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Overload Control Using Rate Control Throttle:
Selecting Token Bank Capacity for Robustness
to Arrival Rates

Arthur W. Berger

Abstract—This note provides new insights that ease the design of rate
control throttles, which are used for overload control of computer and
communication networks. A key result is that if the token bank capacity
is 10 or more and if jobs arrive as a Poisson process, then for many
practical applications in digital switching systems and telecommunica-
tion networks, the control settings can be set independent of the arrival
rate and need only be adjusted for changes in the desired departure rate.

1. INTRODUCTION

The purpose of this note is to assist future implementations of rate
control throttles by giving new insights into the role played by the
capacity of the token bank.

A rate control throttle is used for input regulation in overload
control of computer and communications systems to block and reject
arriving jobs when the arrival rate is beyond system capacity [1],
[2]). As defined herein, a rate control throttle contains a token bank
where, internal to the throttle, tokens arrive at a deterministic rate
from an infinite source (see Fig. 1.). This rate is the control variable
of the throttle. The token bank has finite capacity and tokens that
arrive to a full bank are blocked and lost. The capacity of the token
bank is a design parameter that is typically constant during the
operation of the throttle. If the bank contains a token when a job
arrives to the throttle, then the job is allowed to pass through, and
the bank is decremented by 1 token. If the bank does not contain a
token when a job arrives, then the job is blocked and rejected. (Note
that a rate control throttle differs from a sliding window fiow control
in that there is no constraint on the number of outstanding tokens;
rather, tokens are used once and do not circulate back to the token
bank.) Typically, during normal nonoverload conditions, the throttle
is not turned on, and arriving jobs are not affected. When a monitor
detects an overload, the throttle is activated and remains on until the
monitor determines the abeyance of the overload. The initial respon-
siveness of the throttle can be tuned by the number of tokens placed
in the token bank when the throttle is activated.

Doshi and Heffes study the rate control throttle in the context of a
star topology network with a monitor at the central node and
throttles at the peripheral nodes [1]. (They also make a comparison
with sliding window flow control.) For a similar network configura-
tion, Kumar describes a monitor that uses stochastic approximation
to update the control settings [2]. In [1] and [2], the arriving jobs
constitute requests to initiate a user’s call or session. In contrast,
Eckberg et al. [3] use a leaky bucket (which is almost isomorphic to
a token bank) to regulate the packet flow during a session. The
throttle acts as a throughput-burstiness filter for asynchronous trans-
fer mode (ATM) cells of a broadband integrated services digital
network (B-ISDN). In this application, a monitor, such as in [1],
[2], is not used, and the parameters of the throttle are determined at
call setup and remain fixed for the duration of the call. Cells that
arrive to an empty token bank are not blocked but rather are
marked, are allowed through and may be discarded if a subsequent
node is congested. In [4], Sidi et al. also use a token bank for
B-ISDN where the celis that arrive to an empty bank are not marked
or blocked but rather are delayed in a job buffer. For Poisson job
arrivals, they determine the Laplace-Stieltjes transform of the dis-
tribution of the cell waiting times and interdeparture times. We also
have examined the case of delaying jobs in a buffer [5]. A key result
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Fig. 2. Normalized mean departure rate of jobs, X/r versus arrival rate,
given the control setting is fixed.

is that, for jobs arriving according to a Markovian arrival process!
and for tokens arriving according to a renewal process that is
independent of the job arrival process, then the probability that a job
is blocked depends on the capacity of the job buffer and the capacity
of the token bank only via the sum of the two capacities.

The contribution of the present note is to show a desirable
robustness feature of the rate control throttle that is of use in the
design of the overall control scheme. The robustness of interest is
with respect to the job arrival rate. An ideal robustness to job arrival
rates would be a single control setting (token arrival rate) where the
departure rate of jobs equals the desired maximum departure rate
for all arrival rates above the maximum desired departure rate, and
where the departure rate of jobs equals arrival rate for all arrival
rates below the maximum desired departure rate (see Fig. 2.). The
more robust the throttle, the less the control variabie need be
changed to compensate for changes in the exogenous arrival rate,
including the effect of retries by customers that previously had been
blocked and rejected.

In many applications, the control variable is updated periodically
and the arrival rate of jobs may change markedly within an update
interval. For example, if the jobs are requests to initiate a call or
session, then the users may reattempt if a previous request is
blocked, and the total arrival rate seen by the throttle can increase
significantly. Moreover, typically, the number of possible values for
the control setting is constrained and the designer must choose these
values with care. The more robust the throttle, the less the designer

ISpecial cases of the Markovian arrival process are phase type renewal
processes and Markov-modulated Poisson processes (for details, see [6]).
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need be concerned with the arrival rate of jobs, and the more the
designer can tune for changes in the desired departure rate.?

II. ANALYSIS OF RATE CONTROL THROTTLE

The token bank of the rate control throttle can be viewed as a
queueing system where the arrival process is the deterministic
arrivals of the tokens, and the server is the first waiting space of the
token bank. A service time (the time interval a token is in the first
waiting space of the token bank) is determined by the job interar-
rival times to the throttle. For a token that arrives to a nonempty
token bank and queues in the bank (i.e., is not blocked and lost), the
service time will be the interarrival time of a job. In contrast, a
token that arrives to an empty token bank resides at the head of the
bank until the next job arrives; thus, its service time is not a full job
interarrival time. (One can view the service process as continuing to
operate even when the system is empty, in analogy with the job
arrival process continuing to operate independent of the state of the
token bank.) If the job arrival process were a renewal process with a
general interarrival time distribution, then the service time of a
token arriving to an empty token bank, in general, would depend on
the epoch of the last job arrival. However, if the job arrival process
were a Markovian arrival process then at epochs just prior to token
arrivals, the joint state of the job arrival process and the number of
tokens in the bank constitutes an embedded Markov chain. For the
present note, we can bring out the conceptual points with a simple
process: assume that jobs arrive to the throttle as a batch Poisson
process with geometrically distributed batch sizes. That is, jobs
arrive in batches; the size of the batch has a geometric distribution
over the positive integers, and the interarrival times of batches are
exponentially distributed. Due to the memoryless property of the
exponential distribution, the time from the arrival of a token until
the arrival of the next batch of jobs is also exponentially distributed
and with the same parameter as the interarrival times of batches. If
an arriving batch of jobs is larger than the number of tokens queued
in the bank, then the token in service departs, and the remaining
tokens are served instantaneously, and the residual number of jobs
are blocked and rejected by the throttle. Thus, the token bank is
equivalent to a queueing system with deterministic interarrival times,
batch Poisson service times with geometric batch sizes, one server,
and a finite capacity (for a detailed discussion of such queueing
systems, see [7]).

Define the notation:

A = The mean arrival rate of jobs to the throttle.
¢?> = The squared coefficient of variation of interarrival times of
jobs.

A\, = The arrival rate of batches of jobs.

g; = The probability of j jobs in a batch.

p = The probability the interarrival time of jobs is zero.

r = The deterministic arrival rate of tokens to the token bank.

C = The capacity of the token bank.

XN = The mean departure rate of jobs that pass through the
throttle, i.e., jobs that are not blocked and rejected by the
throttle.

Since the jobs arrive as a batch Poisson process with geometric
batch sizes, then

g;=01-p)p’!

and the job interarrival time density is p - 8(0) + (1 — p))\,,e')‘b’,
where 5(0) is the delta function. Given A and ¢2, then A, and p are
uniquely determined and vice versa. In particular

2\ -1
ct+1’ T r+1

j=1,2,-

(1a)

)\b=

2In a star topology network with a bottleneck at the central node and
throttles at the peripheral nodes, the desired departure rate depends strongly
on: 1) the number of active sources at the periphery; 2) the availability of
resources at the central node, and 3) the service times of jobs.

)‘b 1+p
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Thus, the modeled job arrival process can capture the first two
moments of hypothetical job arrival processes that are assumed to be
renewal and with ¢ = 1. Moreover, speaking heuristically, over
the class of renewal processes with given first two moments, batch
arrivals would cause more *‘‘stress’’ on the system (for a discussion
of this point, see [5]). Thus, the affect of ¢ > 1 would be more
pronounced. Note that when p = 0, then the geometric distribution
becomes degenerate, and the batch Poisson process becomes the
Poisson process.

Since each job passing through the throttle requires a token and
since some tokens may be blocked and lost at a full token bank, then
X < r. Moreover, in steady state and for finite token bank capaci-
ties, N equals r times the fraction of tokens not blocked. Thus,

N = A x [1 — Prob(job is blocked)]
= r x [1 — Prob(token is blocked)] .

2

(2)

At epochs just prior to an arrival of a token, the number of tokens in
the token bank constitutes an embedded Markov chain on the state
space {0,1,2,---,C}. From the Markov chain, we can calculate
the equilibrium probability that an arriving token sees a full bank,
i.e., the probability a token is blocked. Then, using (2), we obtain
the throughput N and the probability a job is blocked. Let:

X, = The number of tokens in the token bank just prior to the
arrival of the kth token.

N, = The number of jobs to arrive in the interval between the
kth and k + 1st token arrivals.

= Prob(n jobs arrive during 1 intertoken arrival time) =
Prob(N, = n).

= Prob(at least n jobs arrive during 1 intertoken arrival
time) = Prob(N, = n).

The state evolution equations are
X =max(0, X, + 1 - N,) if X, <C.
X =max(0, X, —N,) if X, =C.

Since the intertoken arrival time is deterministic of length 1/r, then
A, can be determined iteratively by:

A, =e /"

(32)
n=0,1,2,-

(3b)

and B, is given by B, = ¥;_, A, [7]. The one-step transition
probability matrix of the embedded Markov chain, denoted P, is as
follows:

/T n
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From the form of P, we see that the embedded chain is irre-

*In steady state and for infinite token bank capacity, (2) continues to hold
for N > r, but does not hold for A < r. In the latter case, tokens are entering
the token bank faster than they are departing, and in ‘‘steady state> the
token queue is infinite, the Prob(token is blocked) = Prob(job is blocked) =
0, and X equals A and does not equal r.
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ducible, positive recurrent, and aperiodic. Hence, the chain is
ergodic, and its limiting distribution equals its stationary distribu-
tion. Let 7 = (my, m|," -, w.) denote the stationary distribution
determined by

(o4
aP=mr, Z1r,~=1. (4)
i=0

Thus =, equals the probability an arriving token is blocked, and the
throughput of jobs, XN, equals r(1 — «.). Note that since A,
depends on A, and r only via the ratio A, /r and since A\, = N1 —
p) [see (3) and (1b)], then the elements of P and hence =, depend
on A and r only via the ratio A\/r.

Given the form of P, (4) is easily solved numerically. For
instance, one can arbitrarily set 7. = 1, then solve for m,_, using
the last column of P, then solve for m._, using the second to last
column, and so on, and lastly, normalize the =;’s to 1. Also, one
can explicitly solve (4) to get closed form expressions for «, and
hence, X, but the algebra becomes tedious as C increases. For
C =< 4, we have the following:

XN=r(l-e™/"), forC=1
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III. ROBUSTNESS TO ARRIVAL RATES

Suppose the control r is fixed and set equal to the maximum
desired departure rate, and suppose that A\ varies. For Poisson
arrival of jobs, Fig. 2 shows the resulting departure rates, indexed
by the token bank capacity. Since x, depends on A and r only via
the ratio \/r, we can define a normalized mean arrival rate \/r
and a normalized mean departure rate X/r and the curves in Fig. 2
depend on A and r only via their ratio. Fig. 2 shows that by
increasing the token bank capacity C from 1 to just 3, the departure
rates are significantly closer to the ideal. For C = 10, the robust-
ness is very good. Note that in all cases the deviation from ideal is
greatest at A/r = 1. When C = 10, this deviation is only 5%. For
C = 20 and 30, the deviation decreases to 2.5% and 1.6%, respec-
tively.

There is practical significance to the almost ideal robustness to
variations in A, given Poisson jobs arrivals and C = 10. In many
applications in digital switching systems and telecommunication
networks, the control setting r cannot be set exactly equal to the
desired value because of the granularity in the possible values.

TABLE 1

Percent Deviation from Ideal of Departure Rate of Jobs

Jobs Arrive as a Batch Poisson Process, Geometric Batch Sizes
Arrival Rate of Tokens = Desired Departure Rate of Jobs

Capacity

of Token| N/r=1.1,¢*= | N/r=15,c2= |A/r=3.0,c2=
Bank 1 2 4 1 2 401 2 4
1 33% 48% 64%|22% 37% 55% | 5% 14% 30%
3 11% 21% 36%| 3% 10% 24%|0% 2% 11%
5 6% 13% 24%| 0% 3% 12%|0% 0% 1%
7 3% 8% 18%| 0% 1% 7%|0% 0% 0%
10 2% 5% 12%| 0% 0% 3%|0% 0% 0%
20 0% 1% 5% 0% 0% 0%|0% 0% 0%
30 0% 0% 3%| 0% 0% 0%|0% 0% 0%

Moreover, typically, the monitor for the overload only can estimate
the desired maximum departure rate. Thus, as a practical matter, the
above robustness of the throttle allows the monitor to update the
control setting based on the estimated desired departure rate and
independent of the arrival rate.

For jobs that arrive according to a batch Poisson process with
geometric batch sizes, Table I shows the percent the realized
departure rate is less then the ideal, for selected values of C, ¢2,
and A/r. (For ¢% = 1, the job arrival process is Poisson.) From
Table I, we see that as ¢? increases, the robustness of the rate
control throttle declines; nevertheless, it remains quite good for
C=10and ¢® = 2.

Although the robustness declines as c? increases, the resulting
lowered departure rate from the throttle may actually be an advan-
tage. The departure process from the throttle partially retains the
burstiness of the arrival process, and typically, a bursty departure
process is more stressful for the downstream system, in which case,
the appropriate mean departure rate from the throttle ought to be
lower to compensate for the burstiness. Of course, the lowered
departure rate may not be at the optimum level for the downstream
system, but at least the deviation is in the direction that causes a
desirable compensating effect.

A. Comparison to Percent Blocking and Call Gapping Throttles

A percent blocking throttle (also known as a proportional control
throttle) blocks and rejects an arriving job with a given probability
b. Thus, the mean departure rate from a percent blocking throttle is
M1 — b). A call gapping throttle closes for a deterministic time
interval, the gap size g; after this interval, the next job to arrive
passes through, and the throttle again closes for the deterministic
time interval. For Poisson arrivals of jobs, the interdeparture times
from a call gapping throttle have a delayed exponential distribution,
and the mean departure rate is A/1 + A,.

To compare the robustness of the throttle schemes, suppose the
control variables (r, b, g) are set optimally for an arrival rate twice
the desired departure rate. Suppose the controls are then held fixed
and the arrival rate varies. For Poisson job arrivals, Fig. 3 plots the
resulting departure rates. Note that the rate control throttle, even
with a token bank capacity of 1, is more robust to variations in A
than is either percent blocking or call gapping.

IV. ConcLusIONS

This note has examined the robustness of the rate control throttle
to changes in the arrival rate of jobs A. A rate control throttle with a
token bank capacity of just 3 yields substantially more robustness to
changes in A than a capacity of 1. For typical throttle designs for the
regulation of call setups and for Poisson job arrivals, if the token
bank capacity is = 10, then the control setting can be selected
independent of A and only needs to adapt to changes in the desired
departure rate of jobs. If the arrival of jobs is bursty (coefficient of
variation of interarrival times is greater than 1), then the robustness
declines but may remain quite good, depending on parameter val-
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Fig. 3. Mean departure rate of jobs, N versus arrival rate, given the

control is fixed and optimal for an arrival rate of 2 jobs per time-unit.
Parameter values: b = 0.5, g = 0.5, r = 1.255 for C = 1, r = 1.0002 for
C=>5.

ues. The rate control throttle with any token bank capacity is
significantly more robust to A than either a percent blocking throttle
or a call gapping throttle.

In special circumstances where the maximum desired departure
rate is known and unchanging, and where the job arrival process is
not bursty, then the rate control throttle can be implemented without
any monitor. The robustness to A is close enough to the ideal over
all values of A that a rate control throttle that was active at all times
would not unduly restrict jobs during normal, nonoverload condi-
tions. This is particularly useful when a monitor to detect the
overload is difficult or expensive to design or build. In more general
circumstances, the designer can use the robustness to A to more
finely tune the control settings for changes in the desired departure
rate.

However, due to transient effects, the designer should not make
the token bank capacity arbitrarily large, particularly if the throttle
is active at all times, or if many throttles in coordination are
controlling access to a network, each once located at a different
node. For A below r to slightly above r, tokens may appropriately
accumulate in the banks over a random period, and if \ were to
increase suddenly, then many jobs could pass through the throttles
before they begin to be restricting. The appropriate choice for the
token bank capacity obviously depends on the particulars of the
application; however, a range of 5 to 20 is likely to be appropriate,
at least as a starting value for the regulation of call setups.
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