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DETERMINATION OF LOAD-SERVICE CURVES FOR DISTRIBUTED SWITCHING SYSTEMS:
PROBABILISTIC ANALYSIS OF OVERLOAD-CONTROL SCHEMES

Arthur W. Berger

AT&T Bell Laboratories
Holmdel, New Jersey, USA

For the engineering, operation and administration of switching systems, it is desirable to be able to
quickly and accurately estimate the grade of service for different traffic loadings and for hypothetical
scenarios and thus to be able to answer what-if questions. This paper presents a probabilistic model that
meets this need for a class of overload controls in distributed switching systems. The model is modular
and can capture the salient features of a variety of throttle and monitor designs. The model accurately
calculates the probability a call is blocked given hypothetical traffic mixes, customer retry probabilities,
load imbalances and load variations during the busy hour.

1. INTRODUCTION

For the engineering, operation and administration of
switching systems, it is important to know the grade of
service attained for different traffic loadings. This
information is provided by load-service curves that plot
a performance measure, such as the probability a call
is blocked or dial tone delay, versus the offered load.
Load-service curves are used for both the component
parts of switching systems, as well as the overall
switching system and telecommunication networks.
They are cited extensively in the literature, and exam-
ples most relevant to the present paper include Briccoli
et al.,, who used load-service curves in describing the
performance of a distributed switching system, [1].
Basu et al. and Tran-Gia used them to show the perfor-
mance of overload control designs for switching sys-
tems, [2,3]. Forys et al. examined the "efficacy of using
artificially generated load box’ traffic to determine
load-service relationships” for digital switching sys-
tems, [4].

Major faétors that determine the load-service curves for
digital switching systems are: (1) the real-time capacity
of the system, which in turn depends on the mix of dif-
ferent traffic types, and (2) the performance of overload
controls that regulate the admission of new calls when
the offered load is beyond system capacity. As pointed
out by Kappel and Stone, [5], it is both difficult and
crucial to quantify the performance of a system’s over-
load control plan. Direct evidence from measurements
of a switching system in overload is most useful. The
measurements can be obtained in a laboratory setting
from system tests and in the field from switching sys-
tems in operation, Simulation studies complement the
direct measurements by providing evidence of

mance under hypothetical scenarios, such as load levels
that can not be attained in a laboratory or not yet
experienced by switching systems in the field. Analytic
models complement both the direct measurements and
the simulation studies. After validation with measure-
ments or simulation, the analytic model becomes a

valuable tool for answering "what-if" questions. Load-
service curves can be generated much more quickly
with an analytic model than with simulation. The pro-
babilistic model described herein easily calculates fam-
ilies of load-service curves that show the impact of dif-
ferent traffic mixes, customer retry probabilities, load
imbalances and load variations during the busy hour.

2. THE CLASS OF OVERLOAD CONTROLS

The class of overload controls is for a star topology, dis-
tributed switching system where the limiting resource
for call processing is the central module (CM), see Fig-
ure 1.
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Figure 1. Diagram of overload-control scheme
in a distributed switching system.

The monitor to detect the overload is located at the CM
and the throttles that regulate the arriving call
requests are located at the peripheral modules (PMs).
The main processor at the CM is responsible for a por-
tion of the call setup process, as well as Operations,
Administration and Maintenance (OA&M) and other
tasks. Although call processing has higher priority
than OA&M, the amount of real-time devoted to call
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processing is restricted in order that other functions
obtain at least a given amount of processor time. After
monitoring the workload for call processing that
arrives over a set interval of time, the CM signals to all
of the peripheral modules whether and to what extent
call requests are to be throttled during the next inter-
val. The signal (the control level) is a non-negative
integer, where the higher the value, the more severe
the overload. This structure allows for some separa-
tion in the design of the monitor and the throttle. It
also enables the methodology presented in the next sec-
tion to apply to a variety of monitor and throttle
designs.

For ease of exposition, we consider a particular scheme
for the monitor and for the throttles, and then in Sec-
tions 3.2.1 and 3.3.1 we describe a range of alterna-
tives. The particular design for the monitor uses two
thresholds to provide hysteresis. The monitor turns on,
or increments to a higher level, if the workload arriving
during a monitoring interval exceeds a given threshold.
Likewise, it decrements one level, or turns off, if the
workload is below a second, and lower, threshold.

The throttle is a rate-control throttle based on token
banks. Token banks are counters that increment up
periodically and decrement at call arrivals. In particu-
lar, internal to the throttle, tokens arrive evenly spaced
from an infinite source. The rate that tokens arrive is
determined by the current control level from the moni-
tor at the CM. The token bank has finite capacity, and
tokens that arrive to a full bank are lost. If the token
bank contains a token when a call arrives, then the call
is allowed to pass through the throttle and the bank is
decremented by one token. If the bank does not con-
tain a token when a call arrives, then the call is
blocked and rejected.

3. DESCRIPTION OF THE ANALYTIC MODEL

We assume that calls arrive as a Poisson process, and
we make the following approximations to obtain a rea-
sonably accurate, though simple, analytic model of the
overload control schemes.

(A1) Let the steady state departure rate from a throt-
tle, given a constant control level, approximate
the true departure rate within monitoring inter-
vals with the same control level.

(A2) Let the distribution for the number of calls
admitted during a monitoring interval depend on
the control level and on the Poisson call arrival
process.

(A3) Let the distribution in (A2) be Poisson.

For rate-control throttles, approximation (A2) ignores
the dependence on the state of the token banks at the
start of the monitoring interval. The Poisson assump-
tion in (A3) is not critical to the methodology. For
parameter values of interest, the expected number of
calls admitted during a monitoring interval is of the
order of a thousand. For these parumeters, the Poisson

distribution is close to the normal distribution. (If the
normal distribution were assumed with the same mean
and variance as for the Poisson, then the predicted
blockings would be unchanged to 3 significant figures.)
Rather, the important implication of approximation
(A8) is that the variance-to-mean ratio for the number
of calls admitted equals one. This is inaccurate for
rate-control throttles, as the ratio is less than one.

Despite the errors introduced by approximations (A1) -
(A3), the computed blocking probability is typically
within a percentage point of that from a discrete-event
simulation, Section 4.1. This good agreement can be
due to a partial cancellation of the errors introduced by
the approximations: the steady-state assumption (A1)
leads to a more "regular” arrival process to the CM,
while the assumed higher than actual variance-to-
mean ratio in (A3) leads to a less regular arrival pro-
cess. Although (A3) is used, in ongoing work, we wish
to better characterize the arrival process to the CM,
given rate-control throttles. One could start with the
departure process from a single PM (which is
equivalent to the departure process from a D/M/I/K
queue, where the entities queued are the tokens, [6,7])
and then approximate the superposition.

3.1 Calculation of the Blocking Probability

Let A; equal arrival rate of calls to peripheral module i,
i € (1, ..., PM} and let the control levels be numbered
{0, 1, ..., N}. Control level 0 denotes that the throttle is
off: all calls are admitted to the CM and the throttles
are inactive. For control levels 1 through N, the throt-
tle is on, and level 1 corresponds to the most relaxed
throttle setting (highest arrival rate of tokens), and
control level N corresponds to the strictest throttle set-
ting (lowest arrival rate of tokens). For a given vector
of arrival rates A = {A,...,Apy/ and ignoring customer
retries for the moment, the fraction of calls blocked is
calculated via the following steps:

1. For each control level j, compute the steady state
throughput and blocking at PM i, denoted A;(j)
and b;(j) respectively, i=1, ..., PM, j=0, ..., N. See
Section 3.2 for details. From assumption (Al),
these steady state throughputs and blockings are
used to approximate the throughputs and block-
ings during a given monitoring interval. Note
that 4; = A;(0) > A(1)> ... > A;(N), and 0 = b(0) <
bi(i) < ... < bj(N). The sum of the throughputs
from t}},xﬁ PMs is the arrival rate to the CM:
YOS R

i=l

2. Given the arrival rate to the CM conditioned on
the control level, A (j), and using assumptions
(A2) and (A3), estimate the fraction of time the
throttle is at control level j, denoted ofj). See
Section 8.3 for details.

3. The blocking at PM i, denoted b;, is easily
obtained from the conditional blocking given the
control level, b;(j), of step 1 and the fraction of
time the throttle is at a given level, ofj), of step 2:



N
= ¥ b;(U)alj).

j=1
4. Given the b;’s, the overall blocking for the office is
equal to z b / Z A

i=l

The model incorporates customer reattempts via a sim-
ple retry model: each time a customer is blocked,
he/she retries with a given probability. The resulting
total offered load (first attempts plus retries) is approx-
imated with a Poisson process with an arrival rate
equal to the first offered load plus the portion of total
offered load that is blocked and retries. (For a more
detailed retry model, see Reeser, [8].) As the blocking
probability is, itself, a function of the total arrival rate,
a simple iteration is used. Let retry dengte the proba-
bility a blocked customer retries. Let A; equal total
arrival rate to PM i (firgt offered plus retries), and let A
equal the vector of the A;’s, Indicate the dependence of
b; on A via byA). The A’s are given implicitly by;
MN=XA | (1-bAyretry), i = 1, ..., PM. To compute A

one can use ’ the . iteration:
h(k+1) A / (1-b;Alk))retry), where A(k) is the k%
iterate and where b;(A(k)) is determined via steps 1-3
above.

3.2 Calculation of the Throughput & Blocking at each
PM, for Given Control Level

Let r(j) equal arrival rate of tokens at each of the PMs,
given the j** control level, j € {1, ..., N). In steady
state and for a constant control level by definition,
() = A x [1 - by(j) 1. Moreover, since each call that
passes through the throttle requires a token and
tokens either depart with a call or are lost from a full
token bank, then A;(j) also equals the rate that tokens
depart with calls., Thus:

AMG) = A x[1-b()] (1a)
= r(j)x [1 - Prob(token is blocked)]. (1b)

Using an embedded Markov chain at epochs just prior
to token arrivals, and assuming calls arrive as a Pois-
son process, we determine the Prob(token is blocked),
{6). The throughput and blocking of calls is then
known trivially from equation (1). One can get closed
form expressions for the Prob(token is blocked),
although the algebra becomes tedious as the token-
bank capacity increases. In any case, it is easily solved
for numerically. For small values of the token-bank
capacity, C, and letting “a" abbreviate A; /r(j):

ForC=1, M) =r(X1-e™)
. [ et
ForC=2, M()=r()|l——=
| l-ae
ForC=3 "6) )’1 e
orC=3, A()=r( " 120 e +%aZ e
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For C =4, M =rG)l1-e™ /(1-3ae™®
+2a2 ~2a éaae"&')}
ForC=5 AM()=r()1-e5 /(1-4ae™

+9 2,2 _4,.3

4 3,3 , 1 4 4
gae 33 e + )}
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3.2.1 Other Throttle Designs

If other throttle designs were used, then A;(j) and b;(j)
would be different functions of j. For example, with a
percent-blocking throttle, each arrival is blocked with a
given probability. In a typical design, bz(i) would be a
predetermined parameter value for each j, for instance,
by(1) might be 0.95. From the definition of throughput,
lg(}) is still given by equation (1a). As another exam-
ple, a call-gapping throttle closes for a deterministic
time interval, the gap size, g; after this interval, the
next call to arrive passes through and the throttle
again closes for the interval g. The gap-size could be a
set parameter for each control level, say g(j), and b;(j)
= Ag() / (1+2g(jy, for Poisson call arrivals. A
trivial, third example is the on-off (a.k.a. bang-bang)
throttle, where there are two control levels and b;(0) =
0 and b;(1) = 1. Of course, all of the above schemes
could have parameter values that depended on the PM
i, a8 well as the control level j.

3.3 Calculation of Fraction of Time Throttle is at
Given Control Level

Let L, equal the control level during the n** monitor-
ing interval, L, € {0,1, ... , N). When L, =j (j > 0),
then the token arrival rate to each bank is r(j). As
described in Section 2., at the end of a monitoring
interval, L, either increments up one level, does not
change, or decrements one level. Thus, L,,; is deter-
mined by L, and the workload that arrived during the
n® monitoring interval. Using the approximation
(A2), the workload that arrived during the n** monitor-
ing interval just depends on L, and the Poisson call
arrival process. Hence, L, is the state of a Markov
chain. The equilibrium vector for this Markov chain is
the fraction of time the throttle spends in each level,
ie., the vector o= (c(0), ..., {N)). The remainder of
this section presents the above points in greater detail.

Let N, ea the number of calls admitted to the CM
during n** monitoring interval. N, dependsonL,. and
the state of the token banks at the start of n* monitor-
ing interval. From approximation (A2), we ignore the
latter dependence and write N, as N(j) to denote the
numberofcallsadmttedtotheCMdnnnganarbl
trary monitoring interval, given that the control level
is j. By approximation (AS8), N(j) has a Poisson distri-
bution. Let X; equal the processing time of the i** call
admitted during a monitoring interval. Assume the
X;'s are independent and identically distributed (ii.d.)
and are independent of N(j). The distribution for X;
models the traffic mix. For instance, the processing
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time for a particular type of call might be roughly
deterministic, in which case the distribution for X;
could be chosen to be discrete with each point mass
corresponding to a different type of call. The workload
adﬁged to the CM during the n** monitoring interval
is ¥ X,

inl

Let p° be the occupancy allocated for call processing at
the CM. "For hysteresis, let p* be the threshold occu-
pancy for the thiottle to turn on, or increment to
stricter control level. Likewise, let p? be the threshold
occupancy for the throttle to decrement to a more
relaxed control level; p? < p® < p*. With 1 representing
the length of a monitoring interval, the monitor
operates as follows:
f NL,)

if ¥ Xi>vwp*
min(L, +1,N) i=1

N&L)
Ly = {max(L,-1,0) if ¥ X; <tp? (2)
i=1

L, otherwise

As an aside, to implement e%u(%.tion (2) presumes that

the CM knows the value of ¥ X; at the end of the
i=l

monitoring interval or, equivalently, that the process-

ing times are known when the call arrives to the CM.

If this does not pertain, then a close approximation

would be to monitor the work processed during the

interval.

Let p(j) equal the probability the throttle decrements,
given that the throttle setting has been at level j dur-
ing the just completed monitoring interval, j e (i, ...,
N}. Likewise, let g(j) equal the probability the throt-
tle increments given the throttle has been at level j, j e
{0, ..., N-1}.

NG

P () =Prob( iZIXi > ") (3a)
NG

g()=Pro ¥ X; < 1p%) (3b)

in]

Thus, to determine the p(j)’s anslv (/)’s, one needs to
calculate the tail probabilities of 3 X;. Since the Xi’s

i=1
are ii.d. and independent %‘ N(j), then the Laplace-
Stieltjes Transform (LST) of Y. X; equals the probabil-

il
ity generating function of N(j) evaluated at the LST of
X). Thus, one can use a numerical algorithm such as
[9) to obtain the tail probabilities from the LST, and
thus calculate p (j) and g ().

The illustrative example in Section 4. considers the
simple scenario where the processing times are deter-
ministic. In this case, equation (8) simplifies to:

P()=Prob( N(j) > p*/processing time)
q(7)=Prob( N(j) < tp% / processing time)
Given the p(j)s and g (j)s, the equilibrium vector for

the Markov chain (L,} can be determined by the well-
known iteration:

i+1) = <49 o) = -
oj+l) = PG+D ofj) j=0,..,N-1 (42)
N ok og(j-1) -1
where of0) = [1+ ¥ ] - (4b)
k=1 j=l j10))

Although the iteration (4) is standard, it is numerically
awkward to use for the present model. Given any vec-
tor of arrival rates, A, then, with high probability, the
throttle moves amongst only a subset of the control lev-
els. Thus, numerically some of the p (j)’s and q (j)’s are
computed to be zero, and the Markov chain is reduci-
ble, with one irreducible class. To use a variant of (4),
one would first need to determine which states are in
the irreducible class. This is not necessary with the
following alternative algorithm, which also correctly
computes to be zero those ofj)’s that correspond to
transient states. First, compute:

N
o(0)= [T pk) (52)
k=l

j-1 N
ofj) = k]'[ qk)- TI p(k) forj=1,...,.N-1 (5b)
=0

kaj+l
N-1
olN) = [T q(k) (5¢)
k=0

Second, normalize a to 1.

3.8.1 Other Monitor Designs
When the throttle turns on, it need not start at level 1-

it could enter at a higher level to yield a faster tran-
sient response. (However, the deleterious affect of false
alarms would also increase.) Also, the monitor could
have more than two thresholds, and the control level
could increment or decrement by more than one level.
With these changes, equations (4) and (5) would no
longer hold. However {L,} would still be a Markov
chain and the equilibrium vector could still be deter-
mined numerically.

4. ILLUSTRATIVE RESULTS

To illustrate the model, consider a generic example
with the hypothetical parameter values given in
Table 1 below. An office capacity of 250,000 calls/hour
means that if that load were admitted to the CM, then
the occupancy from call processing would be p°. Asa
base case, assume no customer reattempts, a balanced
loading across the PMs, and Poisson call arrivals with
constant A throughout the busy hour. Each of these



assumptions is relaxed in turn in Sections 4.2 - 4.4.

Parameter Value
Office capacity 250,000 calls/hour
Number of PMs 50
Token-bank capacity 5 tokens
No. of control levels 8
r(1) 7,000 tokens/hour
r(2) 6,500 tokens/hour
r(3) 6,000 tokens/hour
r(4) 5,500 tokens/hour
r(5) 5,000 tokens/hour
r(6) 4,000 tokens/hour
r(7) 3,000 tokens/hour
r(8) 500 tokens/hour
1 20 seconds
o 52%
p° 50%
p? 48%
Table 1.

4.1 Accuracy of Model

Table 2. compares the blocking probability predicted by
the model with that from a discrete-event simulation.
Consistent with the model, the simulation uses Poisson
call arrivals, the token banks and monitor of Section 2.
and the parameter values in Table 1. However, the
simulation does not use the simplifying assumptions
(Al) to (A8); rather, it tracks the progress of each call,

OFFERED LOAD FRACTION BLOCKED

Arrival Rate / Model | Simulation Ideal

Office Capacity 95% conf. int,
1.00 .014 005 £.001 .000
1.02 022 020 £.002 020
105 047 047 £.002 .048
1.10 091 .092 £ .001 091
1.20 .167 1711 .002 .167
1.50 337 .336 £.002 .338
2.00 .503 .500 1 .001 .500

Table 2.

Table 2. also contains the "ideal" blocking, which is
defined to be the fraction blocked such that the admit-
ted load equals the office capacity, given that the
offered load is above capacity. Le., the ideal blocking =
max( 0, 1 - (office capacity) / (call arrival rate) }. Note
that although the call arrival rate when averaged over
a period such as an hour may be below the capacity
and the ideal blocking (as defined above) is zero,
congestions can still occur during shorter periods of a
few minutes. Depending on the circumstances, the
activation of the overload control may or may not be
appropriate. For the throttle design herein, the ana-
Iytic model does estimate the blocking during these
random congestions.

Table 2. shows that overall the blocking predicted by
the model is close to the true (simulated) blocking.
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However, the model does give a high estimate for the
blocking at capacity: 1.4% versus .5%. Similar results
were obtained with other parameter values. Com-
parison of the predicted blocking with the ideal block-
ing shows that the throttle performs quite well.

4.2 Customer Retries

Customer retries can significantly affect the blocking
seen at the switching system. Figure 2. shows the
dramatic increase in blocking when customers retry
with a .5 or .8 probability, as compared with no reat-
tempts. Thus, an important feature of the present
model is that it enables switching system engineers
and administrators to estimate the impact of customer
reattempts.

05 FINDEXED BY CUSTO/ME/R RETRY PROBABILITY
/
04 | RETRY = 8/
/ RETRY =.5
03 |

02 |

01 ¢

00 g

CmxROOMrMwW ZO=~-0O>»%T

0.9 10 1.1 12 13 14 15

FIRST OFFERED LOAD / OFFICE CAPACITY
Figure 2. Load-service curves: customer reattempts.

4.8 Load Variation Across the Peripheral Modules

Consider a generic scenario where the PMs are parti-
tioned into two groups, and the call arrival rate is the
same o each PM within a given group but differs
between the two groups. In particular, suppose one

05 [ OFFERED LOAD ATEACHOF 10PM'SIS™
1.5 TIMES THAT ON EACH OF 40 OTHER PM'S
04 I .. BLOCKING AT THE SET.OF 10 PM'S
— AVERAGED OVER ALLPM'S
03

| -- BLOCKING AT THE SET OF 40 PM'S

02 }

01 |

00 |F—/——

vmROAOrw ZO=-HO» X'

09 1.0 L1 12 13 14 15
OFFERED LOAD / OFFICE CAPACITY
Figure 3. Load-service curves: imbalance in load.
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group contains 10 PMs, the other contains 40 PMs, and
the arrival rate per PM in the first group is 1.5 times
the arrival rate per PM in the second group. As shown
in Figure 3., the model can estimate the higher (lower)
blocking on the more (less) heavily loaded PMs. As an
aside, the overall blocking almost coincides with that
for a balanced loading across the PMs, except the
blocking is higher in the unbalanced case for loads
below capacity.

4.4 Load Variation Within the Busy Hour

Suppose calls arrive during the busy hour as a non-
stationary Poisson process. In particular, suppose that
the busy hour can be partitioned into sub-periods
where within each sub-period A is constant but
between sub-periods A jumps in value. (This supposi-
tion could be used for analyzing counts of call attempts
in switching systems that collect measurements over
15 minute intervals.) Applying the approximations
(A1) - (A3) to each sub-period within the busy hour, the
model estimates the blocking probability within each
sub-period. The overall blocking is then estimated by a
weighted sum of these probabilities, where the weights
are the expecied nvmber of call attempts during the
sub-period divided by the expected number of attempts
during the whole period. As an illustration, suppose
the call arrival rate is at a high value during the first
15 minutes of the busy hour and then drops to a lower
value during the remaining 45 minutes.

F

" 020 RATIO OF CALL ARRIVAL RATE DURING
ph FIRST 15 MINUTES TO THAT DURING
T oxs | REMAINING 45 MINUTES IS:

1 120 ----
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L

o 0.05
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E 00 [ ) . . . . ,
D

090 095 1.00 1.05 1.10 115 1.20
OFFERED LOAD / OFFICE CAPACITY

Figure 4. Load-service curves: load variation
in busy hour

As shown in Figure 4., for loads around capacity the
blocking is higher than for the case of constant arrival
rate. Mathematically, one is computing a linear combi-
nation of the blockings from the case of constant
arrival rate. (Note: the axes are scaled differently from
Figures 2. and 3.)

5. CONCLUSIONS

A probabilistic model has been presented that calcu-
lates load-service curves for a class of dynamic overload
controls in distributed switching systems. For rate-

control throttles at the peripheral modules and a work-
load monitor with hysteresis at the central module, we
showed that the blocking predicted by the model
matches closely with that from a discrete-event simula-
tion. Also, the comparison of the predicted blocking
with the ideal blocking showed that the overload-
control scheme performs quite well. Illustrative load-
service curves were presented for hypothetical
scenarios of customer retries, imbalances in load across
the peripheral modules and variations in load within
the busy hour.
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