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DISTRIBUTION OF PROCESSOR-SHARING CUSTOMERS FOR A
LARGE CLOSED SYSTEM WITH MULTIPLE CLASSES*

ARTHUR BERGER! AND YAAKOV KOGANt

Abstract. A closed processor-sharing (PS) system with multiple customer classes is considered.
The system consists of one infinite server (IS) station and one PS station. For a system with a
large number of customers, a saturated PS station, and an arbitrary number of customer classes,
asymptotic approximations to the stationary distribution of the total number of customers at the
PS station are derived. The asymptotics for the probability mass function is described by a quasi-
potential function, which defines the exponential decay for the distribution, and a state-dependent
preexponential factor. Both functions have an explicit expression in terms of the solution at each
point z of a polynomial equation whose order equals the number of classes and whose coefficients are
explicit functions of z. The quasi-potential function at its minimum point provides the logarithmic
asymptotics for the normalization constant, and the asymptotic approximation for the variance is
inversely proportional to the second derivative of the quasi-potential function at its minimum point.
The complementary probability distribution is computed using the normal approximation and its
refinements, which do not require repeated solution of polynomial equations. Numerical results
demonstrate the range of applicability of the approximations. The results can be applied to the
problem of dimensioning bandwidth and of admission control for different data sources in packet-
switched communication networks.
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1. Introduction. This paper is motivated by a new application of closed queue-
ing networks (CQN) with a large number of customers. The application is the dimen-
sioning of bandwidth and of admission control for different data sources subject to
feedback control in packet-switched communication networks when available band-
width at the network nodes is shared between all active sources. Data sources are
modeled by an infinte server (IS) station, network nodes are modeled by processor-
sharing (PS) stations, and a “customer” in the PS station represents an active data
source. We consider a CQN that consists of one IS station with multiple customer
classes and one PS station. The distinguishing property of the new application is that
this CQN model is valid only if the PS station is saturated; see [3] for further details.
The saturated station is defined asymptotically as the station, where the number of
customers grows proportionally to the total number of customers in the network as
the latter increases with service rates at the PS station.

The application includes the performance metric that the bandwidth received by
an active data source at a given network node is greater than a target value with
probability 1 — a, where « is in the range of 0.001 to 0.1. As the network nodes of
interest have a packet-based implementation of PS, the performance metric can be
restated as the number of active data sessions at a network node (the total number of
customers at the PS station in the CQN model) is less than a target value with the
given probability 1 — a. As the above probability will be calculated in the context
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of network planning and of network operations, the calculation will need to be done
often and quickly.

The steady-state per-customer-class queue length distribution in our CQN has a
product form which is defined explicitly up to the normalization constant. However,
the total number of PS customers is not a Markov process, which complicates compu-
tation of its steady-state distribution, especially when the total number of customers
in the network is large. In this paper, we derive the asymptotics for the probability
mass function of the total number of customers at the PS station. These asymptotics
are described by a quasi-potential function [8] F(z), which defines the exponential
decay for the distribution, and a state-dependent preexponential factor f(z). Both
functions have an explicit expression in terms of the solution at each point z of a
polynomial equation whose order equals the number of classes and whose coefficients
are explicit functions of x. The logarithmic asymptotics for the normalization con-
stant is given by —F'(z*), where z* is the minimum point of F(z). In [11, 12] similar
results were derived for M/M/1 and M/G/1 state-dependent queues with a single
customer class. With multiple customer classes, the quasi-potential function is easily
derived only for Markov processes with a product-form stationary distribution [22] [1,
Chapter 4] .

Using the asymptotics of the probability mass function one can easily derive for
the complementary probability distribution the normal approximation and its refine-
ments. The advantage of these approximations is that they do not require repeated
solution of polynomial equations as in the case of direct summation of probabili-
ties approximated by their asymptotic expressions. In particular, the mean and the
variance of the normal approximation are proportional and inversely proportional to
the minimum point z* of F(z) and to the second derivative F”(z*), respectively.
Their calculation requires only the solution of the polynomial equation that defines
the asymptotics of the normalization constant [16]. The parameters of the normal
approximation can be also derived from the multidimensional normal approximation
[22], [1, Chapter 4] for the number of customers of different classes at the PS station.
However, our expression for the variance is much simpler.

There are two main approaches to the asymptotic expansion of the steady-state
distributions in CQNs with large numbers of customers. One is based on the Wentzel-
Kramers-Brilbuin (WKB) method applied to the forward Kolmogorov equation for
the probability distribution [11, 12]. Its application in our case would require consid-
eration of an auxiliary multidimensional Markov process and complicate the analysis.
Therefore we follow another approach, which is based on generating functions and
integral representations [5, 15, 16, 17, 18, 19, 4, 13, 14].

In section 2, we start with the exponential generating function for the probabil-
ity distribution of the total number of customers at the PS station. This generating
function is one-dimensional, and it has an explicit form up to the normalization con-
stant. This allows us to derive the asymptotics of the probability mass function in a
direct way similar to [13, 14, 4] by evaluating the Cauchy integral by the saddle-point
method. The final result is derived by proving that —F(z*) gives the logarithmic
asymptotics for the normalization constant. We conclude section 2 with remarks on
simplification and generalizations of our approximations. In section 3, we refine the
normal approximation for the complementary probability distribution and provide
numerical results illustrating the accuracy of our approximations.

2. Asymptotics of the probability mass function. We consider a CQN
which consists of one IS station and one PS station. There are K customer classes
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with Ny customersinclassk, k=1,... ,K,and N = Zk L Ni. Let A;! be the mean
think time of a customer of class k and let My =1 be the mean service time for a class-k
customer at the PS node. Let Qj be the random variable for the steady-state number
of class-k customers at the PS node. It is known (see, e.g., [9]) that the steady-state
probability distribution Pr{Q, = n1,... ,Qk = nk} has a product form

(21) Pr{Ql =N1y... 7QK = nK} - H (Nk —_ nk)' rkk

where n = 2,’;1 Nk, Tk = A\ /ur and G is the normalization constant.
Denote by @ = Zf=1 Q. the total number of customers at the PS node, and let

P(n)=Pr{Q =n}= Z Pr{Q, =ni1,... ,Qx =nk}

ny+--$ng=n

be its probability mass function. In general, the above sum does not seem to be
reduced to a product of functions depending only on n and/or network parameters.
However, the exponential generating function P(z) for the sequence P(n) has the
following simple expression:

(2.2) P(2) = Z P(n)——— =G! 1‘[(1 + rr2)V,

n=0

which is easily derived from (2.1) and definitions of P(n) and P(z). Using the Cauchy
formula, we obtain for P(n) the following integral representation in complex space:

1,1 [ I, +rez)Ne
= —nl— k=1
(2.3) P(n) el Zwif provs dz,

where C is any circular contour around z = 0.
We study the asymptotics of P(n) under the following two assumptions.
(1) The total number of customers in the network N = ZkK=1 N is large, i.e.,
N > 1, and moreover

(2.4) Pk = NTk and QE = Nk/N,

where pi and ai, k =1,..., K, remain bounded as N — oo.
(2) The PS station is saturated, which is expressed by the following very heavy
usage condition [16, 19]:

K
(2.5) Zakpk > 1.
k=1

These assumptions appropriately capture the region of interest for the application of
data transport in packet-switched communication networks. A current trend of higher
speed transmission facilities implies faster service, i.e., large ug. Correspondingly,
the number of data sources N is roughly growing in proportion to the increasing
transmission speed. Thus, the natural asymptotic regime to examine is large N and
small ri, where the product is constant, as in (2.4). In addition, for determining
session admission control policies or for dimensioning of link capacity, the traffic
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scenarios of relevance, represented in the model by pg, are ones of high load, where
the transmission link is a constraining resource. In the context of the model, this
corresponds to the PS station being saturated as in (2.5).

Changing the variables u = z/N in (2.3) and using (2.4) we get

! K Ni
Py=1m L Hima (L + o)™
G N™ 27 Jiyj=1 un+l
(26) = tmae b () ep(NS@)d
. =GN "om it /u) exp u)}du,
where
K
2.7 S(u) = Zak In(1 + pru) —zlnu
k=1

and £ = n/N. We derive an asymptotic approximation for P(n) as N — co, while
= zN, where z € (0,1) is a constant. Using Stirling’s formula, we can express the
second factor in P(n) as

2.8) T = VImexp{Nlzlnz ~ 2}t + O(1/m)].

The asymptotic approximation to the contour integral in (2.6) is obtained by the
saddle-point method. For each z € (0,1) there is a unique positive solution u,(z) of
equation

K
2.9 Sy =S 2Pk _Z _)
(2.9) (u) ;1+pku -

on the real axis, where the prime denotes derivative. The uniqueness is implied by
211;1 ar = 1. Note that (2.9) can be transformed to a polynomial equation of order
K whose minimal positive root is u,(z). Rewriting (2.9) into the form

(2.10) XK:a _Prto(@) z

k —
=T 1+ pruo(z)

one can see that

K 2
(2.11) 5" (uo(z)) = u%(x) (’” -2 o (1 ikz:éx()x)) ) >0
° k=1 °

Hence, S(u) has a minimum on the real axis at © = u,(z).
From (2.7) with u = re®, 0 < 6 < 2,

K
Re S(u) = Zak In|(1+ pru)| —zlnr
k=1
K
(2.12) <Y eln(l + pir) ~ zlnr,
k=1
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with equality only for 8 = 0. Hence,

lmla=.):RJe S(u) = S(r).

Since S(u) has a minimum on the real axis at u = u,(z), it follows that

min max Re S(u) = S(u,(z)) = max Re S(u).

T |ul=r lul=uo(z)

This implies [7] that |u| = u,(z) is a saddle-point contour, and u = u,(x) is the only
saddle point on it. By the saddle-point method 7]

1 exp{NS(u)} , _ exp{NS(uo(z))}
@1) o }[ul T e = TR Sl fua(a) + O/

Thus, from (2.8) and (2.13),

(2.14) P(n) = —exp{ NF(n/N)}(f(n/N)+ O(1/N)),
where

(2.15) F(x) =z —zInz — S(uo(x))

and

1 T
uo(z) Y 5" (uo(z))

To complete the asymptotic approximation of P(n) we need an asymptotic approxi-
mation for the normalization constant G. It is proved in [16} that under conditions
(2.4) and (2.5)

(2.17) G=G(N)= Ne‘”"""\/zfr—l (1 +0 (N)) ’

where

(2.16) flz) =

K
(2.18) hir)=1— Z o In(1 + px7),
k=1

z* is the single positive root of equation h'(7) = 0 and

(2.19) = h'(z*) = 2 N f’;: b 5

Finally, we prove that z* minimizes F(z) and
(2.20) F(z*) = h(z*).

Denote the minimum point of F((z) by z° and consider the first-order condition
F'(z) = 0. Using (2.9), we have that

(2.21) F'(z) = —Inz + Inu,(z)
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and therefore z° = u,(z°). Thus, from (2.9) we have the following equation for z°:

K
o Pk
2.22 1- —— =0
2) S
1
Hence, 2° = z* since the left-hand side of (2.22) is h'(z) and (2.22) has a single
positive root. The equality (2.20) is now obtained by substituting u,(z*) = z* into
(2.15).
Substituting (2.17) with h(z*) = F(z*) in (2.14) we arrive at the following propo-
sition.
PROPOSITION 2.1. Let conditions (2.4) and (2.5) be satisfied and N — oo while
n = Nz, where both x and 1 — = are O(1). Then the probability distribution of the
total number of customers at the PS station has the following asymptotic expansion:

(228)  Pr{Q=n) =/ 5oz S (n/N) exp{~N(F(n/N) ~ F(z))}(1 + O(1/N),

where x* is the single positive root of (2.22) while A and functions F(-) and f(-) are
defined by (2.19), (2.15), and (2.16), respectively.

COROLLARY 2.2. The function F(z) defines the logarithmic asymptotics of the
probability distribution P(n) = Pr{Q = n} in the following sense:

lim 2P0 _

Jim 2 = (F(z) - F(z")).

Moreover, F(z*) defines the logarithmic asymptotics of the normalization constant
G =G(N):

. InG(N) .
iy A

Following [8] the function F(z) is referred to as the quasi potential for the dis-
tribution P(n). For a general birth and death process with fast transition rates, the
quasi potential satisfies a nonlinear differential equation (see [8]), which has an explicit
solution only in some particular cases, e.g., for product-form CQNs. Proposition 2.1
provides an example of a non-Markov process, where the quasi potential either can
be found explicitly or easily computed.

We conclude this section with remarks on simplification and generalizations of
our approximations.

Remark 2.1. Representation (2.23) implies (see [22]) that

Q- Nz~
vN
is asymptotically normal with mean 0 and variance

2 1

0= ———

FII (:B* ) 4
where

F'(z*) = AQ —z*A)!
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was calculated using (2.21). Note that o2 can be also calculated from the multidi-
mensional normal approximation for the K classes at the PS station given in [22, 1].
However, such a calculation produces a very cumbersome expression.

Remark 2.2. There are two cases K = 1 and K = 2, where the equation for u,(z),
(2.9), and z*, (2.22), are, respectively, linear and quadratic, which leads to explicit
expressions for the quasi-potential F(x) and function f(x). Moreover, for K =1 the
distribution function for the number of customers at the PS station is expressed as
the ratio of two partition functions, and its asymptotics is derived in a much simpler
way in our recent paper [3].

Remark 2.3. The results of this paper can be generalized. First, Proposition
2.1 can be generalized for a bottleneck PS station [2] in CQNs with two or more PS
stations. Second, similar results can be obtained in the context of loss networks [10]
for the distribution of the number of busy circuits for a link with normal load. We are
pursuing this work and hope to report on the resuits subsequently. A more difficult
problem is to derive multidimensional asymptotic expansions that are pertinent to
the case of several bottlenecks.

3. Asymptotics of the distribution function. In applications we need to
evaluate the complementary distribution function

N
(3.1) ¥(m) =Pr{Q >m} = Z P(n)

n=m+1

in the range of m > Nz*, where ¥(m) > 10~3. Computation of ¥(m) using ap-
proximation (2.23) for P(n) would require repeated solution of (2.9) whose root has
a simple explicit form only for K < 2. Therefore in this section, we give numeri-
cal examples that demonstrate the accuracy of the normal approximation and show
the gain in accuracy obtained by refining the normal approximation. We refine the
normal approximation by approximating the sum in (3.1) by an integral using the
Euler-Maclaurin formula {21} applied to function

(3-2) 9(n) = g(n; N) = f(n/N) exp{—Nh(n/N)}

on the interval [m, M], where h(z) = F(z) — F(z*) and 0 < M —m = O(N), 0 <
N —M = O(N). Let a = m/N be sufficiently close to z* so that F'(e¢) < ¢ < 1. Then
by the Euler-Maclaurin formula, the sum Zf___m g(n) is asymptotic to

M = (2l By
(3.3) /m g(t)dt + 0.5g(m) — ;g@ l)(m)le_)!’
where B, are the even Bernoulli numbers. To leading order as N — oo, we have
(3.4) g@=D(m) ~ —g(m)[F'(a)}* .
Using (3.4) and noting that
oo
we have
d b 1 1
(3.5) n; g(n) ~N /a f@)e""*@)dg + g(a) [1 o F@ =1 F (a)] :
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Using for the integral in (3.5) the uniform asymptotic expansion [6, 7], we finally
obtain

Pr{Q >m} ~ %erfc {\/N(F(a) - F(I*))}

exp{N(F(z*) - F(a))}

2N
a4 2872 - f(e)[Fa) - F(z)]'/2[F'(a)) !
39) « (@ + [F(a) — FG@) 72 )
where
H(a) = 1 1 0.5+> 2, L{,—_é%‘,—

TF@ ep(F@I-1 1452, o

F'(a) is calculated from (2.21) and

2 X _ 2
erfc(z) = ﬁ/ e ¥V dy.
z

We conclude this section by illustrating the accuracy of our approximations with
numerical examples. All examples are computed for two customer classes, and where
N, = N, and for the load parameters p; = 1, po = 3, and p = oqp1 + agp2 = 2.
The total number of customers N = Nj + N, is varied (N = 50, 100, 200), while r;
is adjusted to keep p; fixed, i = 1,2 (see (2.4)). Table 3.1 reports four calculations
for ¥(m) = Pr{Q > m} for various values of m. The first calculation is the normal
approximation given in Remark 2.1; the second is the first term (the erfc(-) term) of
the asymptotic approximation (3.6); the third is the two terms, i.e., the entirety, of
the asymptotic approximation (3.6); and the fourth is the exact value, numerically
computed from (2.1). For each choice of N, the first value of m is the smallest
integer that is greater than Nz*, and thus is the smallest value of m for which the
approximations could pertain. The subsequent three values of m are the integers
where the true value of Pr{Q > m} is closest to 10~% for k = 1,2, 3, respectively.
These probabilities cover the range of interest for the application of dimensioning
bandwidth in packet-switched communication networks. The fifth value of m is the
first value of m plus 0.3N, which tests the range of the asymptotic approximation.
For the first listed value of m for each N, the normal and the first term approx-
imations are accurate to one significant digit only. However, with the two terms the
accuracy jumps to four significant digits. For larger values of m, we see that the first
term in (3.6) becomes significantly more accurate than the normal approximation,
and that the inclusion of the second term in (3.6) provides a further, significant im-
provement. For example, for the fourth value of m for each N, which corresponds to
the most stressful case for the intended application, the error of the normal approxi-
mation ranges from 170% to 70% as N increases, while the error from the first term
is significantly less and is in a more narrow range from 32% to 13%. The inclusion of
the second term reduces the error significantly to only 0.06% to 0.006%. As one would
expect, the accuracy of all of the approximations increases with N. In contexts where
a rougher approximation is adequate, and particularly for the less strict performance
criterion corresponding to Pr{Q > m} ~ 10~, the normal approximation is suitable.
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TaBLE 3.1
Comparison of three approximations.

Pr(@>m)
N m Normal Firstterm Two terms Exact
approx. approx. approx.
50 22 4767 .4766 45158 .45155
28 .100 .092 08117 .08115
32 .0180 .0130 .010618 .010614
35 .0034 .0016 .0012554 .0012546
37 9.2e-4 3.0e-4 2.127e-4 2.125e-4
100 44 46704 .46699 .449230 .44928
52 .108 .103 1094720 .094712
59 .012 .0095 .008283 .008282
63 .0024 .0014 .0011863 .0011861
74 5.3e-6 5.9e-7 4.318e-7 4.317e-7
200 87 .493973 .493972 .48146 .48145
99 .108 .104 .098381 .098378
109 .012 .010 .0091272 .0091268
116 1.5-e3 9.9e-4 8.7684e-4 8.7679-4
147 4.5e-10 7.7e-12 5.715e-12 5.711e-12

However, when greater accuracy is needed, the two terms approximation provides
three to four significant digits, which is easily sufficient for the intended application,
and furthermore has the desirable attribute of being a closed-form expression that
allows for easy computation.

Results for the last value of m for each N demonstrate the uniform accuracy of
the two terms approximation (3.6). Here @ = m/N is not close to z*, as a —z* > 0.3.
Note that for these values of m the normal approximation can be in error by orders of
magnitude (see N = 200, m = 147), while the first term of (3.6) has the correct power,
but no significant digits. In contrast, the two term approximation retains an accuracy
of three significant digits. Therefore we do not need further refinement similar to one
given in [20].
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