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ABSTRACT

In this paper we consider s-server queues with capacity ¢, 1 <5 < ¢ < o0, the
first-come first-served queue discipline and very general arrival and service
processes. We show that the admission epochs and departure epochs decrease, so
that the throughput increases, when any of the following changes occur: (1) the
number of servers s increases, (2) the capacity c increases, (3) the external arrival
counting process increases or (4) the service times decrease, provided that the
service times are assigned in order of service initiation and that a subsequence
ordering is used to compare arrival counting processes. The subsequence
ordering for the arrival processes is very important for obtaining positive results
with finite waiting rooms. The subsequence ordering holds between a
superposition point process and its component point processes. The subsequence
ordering can often be applied via its stochastic generalization, the stochastic
subsequence ordering, which is implied by a failure rate ordering.
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1. Introduction

In this paper we establish sample-path and stochastic comparisons for multi-
server queues with finite waiting rooms. Our results extend previous work by
Sonderman [4], [5] and Whitt [6]. Our extension is motivated by our study of the
impact of a job buffer in a token-bank rate-control throttle in Berger and

Whitt [1], and we apply our results there.

Let A/A/s/c denote an s-server queue with total capacity c, i.e., with an extra
waiting room of size ¢ — s, 1 £ 5 < ¢ < oo, in which customers are served in order
of their arrival by the first available server without defections after entering the
system. If there is a finite waiting room and if the system is full when a customer
arrives, then the customer leaves without receiving service or affecting future
arrivals. The first A means that the arrival process is arbitrary, not necessarily
renewal and not necessarily stationary. The second A means that the service
times are also arbitrary. We insert a GI to indicate that the interarrival or service
times are independent and identically distributed (i.i.d.). For the service times, GI
also means that the service times are independent of the arrival processes. As
usual, we use M and D as the special cases of GI with exponential and

deterministic distributions.

A major concern is simultaneous events; i.e., there may be batch arrivals and
arrivals at the same instant as departures. The treatment of simultaneous events is
not critical to the comparison results, provided that we consistently treat the two
systems being compared. To be specific, we stipulate that departures of
customers in the system occur before new arrivals are considered. All arriving
customers are labeled and thus ordered, including customers arriving in a batch.
We treat (possibly admit and possibly immediately serve) the arriving customers

one at a time in order of their index.

Typically customers depart faster when they arrive faster. Indeed, this is true
in great generality for A/A/s/eo queues; see Theorem 12(a) and (b) of Whitt [6].
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However, for finite-capacity queues, positive comparisons are not so easy to
make. For example, consider a D/D/1/1 model with service times1. If
interarrival times decrease from 1.0 to 0.9, then the interdeparture times increase
from 1.0 to 1.8.

However, a positive comparison result does hold for M/GI/s/c models, as was
established in Theorem 2 of Sonderman {4]. In Theorem 12(c) of Whitt [6] it was
noted that this result extends to A/Gl/s/c models using the failure-rate ordering <,
defined on p. 206 of [6] for the arrival processes, by the same proof. Here we
observe that in fact essentially the same proof applies again using the weaker
subsequence stochastic ordering <, from [6] for the arrival processes, which we
denote by c,, following Budka and Yao [2] and Budka [3].

In particular, we say that one counting function {A!(¢) : 20} (e.g., one
sample path of a stochastic counting process) is less than or equal to another
{A%(s) : 20} inthe subsequence ordering and we write A 1 < A2, if the arrival
epochs of A! are a subsequence of the arrival epochs of A% and
Al(z) — Al'(1-) <A%(s) ~ A%(¢~). Thus, batch sizes in A! are smaller than
the batch sizes at the same time in A2. The subsequence ordering arises naturally

when A2 is the superposition of A! and another counting function.

The applications of the subsequence ordering are greater than may be
apparent, because it may hold in a stochastic sense when it does not hold directly;
see [6] for more discussion. For this purpose, we say that one counting process
{Al(t) :t20} is less than or equal to another {Az(t) :t20} in the
subsequence stochastic ordering, which we denote by Al ¢ A2, if it is possible
to construct new processes {ﬁl(t) :t20)} and {Ez(t) :t20} on a new
probability space such that {ﬁi(t) :t2 0} has the same probability law (as a
stochastic process, i.e., finite-dimensional distributions) as {Ai(t) :t20} for
cach i and A; cA,. Note that A' c A? trivially implies that A' <, A2.
However, it is significant that we can apply the ordering A! < A? above to

make stochastic comparisons that do not stem from superpositions, because <, is
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implied by the failure-rate ordering <, in [6]. Additional stochastic subsequence
orderings are established by Budka and Yao [2].

Moreover, as is clear from Sonderman [4], the GI assumption for the service
times is not needed if the successive service times are assigned to customers when
they start service rather than upon external arrival. Otherwise, this assignment
rule is critical; see Whitt [7].

In Section 2 we define the basic processes and state the main result. In
Section 3 we give the proof. In Section 4 we state some consequences. The
corollaries there show that schemes in which customers balk (leave after joining
the queue but before starting service) or extra customers are rejected (not
admitted even when there is space) reduce throughput in the strong sample-path
sense. We conclude by stating stochastic comparisons that follow from the
sample-path comparisons.

2. The Main Result

We start by indicating how to recursively define the successive admission and
departure epochs in an A/A/s/c queue to facilitate inductive proofs. We focus on
a single sample path, so that the analysis is deterministic. (See Corollary 4 in §4

for stochastic consequences.)

Let A, be the epoch that the k™ arrival comes to try to enter the system; let
B be the epoch that the k"™ admitted customer is admitted; let / « be the index j of
the arrival epoch A; corresponding to the k™ admitted customer; let S x be the k®
service time, which we assume is assigned to the k'™ customer to start service; let
X, be the departure epoch of the k™ admitted customer; and let D & be the epoch
of the k' departure. (Note that we need not have X, = D,, because we allow
multiple servers. Then overtaking in the service facility can occur.) Also, to
account for batch arrivals, let N; be the number of customers among the first k
admitted customers that have been admitted at epoch By, i.e., N; = 1 and
Nisy = 1ifBpyy > By, whileNp,; = Ny + 1if By, = B, k2> 1.
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We define the first ¢ admission epochs and the first s departure epochs by
setting

Iy =k and By = A, ,1<k<c, and X; = By + 8¢, 1<k<s5(2.1)
We define the first departure epoch by
Dy = min{X;,...,.Xs}. 22)

We then define I, ., Bx+c, Xk+s and Dy recursively for k > 1. (Of course, I
and B, are already defined for all k by (2.1) if ¢ = o0, and X is already defined
for all k by (2.1) if s = 0.) For this purpose, let min; denote the k%™ smallest

number in a finite set of j 2 k numbers. The definitions are:

Itwe =min{j> Iy y :Aj 2D} ifc<oo, k21, 2.3)
Broc = Aj,, ifc<oo, k21, (2.4)
Xpss = Spes + max{Dy, Byss} if s <oo, k21, (2.5)

Dy = ming{X1,...,Xess-1}, k21. (2.6)

First, (2.3) stipulates that the (k + ¢)™ admitted customer is the next arrival to
occur after the (k + ¢ — 1) admitted customer and after or at the same time
(since departures occur first) as the k™ departure epoch; this is the next customer
that will find space in the system. (Formula (2.3) causes the difficulty in
comparisons with finite rooms. Note that (2.3) does not appear when ¢ = oo.)
Second, because we have the FIFO discipline in the waiting room, the (k + s)®
admitted customer starts service at epoch max{Dy, By}, and thus finishes at
epoch Xy, in (2.5). Finally, to determine the k"™ ordered departure epoch it
suffices to consider the k™ smallest of the departure epochs of the firstk + s — 1
admitted customers as in (2.6), because subsequent admitted customers cannot

begin service until after this departure epoch Dy.

Our main result is a direct sample-path comparison. In the following, we

change the number of servers, the capacity and the service times as well as the



724 BERGER AND WHITT

Theorem 1. Consider two A/A/s/c queues with s and ¢ indexed by subscripts 1
and 2, and the other model components indexed by superscripts 1 and 2. Let the
service times be assigned to successive customers when service begins. Let the
systems be initially empty. If s; <55, ¢y Scp Al CA? and S} 2 53 for all k,
then B} > BE, Xt 2 X? and D} > D} for all k. Moreover, if B} = B2, then
N} = NE.

Remark 1. Note that we do not claim that 7} > I# for all k or the reverse.
Indeed, it is easy to see that these inequalities need not hold.

Remark 2. If Ei(t), X i( t) and D' (z) are the counting functions associated with
the sequences B’, X* and D', respectively (counting the numbers in [0,¢]), then
Theorem 1 implies that B' (¢) < B*(z), X' () < X?(¢) and D' (1) < D? (1) for
all . However, we do not necessarily have the subsequence orderings B! < B2,
X' <X?’orD! c D2

Remark 3. Since customer k + s starts service at max{Dy, By} for k> 1,
the conclusion of Theorem 1 implies an ordering for these epochs as well.

3. Proof of Theorem 1

We apply mathematical induction. We first show that Nj > N? whenever
B = B}, assuming that we have established that B} > B? for all j < k. Suppose
that B} = B} = B}_; for some j with j > 1. Since B{ > B}_; > B}_; = B},
we have By = Bj._;, so that indeed N} = N?.

Since A’ < A? by assumption, A} > A? for all k, so that
Bi 2AL2A? =B}, 1<k<c,, (3.1)
by (2.1). Next, from (2.1) and (2.5),
Xi2St +Bl>2S2+B} =X}, 1<k<s,. (3.2)
Now, as our induction assumption, we assume that
Bi 2Bt forall k<n + ¢, (3.3)

and
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X >X forall k<n+s,, (3.4
which we have established forn = 0. Then

| 1 1 : 2 2
Dpyy =ming 1 {X1,..., Xnss, } 2min, . {XT,..., X545}
1 1

[\

min, 1 {X3,. .., X24s,} = Diyy 3.5)
Moreover, for the principal case in which ¢ < oo, by (2.3),
Lisvive, = Rniticy—cyyee, = min{j>Ihye, A} 2DLi14c,—c, } 36)
and
Lviec, = min{j > By, A} 2D, ) 3.7
However, by (3.3) and (3.5),
Bh+c, 2Bhsc, and Diyiscyc, 2 Div1 2 D%y (3.8)

Moreover, if By4c, = Bayc,, then N}, ., = N2, . . Consequently, we can show

that the (n + ¢, + 1)* admission occurs first in system 2, i.e.,
B}'+1+02 = A}rlx+l+c2 ZAI%M»H:, = B%*‘H‘Cz * (3'9)

To see that (3.9) indeed holds, we start with 1., . ,+1, Which is defined by the
minimization in (3.6), and the corresponding admission epoch A i, From the

subsequence ordering A! = A2, a customer also arrives to system 2 at this epoch.
Moreover, if there is a batch arriving at this epoch in system 1, there is at least as
large a batch arriving at that epoch in system 2. Suppose that customer number
I ,1,+C2+1 in system 1 is the k™ customer in the batch to arrive at epoch B,I,J,CZ+ 1
then let j* be the index of the k™ customer in the batch to arrive at that epoch in
system 2. (There is such a customer in system 2 by the argument above.) It
suffices to show thatj” > I, ., in order to verify (3.9), because then

Ap,.., =A} 2A}

ln+c1+l n+cy+l °

(3.10)
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We next apply (3.6) and (3.8) to deduce that

A}' = A}l

a+cy+1

2Drlx+1+c2—¢:I 2 D3,y (3.11)
and

- Rl 1 2
j L1 = Bn+cz+l 2 Bn+c; ZBn-f-cz . (3-12)

In order to show that j* 2 I§+c2+ 1» by (3.7) and (3.11), it suffices to show that
i'> B, . (3.13)
We now proceed to verify (3.13).

First, if A} > B2,., (as occurs if Bl,. > B2,. by (3.12)), then
j > Iﬁﬂ.z, so that (3.13) holds. Hence, it suffices to consider the case in which
A} =Bi.,. If A} =Bl then, by (.12), Bhice1 = Blio,
Divcae1 = Inye, + 1and Njy. 41 22. Since A' ¢ A2, there is also a batch
arrival to system 2 at epoch B} .. . ,+1 and the batch size is greater than or equal to
N,I,HZH. Moreover, from the definition of j’, customer j’ is the (N,l,ﬂ.z“)“
customer in this batch to arrive to system 2. Consider the (j* — 1)* arrival to
system 2. This customer is also part of the batch to arrive at epoch B;lu+c,+1 in
system 2  since erx+c2+l 22. In particular, customer j° —1 is the
(Nnsc,+1 — 1) or, equivalently, the (N1, )™ customer in this batch. Now,
since A} = B}, ., by assumption above, Bl,., = B2, by (3.12). Moreover,
since Byyc, = Biic,, Nysc, 2 N2, , as was shown at the beginning of the

proof. Thusj’ — 12 I%,.,, which implies that j* > IZ, ., which is (3.13).

Finally, having established (3.9), we show that (3.4) holds for n + 1 in the
principal case in which sy < o0. By (2.5),

1 - ¢l 1 1
Xn+s2+l = Sn+sz+l + max{Dn-f-sz-f-l—s, ’ Bn+s2+l}

1 1 1
2 Sn+s2+l + max{Dn-f-l, Bn+sz+l }
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2 Sivser + max{D2ey, Bhis 1} = X2ipir . (B14)

This completes the proof.

4. Consequences

Theorem 1 has useful implications for modifications of the A/A/s/c model in
which some customers that could be admitted are rejected. For example,
Theorem 1 directly covers the case of two classes of arrivals, with class 1 being
admitted whenever there is any empty space in the system with capacity c, and
class 2 being admitted only when there are at least r empty spaces (e.g., trunk
reservation). More generally, Theorem 1 implies that any such scheme decreases
the total throughput. Of course, such rejection policies may nevertheless be
useful to discriminate between the classes if one class is more valuable than
another.

Corollary 1. Consider an A/A/s/c queue in which service times are assigned to
successive customers when service begins; let it be indexed by the superscript 2.
Consider a modified system indexed by a superscript 1 in which some arrivals
that could be admitted are rejected. Then B} = B, X} 2> X% and D} = D} for all
k.

Proof. The original sequence of potential arrival epochs is A%, For each
realization, we can regard the rejection scheme as an elimination of some terms

from the sequence A2, so that A' ¢ A2. Hence, we can apply Theorem 1. =

Another application of Theorem 1 is to show that customers balking always
reduces throughput. By balking, we mean that a customer in queue leaves before
beginning service and before being assigned a service time. The balking
introduces a new simultaneous event in addition to arrivals and departures.
Again, the ordering of events at one epoch is not critical for the results, provided
we are consistent, but to be specific we assume that balking occurs after all
arrivals and departures at the same epoch. Moreover, multiple customers balking
at the same epoch are treated in order of their arrival. Let Ci and Zi be the
epochs that the k™ customer to start service in system i is admitted to the system

and finishes service, respectively.
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In the spirit of (2.1)-(2.6), we first indicate how to construct the sequence
{(Ck,Zy) : k 2 1} when there is balking. As in the proof of Theorem 1, such a
construction facilitates the comparison proof. By a balking sequence, we mean a
sequence {(Ty,Jy) : k = 1} with T} being the time of the k' balk and J ¢ be the
external arrival index j of the balking customer. We assume that {T,} is
nondecreasing. We let {(T,J;)} be defined in terms of the basic model data
{(Ag,S¢) ) in an unspecified way. Of course, the J{® arrival must be in the

system without having started service at time T'; otherwise no balk takes place.

It is significant that C; and Z; record information only for customers that
have started service. Hence, these variables are not changed if we reject
customers immediately upon arrival who will eventually balk. However, we must

be careful not to admit extra customers who would not be admitted.

Given (T ,J ), we construct a new arrival process {A{" } in which customer
J1 never arrives and all arrivals from this time, A J,» until 7' that were blocked in
the original system are deleted as well. (For example, if the most recent
admission before time T filled the queue, then to properly account for this balk,
we need to delete all arrivals after the most recent admission until time T;. Since
balking at time ¢ takes place after all arrivals and departures at time ¢, it is indeed
appropriate to delete all arrivals up to time T, after the most recent admission.)
Next, using the revised basic model data { (A" ,S) : k > 1}, with the original
service times, we define a new arrival sequence (AP} to represent the second
balk (T,,J;). We continue in this way, defining {A{™} in terms of
{(Af"~1 ,$,) } in order to represent (T,,,J,, ), and so on.

The desired sequence {(Cy,Z;) } is the sequence { (B;,X;) } associated with
all  these  rejections. In  particular, consider the  sequence
((AF™ Sy, B{™ X{™ D{™)} obtained after making the adjustments for
Ti,...,Ty. Then C; = B{™ and Z; = X{™ for all customers j that start
service before time T,,; i.e., for allj > s such that max { D{*), B{" } < T, (see
Remark 3 above), and forj < 5,C; = B; = B{" and Z; = X; = X{™ since the

first s arrivals enter service immediately, and thus never balk.
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Since Cy and Z; associated with balking have been constructed from finitely
many rejections, we can apply Corollary 1 to prove the following result.
Corollary 2. Consider an A/A/s/c model with s < c¢ in which service times are
assigned when service begins; let it be indexed by the superscript 2. Consider a
modified system indexed by superscript 1 in which some customers in queue balk
(leave after joining the queue but before beginning service and before being
assigned a service time). Then C} 2 C2, Z} > Z2 and D} 2 D} for all k.
Remark 4. Note that we do not claim that B} > B or X} > X? in Corollary 2,
and indeed these inequalities need not hold. (If many balk, then it will be easier

to admit more.)

In our motivating application [1] we actually want to make comparisons when
balking occurs simultaneously with other changes. We apply Corollary 2,
Theorem 1 without balking, and transitivity to obtain the following
generalization.

Corollary 3.  Consider two A/A/s/c queues satisfying the conditions of
Theorem 1. Suppose that in addition some customers balk in system 1. Then
Ct2C% Zt 2 Z} and D} 2 D for all k.

Proof. Let system 3 denote system 1 without the balking. By Corollary 2 and
Theorem 1,

Ci>Ci =Bi2Bf =C} forallk.

The other processes are treated similarly. m
Remark 5. Remark 3 applies to Corollaries 2 and 3, but now the epoch that the

(k + s)™ customer to start service starts service is max {Dy, Cryisl.

The counterexamples to throughput orderings in Whitt [7] occur because the
service times are not assigned when service begins. However, in many systems
the service times are naturally associated with the arriving customers, rather than
being assigned at the beginning of service. Then we can still obtain stochastic
comparison results if we assume that the service times are i.i.d. and independent
of the arrival process; see [6]. The desired conclusion is stochastic order for

stochastic sequences. We say that one sequence {¥} : k> 1} is stochastically
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less than or equal to another {YZ : k > 1}, and write Y! <, ¥ 2, if it is possible
to construct new sequences {17,15 :k=1} and {f’i :k21} on a common
probability space, so that {f’i : k = 1} has the same distribution as { Y} : k2 1}
for each i and 17,1 < f’i for all k. The ordering Y! < Y2 is known to be
equivalent to Ef(Y') < Ef(Y?) for each nondecreasing bounded real-valued
function f on the space of sequences R™ with the usual ordering; see [6] and
references there. Let Y} <, ¥? denote stochastic order for individual random
variables.

The following stochastic comparison extends Theorem 12(c) of [6], which in
turn extends results in [4] and [5]. When we allow balking (which is new), we
assume that the sequence {(C,Z;) : k 21} is a measurable function of the
basic model data { (A;,Sx) : k = 1}, which for practical purposes is without loss
of generality, but we do not specify any specific balking rule. Given the
construction of {(C,Z;)} before Corollary 2, it suffices for the balking
sequence {(T,J¢) : k 2 1} to be a measurable function of the basic model data
{(Ak,Sk) }. In actual stochastic applications, we would have the event { Ty <t}
depend on the {(A,S) } through the history of the system over the time interval
[0,¢], but we do not need to require this.

Corollary 4. (a) Consider two A/A/s/c models in which the service times are
assigned when beginning service and the service times are independent of the
arrival process. If balking is allowed in system 1 but not in system 2, if s1 < 53,
c1<cp Al ¢, A2 and S' 2, S?, then C! >, C2, 2! 2, Z? and D! 2, D2

(b) Consider two A/Gl/s/c models in which the service times are assigned to
customers in any order (that does not depend on the service times themselves). If
balking is allowed in system 1 but not in system2, if s1 <83, ¢ <cCa
Al ¢, A2 and S} >, 8%, then C! 2, C?, 2} 24 Z?andD' >, D%

Proof. (a) From Al Ca A2, we can construct the special arrival processes A’
with A’ equal in distribution to A’ for each i and Al c A% Similarly, since the
service times are independent of the arrival process and S' 2, §%, we can

construct the special service times 52 with {S';c : k 2 1} equal in distribution to
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{Si : k= 1} for each i and S‘,t 2 3‘,3 for all k. Moreover, we can let {55c k21})
be independent of {Ai(t) :t20} for each i. Then Corollary 3 implies that
6‘,1( 2(:‘,3, 2,1( Zii and 15,1 213,3 for all k. Since (Ai,gi) has the same
distribution as (A, S') for each i, f(A', S') has the same distribution as
f(A%, §%) for every measurable function f, even with a very general range.
Consequently, {(f,‘;;, Z;;, 15;;) :k21)} has the same distribution as
{(Ci,Z.,Di) : k21} for each i, and we obtain the desired conclusion.
(b) Since the service times are i.i.d. and independent of the arrival process, we can
construct the special sequences {5;; : k = 1} such that {5;; 1 k = 1} is distributed
the same as {S{ : k > 1} for each i, S‘L is assigned to the k™ job to start service
for each i and 3‘,1 2 S‘i for all k. We use the i.i.d assumption to assign the
corresponding service times in order of service initiation. The rest of the proof is

asinpart(a). m

See Section 7 of Berger and Whitt [1] for an interesting application of
Theorem 1 and Corollary 3.
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