Furthermore, prices are commonly used to assist in the
operations of these systems. Recent work by F. Schweppe, R. Bohn and M.
Caramanis [1,2] develops the theory of pricing in electric power systems in
a framework that includes the various time-of-day and peak-load-pricing
schemes currently in use, as well as the extension to time scales as fast as
five minutes.

The following note reports theoretical results on the existence of
prices as a means of coordination in general dynamic systems. The results
extend the work of Schweppe et al. to the case of nonlinear social welfare
functions and to the explicit modeling of the system’s dynamics. The
application of these results to the use of pricing mechanisms in the control
of average system frequency in electric power systems is contained in [3]
and will be reported elsewhere.

2. Problem Formulation

Consider a deterministic linear dynamic system consisting of a
number of coupled subsystems each under the control of an independent
decision maker, with his/her own prior payoff. The question of interest is:
does there exist a pricing mechanism (a side payment to the individual’s
payoff) that induces the optimal control of the independent decision maker
to equal the optimal control of a coordinator who, in turn, has his/her own
criterion?

Specifically, the i subsystem is modeled as:

%) = A;x;(t) + Biu; 1) x;(1,) given i=1,..n (1a)
y,(l) . C,'X,'(l) + D,'ll,'(l) i=],..n (1b)

and the coupling system is modeled as:

.X.‘o(l) =Aox, + zBoiyi(')

i=]

x,(t,) given (1c)
0 = Cox,+D,y + e(t) (1d)

where u; ¢ R™ is the control vector for subsystem i, x; ¢ R™ is the state

vector of subsystem i, or of the coupling system for i=0, y; is-thevecior of

outputs from subsystem i to the coupling system, and e(t) is given,
i=1,..,n; m,, n;, r;, e positive integers. Furthermore, let “u" denote the
vector of all of the u;'s, i.e. u & (u)',..., u,") where * denotes transpose.
Similarly, X" & (x,", X1y 20, Y & Gy 20 ).
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Associated with each subsystem there exists a decision maker with a
criterion function

V]
max fl,- () + pily; di (2a)
f

where /;(:) might represent individual i’s cost function or monetarily
i
measured satisfaction index. The term: f piy: di constitutes the pricing

1
mechanism (side payment, inducement). p; is the price vector and is
chosen by another decision maker called a coordinator. This coordinator,
in turn, wishes to maximize the criterion:

Vj
max f L(x.u) dt (2b)

subject to the constraints of the dynamic system. equation (1). The
coordinator’s criterion could be a social welfare function, in which case,
L (-) would be a function of the /;()s i=1,...,n.

Thus the problem of the coordinator is to choose the prices p;
i=1,...,n such that the resulting optimal control of the subsystems will in
fact maximize the criterion of the coordinator. In which case, the
coordinator has been able to induce the optimal control of the subsystems
to coincide with the optimal control of the coordinator - the value of u that
maximizes (2b) subject to (1).

The above problem formulation, although it contains a simple
dynamic system, captures several conceptually interesting features to be
discussed below. Reference [3) studies the case where the entities priced
are both the outputs of the subsystems as well as inputs to the subsystem
from the coupling system.

3. Existence Theorem

The optimization of the nonlinear criterions (2a) and (2b) subject to
(1) is in general a difficult problem. This paper will make the simplifying
assumption that:

Al the optimal control exists, is unique, and is determined by the
necessary conditions of Pontryagin’s maximum principle, and lastly,
that the maximization of the Hamiltonian over u is obtained by
setting the partial of the Hamiltonian with respect to u equal to
zero.

Assumption Al is made because the interest of this paper is not to solve
these optimization problems, per se, but rather is, given the existence of the
optimal control can it be obtained via a pricing mechanism?*

In the following we will say "the pricing mechanism exists for
subsystem i" when there exists a choice for p; such that the resulting
optimal control of the subsystem matches the optimal control of the
coordinator.

* - Poniryagin's y conditions b sufficient in the case where the criterions L ()
and /; % i=1,....n are conlinuous, separable in x and v and convex in x. (4. page 5671
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Theorem 1: There exists a pricing mechanism for subsystem i if and only if
there exists a function p;(¢) that satisfies the condition:

. . . aL L/
B;'g; + D; i — i = - — 3
& (o Hi ) ou; |. ou; |, (3a)
where means the term is evaluated at the optimal value of the

.
coordinator, and where u; is the Lagrange multiplier associated with
subsystem i's output relation, equation 1b, and where g, (1) is determined
by:

. , . N 9L’ 8l
gi='_Aigi—Ci(Pi—l"i)+axl_ ,_O_x‘,-. (3b)
gi (lf) =0
Furthermore if such a p; (r) exists it is the price.
Theorem | states a necessary and sufficient condition for the

existence of a price that will induce the individual's optimal control to
match the coordinator’s. Its proof is based on the idea of choosing p; so
that the necessary conditions of individual i will match the corresponding
condition of the coordinator.

4. Discussion of Existence Theorem

4.1 Terminal Condition

Note that since g;(t,) = 0, equation 3a at the terminal time
becomes:

. . 9L * 8l
D; (pi(tf)—ui(tf))n(ﬁi——a_u,-').

i

and this holds iff the right hand side lies in the column space of D;".

Thus if the output relation is not a function of u; then D;=0. Hence
equation 3a is violated and there exists no pricing mechanism. This result
makes intuitive sense. If the output is not directly a function of the control
then by pricing the output the coordinator can not influence u; () at the
terminal time. In particular, the coordinator can not induce u; (1) to be
Il,‘.(f/).

4.2 Linear Social Welfare Functions

In the special case where the coordinator’s payoff is a linear social
welfare function:

L) = 3 G

i=1
then the condition of theorem 1, equation (3), becomes:

Bi'gi + D' (=) =0 (42)

& ==A =C'l —u)  glt)=0 (4b)
and is satisfied trivially by choosing the price to be the Lagrange multiplier
of the subsystem output relation: p; = u;. Thus for linear social welfare
functions we have obtained the well known result that there exists a pricing
mechanism [5, page 46].

Note that u need not be the only choice for p;. For example, in the
case where D; = 0, the condition (4) is satisfied as long as g; remains in
the null space of B;". (Reference [3] discusses the conditions where this

___pertains.) But, out of the possibly infinitely many choices for p; that satisfy

(4), u; is the 'best’ one - ’best’ in the sense of the following heuristic
reasoning.

Since a pricing mechanism attempts to make an individual’s
viewpoint coincide with the coordinator’s, one can say that one pricing
mechanism is better than another if it induces a fuller coincidence of

viewpoints. In particular, one pricing mechanism is better than another if,
in addition to inducing the individuals optimal control to coincide with the
coordinator’s, it also induces the coincidence of the costate vector that
corresponds to the subsystem dynamics. Furthermore, from the proof of
theorem 1, the variable g; can be shown to be equal to the difference of
these costate vectors. Thus, in the sense above, the choice of p; = y/ is
the "best’ one as it causes g (¢) to equal 0 for all 1 € [1,.1/].

4.3 Equivalence to Servomechanism Controllability

Returning to the arbitrary form of L(x,u), equation (3) can be
rewritten as follows. Let 5; & p; — 1 and let g = g t+ g2 where gy;
and g, are given by:

g =—A'gu —C'h g (t))=0

£x = — A'gn + %‘— - ZITI, K 82 (ty) =0

and equation (3) becomes:

g ==—Ai'gy —CG'h  £.()=0 (52)
d(t) = Bi'gy + D;i’p; (5b)
where d(t) = BL‘ - g:l: - B;’gy. Thus there will exist a pricing

mechanism if and only if there exists a 5; that satisfies equation (5).
Satisfaction of (5), thinking of it as a system in its own right, means there
exists a control p5;(r) such that the output of the the system,
B:'g\i + D;'p;, will equal a given time function, d(t), for all 1 € (t,.1/].
To guarantee the existence of such a 5,(r) requires more than simple
controllability of the system as the output is required to follow a particular
trajectory and not just to move from one point to another in finite time.
The ability of a system to follow an arbitrary trajectory is known as
servomechanism controllability [6]. Thus Theorem 1 can be rephrased as:

Theorem 1': For arbitrary payoffs L(-) and /;(-) there exists a pricing
mechanism for subsystem i if and only if the system (5) is servomechanism
controllable.

The fact that equation 3 amounts to a servomechanism controllability
condition makes sense. The coordinator, by twiddling a function in the
individual’s payoff, the price, is trying to cause another function, the
individual’s optimal control, to follow exactly a given trajectory - the
coordinator’s optimal control.
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