
Entropy/IP: Uncovering Structure in IPv6 Addresses

Paweł Foremski
Akamai Technologies

IITiS PAN
pjf@iitis.pl

David Plonka
Akamai Technologies

plonka@akamai.com

Arthur Berger
Akamai Technologies

MIT CSAIL
arthur@akamai.com

ABSTRACT
In this paper, we introduce Entropy/IP: a system that
discovers Internet address structure based on analyses
of a subset of IPv6 addresses known to be active, i.e.,
training data, gleaned by readily available passive and
active means. The system is completely automated
and employs a combination of information-theoretic and
machine learning techniques to probabilistically model
IPv6 addresses. We present results showing that our
system is effective in exposing structural characteristics
of portions of the active IPv6 Internet address space,
populated by clients, services, and routers.

In addition to visualizing the address structure for
exploration, the system uses its models to generate can-
didate addresses for scanning. For each of 15 evaluated
datasets, we train on 1K addresses and generate 1M
candidates for scanning. We achieve some success in 14
datasets, finding up to 40% of the generated addresses
to be active. In 11 of these datasets, we find active net-
work identifiers (e.g., /64 prefixes or“subnets”) not seen
in training. Thus, we provide the first evidence that it
is practical to discover subnets and hosts by scanning
probabilistically selected areas of the IPv6 address space
not known to contain active hosts a priori.

1. INTRODUCTION
Understanding the structure of Internet addresses has

become increasingly complicated with the introduction,
evolution, and operation of Internet Protocol version 6
(IPv6). Complications arise both from (a) IPv6’s ad-
dress assignment features, e.g., stateless address auto-
configuration (SLAAC), in which clients choose their
own addresses, and from (b) the freedom allowed by
IPv6’s vast address space and enormous prefix alloca-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

IMC 2016, November 14 - 16, 2016, Santa Monica, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-4526-2/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2987443.2987445

tions from address registries, e.g., 296 addresses (by de-
fault) to each Internet Service Provider (ISP).

By empirical observation today, we see many address
complications in the large-scale operation of IPv6. As
of August 2016, estimates suggest that 11% of World-
Wide Web (WWW) users have IPv6 capability and use
it to access popular sites [16]. Yet, at this modest level,
measurements show billions of active IPv6 WWW client
addresses being used monthly, and tens to hundreds of
millions of IPv6 router addresses. Addresses often dif-
fer in the spatial and temporal characteristics from one
operator or network to the next [27]. Complications
that we observed include (but are in no way limited
to): addresses with Modified EUI-64 interface identi-
fiers that are curiously not tagged as globally unique,
stable addresses containing pseudo-random numbers in
their interface identifiers,1 and even addresses contain-
ing pseudo-random numbers in their network identifiers.
These are the sort of challenges we face with IPv6.

In this work, we study sets of IPv6 addresses and the
structural characteristics embedded within them. We
are primarily motivated by the challenges of widespread
native IPv6 operation (in parallel with IPv4), as it exists
today. First, WWW services often wish to deliver con-
tent differentially, e.g., based on a client’s geographic lo-
cation or its host reputation; understanding IPv6 struc-
ture would help determine how these IPv4 characteris-
tics might, likewise, apply to clients’ IPv6 addresses.
Second, security analysts wish to be able to assess IPv6
networks’ vulnerability to host scanning; since full IPv6
address-space scans are infeasible, new methods must
take its structure into account. Third, network opera-
tors, as well as engineers and researchers, wish to track
IPv6 deployment and growth to prioritize their work; a
systematic approach to deep understanding of IPv6 ad-
dress structure aids measurement interpretations that
clearly differ from IPv4 to IPv6, e.g., so that we prop-
erly recognize the significance of estimated subnet sizes
and measured active host and prefix counts.

The goal of our system, “Entropy/IP,” is to provide
a means by which one might remotely glean and un-

1The authors are aware of proposed addressing schemes in-
volving both randomized MAC addresses and stable privacy
addresses. These privacy mechanisms increase complication.

derstand a network’s addressing plan. Ultimately, we
would like to discover Classless Inter-Domain Routing
(CIDR) prefixes, Interior Gateway Protocol (IGP) sub-
nets, network identifiers, and interface identifiers (IID)
of each address. We employ three core techniques:
• Entropy Analysis: A key aspect of our system is

that it leverages information-theoretic entropy [30]. We
employ it to measure the variability of values at each of
32 positions of nybbles (i.e., hexadecimal characters) in
IPv6 addresses. We then compare the entropy of adja-
cent nybbles to detect significant differences, with the
expectation that these represent boundaries between se-
mantically distinct parts of each address. When there
are no significant differences, we group adjacent nyb-
bles together to form larger segments. For instance,
subnet identifiers or stateless address auto-configuration
(SLAAC) attributes might be formed of adjacent nyb-
bles that exhibit similar entropy.

We chose to compute the entropy of nybbles at a
certain position across a set of addresses as an aid to
understand the structure of these addresses. Here, we
are guided by our experience that “stateless” analysis
of individual address content is clearly error-prone, and
“stateful” analysis (spatial or temporal) has benefits as
Plonka and Berger [27] show. For instance, the rea-
sonable, but stateless, rules to detect pseudo-random
IIDs implemented in the addr6 tool [31], misclassify
2001:db8:221:ffff:ffff:ffff:ffc0:122a as having
a randomized IID even when it is accompanied by one
thousand other similarly constructed addresses in the
2001:db8:221:ffff:ffff:ffff:ff::/104 prefix. Con-
text is important for accurate understanding of address
content and entropy is an ideal metric to recognize por-
tions of addresses that contain information that might
be pertinent to address structure. For instance, oft
repeated bits—e.g., those f characters—may contain
hints about IID assignment practice, but contain lit-
tle information (in an information-theoretic sense) and
are, thus, unlikely to help in reverse-engineering net-
masks and subnet structure.
• Clustering: The second key aspect of our system

is that we employ unsupervised machine learning for
clustering of the segments’ values based on their distri-
bution and the frequencies of occurrence of those values.
We use the popular DBSCAN clustering algorithm [10].
• Statistical Modeling: The third key aspect of

our system is the use of Bayesian Networks (BNs) to
statistically model IPv6 addresses. In short, we auto-
matically determine conditional probabilities amongst
clusters of segments’ values in a hierarchical fashion,
i.e., directed left to right, across the address segments.
This aspect was motivated by painstaking experiences
in visual examination of large sets of IPv6 addresses.
It seems promising that a machine learning technique
could unveil address structure similar to how a researcher
sometimes can. Unsupervised learning seems especially
appropriate since prior work found numerous instances
of structure that does not follow RFC-defined address

assignment policies [27]. Thus, we do not train our sys-
tem to recognize well-known features—such as ff:fe
in Modified EUI-64, or ostensibly pseudo-random num-
bers in privacy addresses—but rather rely on our sys-
tem’s entropic underpinnings to discover these unique
characteristics for itself.

In stepwise fashion, Entropy/IP ingests a sample set
of IP addresses, computes entropies, discovers and mines
segments, builds a BN model, and prepares a graphical
web page with the following elements for a network an-
alyst to navigate and explore the exposed structure:
• a plot of entropy and aggregate count ratio,
• a BN, showing address segments inter-dependencies,
• a segment value browser with frequency heat map,
• a target address generator.

Entropy/IP’s user interface is shown in Figures 1 and 2.
A live demo, which allows for public operation, is avail-
able at http://entropy-ip.com/.

There are numerous applications of structural anal-
ysis of active IP addresses. These include (a) identi-
fying homogeneous groups of client addresses, e.g., to
assist in IP geolocation or in the mapping of clients
to content hosted on Content Distribution Networks
(CDNs), (b) supporting network situational awareness
efforts, e.g., in cyber defense or in competitive analysis,
and (c) selecting candidate targets for active measure-
ments, e.g., traceroutes campaigns, vulnerability assess-
ments, or reachability surveys. With respect to sur-
vey, temporary addresses complicate the estimation of
users or service subscribers by counting IPv6 addresses
or prefixes at any one length (e.g., 64 bits), so under-
standing addressing in network structure is critical in
interpreting IPv6 address or prefix counts. If we could
interpret these counts, they could be used to inform,
e.g., policy, standards, and capacity-planning decisions.
Yet another application of structure analysis is (d) re-
motely assessing networks’ addressing plan and address
assignment policy. This is valuable for host reputation
and access control, i.e., when mitigating abuse origi-
nating from sources within that network. Such external
assessments are also valuable to the subject networks
themselves, e.g., to assess potential security or privacy
risks [3]. For instance, one network operator, whom we
contacted to comment on our results, asked us whether
or not their customers’ addresses could be predicted,
i.e., whether or not their address assignments appear
to support user privacy as intended.

This work makes the following contributions:
(1) We present an automated system that discovers as-
pects of networks’ IPv6 address layout based on obser-
vations of a subset of that network’s active addresses.
Our system employs an entropy-based technique in com-
bination with standard machine learning and statistical
modeling techniques to discover structural characteris-
tics in arbitrary IPv6 address sets.
(2) We improve upon prior works on address classifi-
cation by employing a measure of entropy to identify
address sets that have very high entropy values across

multiple adjacent nybbles—which likely reveal pseudo-
random segments—and middle-to-high range values, as
well as abrupt changes in entropy between segments—
which likely reveal addressing structure. This improves
identification of privacy addresses.
(3) We present results and an evaluation of our system
that demonstrate how it enables analysts to interac-
tively explore the structural characteristics of arbitrary
sets of addresses and, if desired, generate candidate tar-
get addresses for active scanning more broadly than ex-
isting methods described in the literature.

The remainder of this paper is organized as follows.
In Section 2, we discuss related works. In Section 3, we
describe the data used in our empirical study. In Sec-
tion 4, we present our system, the methods by which it is
implemented, and their component techniques. In Sec-
tion 5, we present results of our evaluation. In Section 6,
we discuss limitations of our method and future work.
Subsequently, we conclude this paper in Section 7.

2. RELATED WORK
To the best of our knowledge, the components in our

method have not previously been applied to the problem
of uncovering IP address structure. However, statistics,
entropy, and machine learning have been applied to net-
work traffic analysis in numerous works involving IP ad-
dresses and other traffic features. For instance, Lee and
Xiang [24] develop models for network anomaly detec-
tion based on entropy across features of traffic records,
including host identifiers, though they do not specif-
ically mention IP addresses. Feinstein et al. [12] de-
velop a detector that relies on their observation that
attacks from distributed sources result in increased en-
tropy of packet header features; they focus on source IP
address in their evaluation. Subsequently, both Lakhina
et al. [23] and Wagner et al. [34] likewise compute en-
tropy across IP header features. These works differ from
ours in that they treat individual addresses as atomic,
i.e., semantically opaque, and largely use entropy as a
measure of feature distribution, e.g., address set infla-
tion, and typically detect when it varies in time-series.

One work that deals specifically with entropy and
IPv6 addresses is that of Strayer et al. [32] Circa 2004,
they note that the IPv6 packet header, including the
source and destination addresses, exhibits less entropy
(per byte) than that of IPv4. We believe this is pre-
cisely why our method is effective. In IPv6 addresses,
information relevant to structure or forwarding need not
be “compressed” into only a 4-byte identifier, as it is in
IPv4 addresses. Instead, information can (and often is)
spread across an IPv6 address, i.e., all of 32 nybbles.

Since then, the introduction and popularization of
privacy extensions [26] for IPv6 addresses changed the
situation by adding pseudo-random values, and thus
high entropy, to IPv6 addresses. While random val-
ues have high information content in an information-
theoretic sense, the information therein is not pertinent

to network structure. Thus, it is useful to identify these
so-called “privacy addresses” and either disregard their
random segments (IIDs) or treat them specially. Works
by Malone [25], Gont and Chown [14] (as implemented
in the addr6 tool [31]), and Plonka and Berger [27] each
attempt to identify pseudo-random numbers in IPv6 ad-
dress segments. We do so as well in this work, differing
in that we leverage entropy.

Kohler et al. [19] employ a hierarchical approach within
IPv4 addresses and count aggregates (prefixes) at each
possible length, 0 through 32. Plonka and Berger [27]
build on that approach and introduce Multi-Resolution
Aggregate (MRA) Count Ratios for IPv6 addresses and
use them to discover structure in addresses. They were
also inspired by prior works [2, 9] that summarize the
IP address space into an abbreviated structure, albeit
entirely synthetic. In contrast, in this work we take
a looser hierarchical approach: we separately consider
each nybble position and we group them into segments
of varying lengths. Thus, Entropy/IP provides a com-
plimentary viewpoint into IPv6 addresses, independent
from MRA analysis. However, for the interest of read-
ers who are familiar with MRA plots, we show 4-bit
Aggregate Count Ratios (ACR) in some of our figures
(normalized to a range of 0− 1). At a high level, ACR
reveals how much a segment of the address is relevant
to grouping addresses into areas of the address space.
The higher the ACR value, the more pertinent to pre-
fix discrimination a given segment is. To understand
the contribution of this paper, one can ignore the ACR
metric, though.

Krishnamurthy and Wang’s work [22], circa 2000, is
similar to ours in its premise, i.e., automated grouping
of homogeneous active addresses, where only the BGP
prefixes are known in advance. It differs significantly in
its methods and focuses only on IPv4.

Nascent work, which at first glance is most similar
to ours, is that of Ullrich et al. [33], who develop a
pattern-discovery-based scanning approach to IPv6 re-
connaissance. They algorithmically detect recurring bit
patterns (i.e., structure) in the IID portion of training
subsets of known router, server, and client addresses,
and then generate candidate targets according to those
patterns. They report improved performance versus the
surveillance approach outlined by Gont and Chown [14]
that relies on a mixture of patterns known or observed a
priori, as implemented in the scan6 [31] tool. Our work
differs most significantly from these prior works in that
we discover patterns across whole IPv6 addresses, in-
cluding the network identifier portion, whereas theirs
focus only on the bottom 64 bits (i.e., ostensibly the
IID). Thus, they assume a surveyor or adversary knows
which /64 prefixes to target. Since our method can also
be used to generate target /64 prefixes (see Section 5.6),
it could be used in concert with theirs.

There are a number of informative related works re-
garding applications of our system, e.g., active scanning
and probing of the IP address space. They are perti-

nent in that (a) they offer the performance necessary
for scanning at large scale [8] or (b) they find that ad-
dress discovery by passive monitoring significantly im-
proves target selection, and therefore efficiency and/or
coverage, in subsequent active scanning campaigns [3,4].
Most recently, Gasser et al. [13] focused specifically on
the challenge of generating hit lists for scanning the
IPv6 address space based on IPs gleaned from a num-
ber of common sources, some of which we use as well.
They also contribute IPv6 support in zmap [8], suggest-
ing IPv6 scanning is feasible, but do not contribute a
strategy to algorithmically generate candidate targets.
The Shodan search engine resorted to infiltrating the
NTP server pool to discover active IPv6 host addresses
that it subsequently probed [15], presumably since se-
quential or random full scanning of the IPv6 space is
infeasible. Our work differs from these in that we prob-
abilistically generate hit lists of targets not yet seen.

3. DATASETS
For our study, we used 3.5 billion IPv6 addresses to-

tal, all of which were collected in Q1 2016 from sev-
eral data sources. We assembled both small sets for
various real-world networks and large sets, aggregated
by type. Table 1 summarizes the smaller datasets of
3 types: Servers, Routers, and Clients (end-users). In
each category, we arranged IPv6 addresses (IPs) into
individual sets for each of 5 major operators.

DNSDB FDNS rDNS TR CDN

S1 110 K 180 K -

S2 290 K 4.7 K -

S3 7.5 K 65 K -

S4 12 K 5.7 K -

S5 33 K 1.7 K 30 K

AS

R1 - 28 K 1.8 K 6.7 M

R2 - 55 K - 180 K

R3 460 10 K 11 K 7.5 K

R4 50 - 2.5 K 900

R5 10 - 1.3 K 380

AR 12 M

C1 83 M

C2 8.2 M

C3 530 M

C4 39 M

C5 43 M

AC 3.5 G

Type ID
Data Sources

Servers

790 K

Routers

Clients

Table 1: Number of unique IPv6 addresses in “Small”
datasets of IPv6 addresses (S*, R*, and C*), and in “Ag-
gregate” datasets (AS, AR, and AC).

For Servers (S1-S5), S1 represents a web hosting com-
pany, S2 and S3 represent two different CDNs, and S4
represents a certain cloud provider. The operator of S5
is commonly known for offering all of these services, and

for providing many public web services, e.g., a social
network. Among Routers (R1-R5), all datasets repre-
sent router interfaces of major global Internet carriers.
For Clients (C1-C5), all datasets represent leading ISP
networks that deliver wired and mobile Internet access
for domestic and enterprise customers.

To collect Server addresses, we employed the Domain
Name System (DNS), as it is most common to ren-
dezvous with services by domain name. For Routers,
we used DNS and a large-scale traceroute dataset (col-
umn “TR” in Table 1), comprised of router interface ad-
dresses on paths between servers of a major CDN, and
from these servers to some clients. For Clients, we used
addresses of the clients involved in web requests to the
CDN, during 17-23 March 2016. In order to evaluate
with generally available data, we also collected client
addresses via the BitTorrent network.

The first data source in Table 1 (column “DNSDB”)
presents the number of addresses found via DNSDB:
a large DNS database offered by Farsight Security [11]
that passively collects DNS data worldwide. It offers a
broad view of queries and responses, allows for fetch-
ing forward records by host or network address (an
“inverse” query), and resolves wild-card queries (e.g.,
*.ip6.isp.net/PTR). For Servers, we queried DNSDB
for prefixes used by operators for their IPv6 services,
inferred from WHOIS and BGP data. For Routers, be-
sides prefixes, we used wild-carded forward and reverse
domain queries. We restricted the router IPs gleaned
from DNS to those that appeared in our traceroutes.

For the second data source (column “FDNS”), we ap-
plied analogous techniques on the Forward DNS dataset
by Rapid7 Labs [29]. This dataset is periodically recre-
ated by actively querying DNS for domains found in
various sources (including TLD zone files, Internet-wide
scans, web pages, etc). For the last DNS data source
(column “rDNS”) we applied the technique described
in RFC 7707 [14, pp. 23] by Gont and Chown that
leverages DNS reverse mappings for obtaining IPv6 ad-
dresses of a particular network.

We also collected aggregate datasets for each cate-
gory: AS for Servers, AR for Routers, and AC for Clients.
As data sources, we used DNS for AS (790K IPs in 4.3K
/32 prefixes), large-scale traceroute measurements for
AR (12M IPs in 5.5K /32 prefixes), and 7-day CDN traf-
fic for AC (3.5 billion IPs in 6.0K /32 prefixes). The
aggregates cover the individual sets presented in Ta-
ble 1. In order to avoid some networks from being over-
represented, in Section 5.1, we used stratified sampling
by randomly selecting 1K IPs from the /32 prefixes.

Inspired by work of Defeche and Vyncke [5], we also
collected an aggregate of client addresses from the pub-
lic BitTorrent Peer-to-Peer (P2P) network: dataset AT.
To collect these, we built a custom BitTorrent client
that crawled various trackers and Distributed Hash Ta-
ble (DHT) peers during 5-8 March 2016. We collected
220K peer addresses in 1.8K /32 prefixes by running our
software from Singapore, US East Coast, and Europe.

We employ address anonymization when presenting
results. We changed the first 32 bits in IPv6 addresses
to the documentation prefix (2001:db8::/32), incre-
menting the first nybble when necessary. To anonymize
IPv4 addresses embedded within IPv6 addresses, we
changed the first byte to the 127.0.0.0/8 prefix.

4. METHODOLOGY
In this section, we introduce our system by its visual

interface, and then we detail our underlying method-
ology. In Fig. 1, we present the analysis results for a
set of 24K WWW client addresses in a Japanese telco’s
prefix, collected from a CDN during a week’s time.

The main components of Entropy/IP’s visual inter-
face are as follows. First, Fig. 1(a) plots entropy per
address nybble, across the dataset. (We detail this in
Section 4.1.) Here, the trained eye can see that the
addresses are covered by one /40 prefix. In short, the
address segments—delineated by dashed vertical lines
and labeled with capital letters A through K at the
top—are comprised of nybbles having similar entropy.
Apart of that, we always make bits 1-32 the segment A.
(We detail this in Section 4.2.)

Second, Fig. 1(b,c) are examples of Entropy/IP’s con-
ditional probability browser. Here, we show the dis-
tributions of values inside segments by a colored heat
map. (We detail this in Section 4.3.) For example,
segment A always has the value 20010db8, which is re-
flected in 100% probability. In this example, the length
of segment C is two nybbles, in which four distinct val-
ues were observed: the most popular being 10 at 60%
in Fig. 1(b). Ranges are shown as two values (low to
high) within one colored box, e.g., segment J having an
interval of 0000ed18068 to fffb2bc655b at 40%.

In the transition from Fig. 1(b) to Fig. 1(c), the
analyst is curious how the probabilities would change
if one conditioned on the segment J having the value
00000. . . . Clicking on this value yields Fig. 1(c), show-
ing for instance that now C has the value 10 at 100%,
and likewise for value 0 in segments H and I.

Fig. 2 shows the structure of an associated Bayesian
Network (BN), with nodes representing the segments
and edges indicating a statistical dependency. (We de-
tail this in Section 4.4.) Here, the red edges show that
the segment J is directly dependent on segments C and
H, which is analyzed in Table 2. The segments can in-
fluence each other in the opposite direction and through
other segments. Thus, selecting a particular value for J
influences F through C, which is the reason for different
distribution for the segment F in Fig. 1(c) vs. Fig. 1(b).

A live, functional demo of Entropy/IP interface is
publicly available at http://entropy-ip.com/.

4.1 Entropy Analysis
Entropy is a measure of unpredictability in infor-

mation content [30]. Usually it is defined as H(X)

0 16 32 48 64 80 96 112 128
0.0

0.2

0.4

0.6

0.8

1.0
A B C D E F G H I J K

00

10
22
20
21

0
1
3
2
4
5
7
d

0

0
1
6
2
5
3
d

3
5
4
8
0
f

0
1
d
9
5
2
f

0
8
1
5
9
2
f

00000000000
0000ed18068
fffb2bc655b

000
fff

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

00

10
22
20
21

0
1
3
2
4
5
7
d

0

0
1
6
2
5
3
d

3
5
4
8
0
f

0
1
d
9
5
2
f

0
8
1
5
9
2
f

00000000000
0000ed18068
fffb2bc655b

000
fff

N
or

m
al

iz
ed

 v
al

ue

Prefix length / Hex char location (bits)

P
ro

b
ab

ili
ty

Entropy (per nybble)

e.g. 2001:0db8:0022:1048:17ec:d7eb:19b0:dfe4

(mouse click)

e.g. 2001:0db8:0010:0013:0000:0000:0000:055d

(b)

(c)

(a)

A B C D E F G H I J K

A B C D E F G H I J K100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

P
ro

b
ab

ili
ty

2001 db80

2001 db80

Figure 1: Entropy/IP’s user interface displaying an
analysis of a Japanese telco prefix with 24K active client
IPs. Entropy by nybble plotted in (a). In (b), we select
the 00000. . . value (60%) for segment J by mouse click,
resulting in updated probabilities in (c) (e.g., 100%).

Figure 2: Dependencies between segments. Red color
indicates direct probabilistic influence on segment J.

H
C

10 22 20 21

0 100% 0.48% 7.7% 14%
1 17% 0.17% 6.3% 13%
d 25% 0.17% 7.7% 5.9%
9 17% 0.17% 9.1% 9.1%
5 20% 0.17% 7.1% 7.1%

2-f 2.3% 0.017% 0.79% 0.77%

Table 2: Probability for segment J in Fig. 2 equal
00000. . . , conditional on values in segments H and C.

for a discrete random variable X with possible values
{x1, · · · , xk} and a probability mass function P (X):

H(X) = −
k∑

i=1

P (xi) logP (xi). (1)

In general, the higher the entropy, the more equally
probable values of X are: if H(X) = 0, then X takes
only one value; if H(X) is maximum, then P (X) is
uniform. For the remainder of the paper, we normalize
entropy by dividing it by log k (maximum value).

In order to use entropy for analyzing the structure of
IPv6 addresses, let D be a set of addresses expressed as
32 hexadecimal digits without colons, e.g., as in Fig. 3.

20010db840011111000000000000111c
20010db840011111000000000000111f
20010db840031c13000000000000200c
20010db8400a2f2a000000000000200f
20010db840011111000000000000111f

0 1 2 3
12345678901234567890123456789012

Figure 3: Sample IPv6 addresses in fixed-width format,
sans colon characters.

Let us consider the values in the i-th hex character po-
sition of the addresses in D as instances of a random
variable Xi, i = 1, . . . , 32. That is, let us focus on
values of a specific nybble across all addresses in D.
In Fig. 3, the last character takes “c” twice and “f”
thrice. Thus, X32 has empirical probability mass func-
tion P̂ (X32) = {pc = 2

5 , pf = 3
5}. Since there are 16

possible hex characters, the maximum entropy is log 16,
and thus the normalized empirical entropy is:

Ĥ(X32) =
−(pc log pc + pf log pf)

log 16
≈ 0.24. (2)

By repeating the above for all i, we get 32 values that
reveal statistical properties of individual hex characters
across the set: the smaller the value, the greater chances
the character stays constant. Let us also introduce a
notion of total entropy ĤS ,

ĤS(D) =

32∑
i=1

Ĥ(Xi), (3)

which quantifies variability of addresses in D, i.e., how
hard it is to guess actual addresses by chance2.

4.2 Address Segmentation
Entropy exposes the parts of IPv6 addresses that are

variable versus those that remain relatively constant.
Let us use it to group adjacent hex characters into con-
tiguous blocks of bits with similar entropy. We will call
such blocks segments and label them with capital let-
ters. For instance, in Fig. 3, the hex characters 1-11
2Note: “total entropy” is not the entropy if one considered
the whole address as a single element, and computed the
probability mass function of those elements—that entropy,
normalized, would be very low.

and 17-28 are constant (entropy = 0), whereas the val-
ues in hex characters 12-16 and 29-32 are changing (en-
tropy 6= 0). Hence, they form 4 segments: A (1-11), B
(12-16), C (17-28), and D (29-32). By segmenting IPv6
addresses, we distinguish contiguous groups of bits that
differ in joint variability.

We propose a simple threshold-based segmentation
algorithm. Consider the entropy of successive nybbles,
left to right. Start a new segment at nybble i whenever
Ĥ(Xi) compared with Ĥ(Xi−1) passes through any of
the thresholds T = {0.025, 0.1, 0.3, 0.5, 0.9}. We also
employ a hysteresis of Th = 0.05, i.e., we require

|Ĥ(Xi)− Ĥ(Xi−1)| > Th (4)

to start the new segment. For example, if Ĥ(Xi−1) =

0.49, then in order to start the next segment Ĥ(Xi) has
to be either <0.3 or >0.54, with 0.3 being the lower
threshold for Ĥ(Xi−1) in T (without hysteresis) and

0.54 being Ĥ(Xi−1) + Th (with hysteresis.) We found
this set of parameters T and Th during development by
evaluation on real-world networks. The parameters can
be tuned to match specific networks, yet we identified
the proposed values to be universal and produce least
number of segments with similarly distributed nybbles.

In addition to the thresholds, we always make the bits
1-32 a separate segment. This is motivated by the com-
mon practice of Regional Internet Registries (RIRs),
who use a /32 prefix as the smallest block assigned to
local Internet operators [1]. Similarly, we always put a
boundary after the 64th bit, as it commonly separates
the network identifier from the interface identifier [17].

4.3 Segment Mining
Further in our analysis, we want to understand why

some segments appear non-random (i.e., have entropy <1).
We hope to uncover common elements of IPv6 addresses,
which possibly have a semantic meaning [18].

Let us delve into a specific segment k. First, reduce
the input dataset D down to Dk: for each address, drop
all nybbles outside of segment k. Next, search Dk for
the set Vk of popular values and ranges that cover con-
siderable parts of Dk. For example, in Fig. 3 the seg-
ment of nybbles 12-16 has Dk = {11111, 11111, 31c13,
a2f2a, 11111} and Vk = {11111}.

We propose a heuristic approach for building Vk that
focuses on three aspects of data: (a) frequencies of val-
ues, (b) the values themselves, and (c) both character-
istics considered together. We address them separately
in the steps described below. In each step, we nominate
at most the top 10 elements to Vk and remove them
from Dk. If there is ≤0.1% of values left, we finish.

For (a), we use a well-known outlier detection method
to find unusually prevalent values in Dk. Assuming nor-
mal distribution of frequencies of values, we select the
values more common than Q3 + 1.5·IQR, where Q3 is
the third quartile and IQR is the inter-quartile range.
For example, see the values labeled C1 through C5 in

Figure 4: Histogram for values in segment C of dataset
S1, as a scatter plot. Annotations show codes of com-
mon values and ranges.

Fig. 4. In this example, the segment has length of two
nybbles (thus 256 possible values), which is the X-axis
in Fig. 4, and the Y-axis is the number of times a given
value appears in set Dk. Next, for (b), we run on Dk

the popular DBSCAN data clustering algorithm [10],
parametrized to find highly dense ranges of values. In
this step, we use the minimum and maximum values of
the discovered clusters as ranges added to Vk. Then,
for (c), we run the DBSCAN algorithm again, but on a
histogram of Dk, that is, on a vector of values vs. their
counts. We tune the algorithm to find ranges of values
that are both uniformly distributed and relatively con-
tinuous (e.g., C6 in Fig. 4). Finally, if anything is left,
we either close Vk with a range of (minDk,maxDk), or
if |Dk| ≤ 10 we take the whole Dk.

We preserve the order of elements added to Vk and we
keep their empirical frequencies. In Table 3, we present
the result of our algorithm for the S1 dataset. The
column “Code” gives labels for segment values, which
can be used to encode (or “compress”) addresses, e.g.,

2001:0db8:08c2:2500:0000:d9a0:5345:0012

can be rewritten using Table 3 as a vector:

(A1, B2, C3, D4, E5, F1, G12, H1, I2, J3).

Note that we lose details of the original address when we
encode a segment with a code that represents a range
(e.g., G12); this is acceptable for our purposes. In fur-
ther discussion we represent IPs as instances of random
vectors, where each dimension corresponds to segment
k and takes categorical values that reference Vk.

4.4 Modeling IPv6 Addresses
Having the addresses represented as random vectors

enables us to easily apply well-known statistical models.
Consequently, we can reveal inter-dependencies between
the segments, and uncover structures hidden within IPv6
addresses. For this, we use Bayesian Networks (BNs).

Seg. Code Value Freq. Seg. Code Value Freq.

A1 20010db8 63.50% G1 0000000000000 0.29%

A2 30010db8 36.50% G2 0127016000630 0.11%

B1 10 77.80% G3 0127020800160 0.11%

B2 08 15.42% G4 0127020801800 0.08%

B3 09 5.05% G5 0127007100620 0.07%

B4 07 0.70% G6 0127022700290 0.06%

B5 00 0.55% G7 0127016001550 0.06%

B6 05 0.47% G8 0127016001130 0.06%

C1 00 67.02% G9 0127016000620 0.06%

C2 01 11.13% G10 0127022702170 0.06%

C3 c2 0.67% G11 0000000000001-
0000000000af0 13.02%

C4 fe 0.41% G12 0000d9a050050-
0000d9a053f90 0.39%

C5 ff 0.41% G13 0127022701090-
0127022701270 0.20%

C6 02-5b 11.94% G14 010332b0b1e17-
fffd8c3ab1643 84.90%

C7 5c-fd 8.42% G15 0000000001a10-
00fd12c41fce6 0.55%

D1 0 10.10% H1 0 49.51%

D2 5 9.24% H2 8 37.35%

D3 4 9.11% H3 1-f 13.14%

D4 2 9.05% I1 0 51.62%

D5 1 8.90% I2 1 19.90%

D6 3-f 53.61% I3 2 9.63%

E1 0 69.69% I4 3 4.46%

E2 1 5.41% I5 4 2.38%

E3 2 4.72% I6 5-f 12.02%

E4 3 3.75% J1 0 16.44%

E5 5 2.23% J2 1 8.20%

E6 4-f 14.20% J3 2 7.69%

F1 00 14.18% J4 3 6.93%

F2 53 0.65% J5 4 6.54%

F3 01-ff 85.17% J6 5-f 54.21%

A
(1-32)

G
(64-116)

B
(32-40)

C
(40-48)

D
(48-52)

H
(116-120)

I
(120-124)

E
(52-56)

J
(124-128)

F
(56-64)

Table 3: Segment mining results for dataset S1.

BN is a statistical model that represents jointly dis-
tributed random variables in the form of a directed
acyclic graph [20]. Each vertex represents a single vari-
able X and holds its probability distribution, condi-
tioned on the values of the other variables. An edge
from vertex Y to X indicates that X is statistically
dependent on Y . BN can be used to model complex
phenomena involving many variables. It splits complex
distributions into smaller, interconnected pieces, which
are easier to comprehend and manage.

Let us find a BN that represents a dataset of IPv6 ad-
dresses rewritten as random vectors. We need to learn
the BN structure from data (i.e., discover statistical de-
pendencies), and we need to fit its parameters (i.e., es-
timate conditional probability distributions). For this
purpose, we use the “BNFinder” software, which im-
plements the relevant state-of-the-art methods [6, 35].
Since learning BNs from data is generally NP-hard, we
constrain the network so that given segment k can only
depend on previous segments <k, e.g., B can directly
depend on A, but not on C. However, note that C can
still influence B through evidential reasoning; that is,
probabilistic influence can flow “backwards.” We refer
the reader to [20] for more details on BNs.

16 32 48 64 80 96 112 128

Window length (bits)

0

16

32

48

64

80

96

112
W

in
d
o
w

 p
o
s
it

io
n
 (

b
it

s
)

0

128

0

2

4

6

8

10

12

14

16

E
n
tr

o
p
y
 (

u
n

n
o
rm

a
li
z
e
d
)

Figure 5: An illustration for the preliminary idea of
windowing analysis of entropy (dataset S1).

Once the BN model is found, we may use it for multi-
ple purposes. For example, we may query the BN with
various segment values set a priori and discover how
this affects the probability distributions in the other
segments. We may also use the BN to generate candi-
date addresses that match the model (optionally con-
strained to certain segment values), which can be used
for targeted scanning of IPv6 networks.

4.5 Discussion
We presented a heuristic system that, given a set of

IPv6 addresses, discovers address segments with their
popular values and a probabilistic structure. Obviously,
we did not fully explore the design space possible for
such a system; thus, our viewpoint is neither definitive
nor the only possible. In order to encourage further
development of similar tools, below we comment on our
design choices and on possible adaptations.

We chose to focus on 4-bit chunks of IPv6 addresses,
i.e., nybbles. It is possible to adapt Entropy/IP to other
bit widths by modifying the entropy analysis step. For
instance, one could use the bit widths of 1 or 16, as used
by Plonka and Berger in [27] for MRA plots. However,
we found the 4-bit approach simple and sufficient. If
more granularity is needed, then the segment mining
step can discover individual values. Conversely, if less
granularity is needed, then the address segmentation
step can coalesce adjacent nybbles. Besides, the 4-bit
granularity matches the textual representations of IPv6
addresses, in which a single hex character is the smallest
possible address chunk, thus matches the human ana-
lyst’s canonical perspective.

Let us briefly mention a preliminary idea of window-
ing analysis, devised during early development of En-
tropy/IP. For a set of IPv6 addresses, we evaluated the
entropy (unnormalized) for every possible address seg-
ment, determined by windows of varying length and
position. For example, in Fig. 5 we visualize such an
analysis for dataset S1: every (X,Y) point on the plane

Figure 6: Entropy of aggregate datasets (A*).

shows the entropy calculated across the dataset for bits
Y through Y +X. Here, note that one could use a differ-
ent variability measure than the entropy, e.g., number
of distinct values, inter-quartile range, frequency of the
most popular value, or a weighted mean thereof. We be-
lieve this may be especially useful in conjunction with
the windowing analysis for visual discovery of patterns.

We also tried segmenting using the difference between
entropy of adjacent nybbles. However, taking into ac-
count the number of segments and distributions of their
nybbles, the simple thresholds algorithm performed bet-
ter. Note that segmentation without a priori knowledge
is problematic. Judging just by the apparent features of
an addressing space may lead to uncovering the intents
of network administrators, but may impose an artificial
model on the data as well. However, we believe the
segment mining and BN modeling steps together can
compensate for minor glitches in segmentation.

Finally, we considered other tools (than BNs) for mod-
eling the IPv6 addresses, e.g., Probability Trees (PTs) [7]
and Markov Models (MMs) [28]. PTs, although con-
ceptually simple, require information on virtually every
possible combination of the segment values, and hence
need abundant training data. The other alternative,
MMs, assume that a given segment depends only on
the previous segment. Thus, MMs cannot directly han-
dle dependency between non-adjacent segments. Over-
all, we found BNs to produce models that are powerful,
easy to explore, and concise.

5. EVALUATION
In this section, we demonstrate the efficacy of our

methods on the datasets introduced in Section 3.

5.1 Big Picture: Aggregates
In Fig. 6, we present entropy characteristics for IPv6

addresses in our aggregate datasets, for three types of
hosts. We see that the characteristics differ consider-
ably past the first 32 bits; this is reflected in the ĤS

(a) entropy vs. 4-bit ACR

Conditional Probability Browser

A B C D E F G H I J

2 0 0 1 0 d b 8

3 0 0 1 0 d b 8

1 0

0 8

0 9

0 7

0 0

0 5

0 0

0 1

c 2

f e

f f

0 2
5 b

5 c
f d

0

5

4

2

1

3
f

0

1

2

3

5

4
f

0 0

5 3

0 1
f f

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 a f 0

0 1 0 3 3 2 b 0 b 1 e 1 7
f f f d 8 c 3 a b 1 6 4 3

0 0 0 0 0 0 0 0 0 1 a 1 0
0 0 f d 1 2 c 4 1 f c e 6

0

8

1
f

0

1

2

3

4

5
f

0

1

2

3

4

5
f

1 0 0 %
9 0 %
8 0 %
7 0 %
6 0 %
5 0 %
4 0 %
3 0 %
2 0 %
1 0 %
< 1 %

(b) BN probabilities conditional on B equal 08 or 09
(skipped probabilities <0.1% in G for brevity)

Figure 7: Results for server dataset S1.

metric. Among the datasets, the client addresses were
the most random, especially in the bottom 64 bits, os-
tensibly the IPv6 interface identifier. We see Ĥ ≈ 1,
with the exception of Ĥ ≈ 0.8 for bits 68-72. This
largely matches the RFC specifications for the “u” bit
in SLAAC addresses [26]. However, if all of the clients
used temporary addresses, we would observe an entropy
of 0.75 for bits 68-72. Hence, some of these addresses
were not standard SLAAC privacy addresses.

We see a similar yet smaller dip for router addresses
in bits 68-72, and a deeper drop to Ĥ ≈ 0.5 in bits
88-104. This suggests impact of IPv6 addresses based
on link-layer identifiers (e.g., Ethernet MAC address),
which have the word 0xfffe inserted in bits 88-104 [17].
Again, if all of the router addresses followed this stan-
dard, we would observe Ĥ = 0. Hence, a major portion
of router addresses did not have MAC-based Modified
EUI-64 IIDs.

On the other hand, in Fig. 6, we see no evidence
of Modified EUI-64 or privacy SLAAC addresses for
servers. Instead, we highlight an interesting phenomenon:
the entropy is oscillating across the address, revealing
popular locations for discriminators of various entities
in the addressing hierarchy (e.g., subnetworks). In gen-
eral, the addresses in dataset AS are the least random,
compared with the other sets. This demonstrates that
servers are more likely to have predictable addresses.
Note the steady increase in entropy from bit 80 to 128;
this reflects the tendency to use the lower order bits
when assigning static addresses to servers.

Finally, in Fig. 6, we do not find significant differences
between client addresses collected from CDN (dataset
AC) vs. collected from the BitTorrent network (dataset
AT), except for bits 88-104, which suggests Modified
EUI-64 SLAAC addressing is more common for BitTor-
rent clients than general web clients. Thus, we believe
it is possible to glean structure in client IPv6 networks
using such freely-available data sources.

5.2 Servers
In Fig. 7, we present analysis results for dataset S1—

the addresses of a major web hosting provider—in which
we discovered 10 segments. The BN model, visualized

in Fig. 7(b), shows probability distributions across these
segments, conditioned on B equal to either B2 or B3
(real values 08 or 09, respectively), which represents
approx. 20% of addresses in S1.

The network has two /32 prefixes, which differ in
popularity: 64% vs. 36%. Their actual values are
anonymized in Fig. 7(b), but in Fig. 7(a) we see in seg-
ment A that the two actual prefix values differ in six
hex characters; their entropy is non-zero. ACR is non-
zero only for bits 4-8, which means each /8 prefix holds
just one /32 prefix. By exploring the BN model, we
found the addressing scheme largely the same for both
prefixes, but B1 is 10% more likely for A2 than for A1.

We further found that segment B selects a variant
of addressing used on the lower bits: probability dis-
tributions differ for B1 vs. B2/B3, vs. B4/B6, vs.
B5. In other words, the network has 4 variants of ad-
dressing deployed across its /40 prefixes. For example,
in Fig. 7(a) we see high entropy in segments F and G
(i.e., high variability in bits 56-116). However, when we
constrained the segment B to B2/B3, in Fig. 7(b), we
find a major drop in the variability of bits 56-116: the
majority of addresses in this variant are essentially non-
random. For the B4/B6 variant, we found 67% of IPv6
addresses encode literal IPv4 addresses in segments G-J.
We verified these IPv4 addresses belong to the same op-
erator and respond to ping requests with similar round-
trip times as the IPv6 addresses in which they were
embedded. (This strongly suggests these IPv6/IPv4 ad-
dress pairs are aliases on dual-stacked hosts.)

Next, in Fig. 7(a), we see that segments C through E
have high values for both entropy and ACR. This osten-
sibly means that bits 40-56—apart from being variable—
are utilized for discriminating prefixes. In contrast, for
segment F (bits 56-64), we see high entropy with ACR
near zero. In this area, the address is variable, but ap-
pears to carry little useful information to discriminate
addresses from one another; typically, each /56 prefix,
here, covers just a single active random /64 prefix. We
observe a similar phenomenon for segments G-J (i.e.,
bottom 64 bits): each /64 prefix contains just a few
IPv6 addresses. A subset of interface identifiers appears
pseudo-random, e.g., see G14 in Table 3. However, due

0.0

0.5

1.0

S2

0.0

0.5

1.0

S3

0.0

0.5

1.0

S4

0 16 32 48 64 80 96 112 128

Prefix / hex char location (bits)

0.0

0.5

1.0

S5

(a) servers

0.0

0.5

1.0

R2

0.0

0.5

1.0

R3

0.0

0.5

1.0

R4

0 16 32 48 64 80 96 112 128

Prefix / hex char location (bits)

0.0

0.5

1.0

R5

(b) routers

0.0

0.5

1.0

C2

0.0

0.5

1.0

C3

0.0

0.5

1.0

C4

0 16 32 48 64 80 96 112 128

Prefix / hex char location (bits)

0.0

0.5

1.0

C5

(c) clients

Figure 8: Brief plots for server datasets S2-S5 (a), router datasets R2-R5 (b), and client datasets C2-C5 (c). Solid
blue lines show per-nybble entropy and dashed red lines show 4-bit ACR. Segment labels skipped for brevity.

to non-random addressing variants discussed above, the
entropy in Fig. 7(a) is below 1. Note no drop in entropy
for bits 68-72 (characteristic for SLAAC), which sug-
gests the operator has its own algorithm for generating
interface identifiers. Moreover, entropy in segments H-
J reveals a structure in the addresses, but without any
effect on ACR, thus, unlikely to be subnetting.

Due to space constraints, we briefly present entropy
analysis for the rest of server datasets in Fig. 8(a). The
addresses exhibit less variability across hex characters
and ostensibly do not use SLAAC, which is consistent
with our observations for AS. Plots for S2 and S3 demon-
strate addressing effects for different types of CDNs;
the first network distributes traffic using DNS and IP
unicast, while the second employs IP anycast. In conse-
quence, S2 has many globally distributed prefixes, while
S3 basically uses just one /96 prefix worldwide, which
is reflected in entropy plots. For S4, a major cloud
provider, we found that—apart of a simple structure
in bits 32-48—only the last 32 bits are utilized for dis-
criminating hosts and networks. For S5, we found that
the last 2-4 nybbles often identify the service type (or
type of content), deployed across many /64 prefixes (in-
ferred by manual analysis of DNS records). In sum, our
analysis identified structure in all evaluated sets.

5.3 Routers
Fig. 9(a) illustrates analysis of the R1 dataset. We

see a clear division between bits used ostensibly for dis-
criminating prefixes (bits 28-64) and for discriminating
interfaces within the prefixes (mostly bits 124-128). The
network, clearly, does not implement pseudo-random in-
terface identifiers, which is visible in entropy close to
zero for bits 64-124. By evaluating the BN model, vi-

sualized in Fig. 9(b), we find that segment I is largely a
string of zeros, and the last hex character is either 1 or
2, which we believe is common for point-to-point links
between this network’s routers.

Consider the analysis of the other router datasets,
briefly presented in Fig. 8(b). For R2, we find a similar
pattern as in R1: bottom 64 bits equal either 1 or 2. For
R3, we find bits 48-116 to follow a quite predictable pat-
tern, with a majority of the hex characters equal to zero.
We see that bits 32-48 discriminate prefixes, and the
last 12 bits largely appear pseudo-random. However,
note that values that look random do not necessarily
come from a random number generator: the adminis-
trator could be systematically assigning values to these
nybbles in near equal proportions. Interestingly, in R4,
we find the IPv6 interface identifiers encode literal IPv4
addresses (ostensibly assigned to the same router inter-
face), written as octets in base 10 across 16-bit aligned
words (i.e., colon-separated in IPv6 presentation for-
mat), hence the IID pattern visible in Fig. 8(b) for R4.
Finally, for R5, we find the addresses to discriminate
largely in bits 52-64, while the bottom bits follow a pre-
dictable structure. Overall, we find the router addresses
to implement simple patterns, yet unique and variable
across operators.

5.4 Clients
In Fig. 10(a), we present the analysis for dataset C1.

The addresses correspond to a large mobile operator.
Our analysis finds only six segments in the addresses,
three of which uncover statistical structure in interface
identifiers. In Fig. 10(b), we visualize the BN model
conditioned on the last two hex characters equal to 01,
which corresponds to 47% of all IPs in dataset C1.

0 16 32 48 64 80 96 112 128

Prefix length / Hex char location (bits)

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 v

a
lu

e

Entropy (Ĥ
S
=4.6)

4-bit ACR

A B C D E F G H I J

(a) entropy vs. 4-bit ACR

Conditional Probability Browser

A B C D E F G H I J

2 0 0 1 0 d b 8

3 0 0 1 0 d b 8
0

0

1

3

2

1

8

0

3

4

c

2
f

2

0

0

f

2

1
e

0

1

f

2

e

3
c

0 0

0 1

0 2

0 3

0 8

0 4
f e

f f

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 9 a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 6
0 0 0 0 0 0 0 0 0 0 0 0 1 0 2

2

1

5
e

1 0 0 %
9 0 %
8 0 %
7 0 %
6 0 %
5 0 %
4 0 %
3 0 %
2 0 %
1 0 %
< 1 %

(b) BN probabilities

Figure 9: Results for router dataset R1.

0 16 32 48 64 80 96 112 128

Prefix length / Hex char location (bits)

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 v

a
lu

e

Entropy (Ĥ
S
=21.2)

4-bit ACR

A B C D E F

(a) entropy vs. 4-bit ACR

CPD browser

A B C D E F

2 0 0 1 0 d b 8

0

2

1

4

5

6

a

8

7

0 2 e 2 7 5 f

7 0 0 0 0 4 7
9 0 6 e a a d

b 6 4 8 d d f
d 9 f f b d 8

0 0 0 0 0 1 e
f e f f 8 d 8

0 0 0 0 0 0

0 0 0 0 d 3
f f f f 4 f

0 0 0 0 0 0 0 4
4 4 f f d 1 f 7

4 4 f f f 3 f d
4 f f f d e 6 8

4 f f f f 4 2 4
5 2 f f 9 2 8 e

5 4 0 0 2 5 7 b
f f f f b 0 8 c

5 3 0 0 7 0 4 a
5 3 f f d e 6 8

0 1

0 0
f f

1 0 0 %
9 0 %
8 0 %
7 0 %
6 0 %
5 0 %
4 0 %
3 0 %
2 0 %
1 0 %
< 1 %

(b) BN probabilities conditional on F equal 01

Figure 10: Results for client dataset C1.

In segments B-C, we see that bits 32-64 discriminate
prefixes, as the ACR value is relatively high. Segment B
takes only lower values (0-8), hence its entropy is lower
than in segment C. For segments D-F we expected to
see the impact of privacy addressing, already observed
for the client aggregate (Fig. 6). Instead, we find an ex-
traordinary pattern of entropy close to 0.7 for segments
D and F, and entropy close to 1 for the segment E be-
tween them. The lower entropy in D and F is due to
two popular values: 00000 (D1) and 01 (F1). Further,
we find (in the BN model) that segments D and F are
statistically dependent, which is visible in Fig. 10(b):
conditioning the BN model on F1 makes D a string of
zeros (i.e., D1). We also found dependence between E
and F, which makes the first hex character in segment E
more predictable when the addresses end with F1, i.e.,
00 (manifested in lower entropy for bits 88-92). On the
other hand, when addresses end with other values, all
bottom 64 bits are pseudo-random.

In order to investigate the underlying source of the
pattern, we examined log files of the CDN correspond-
ing to dataset C1. By “User-Agent” headers in web re-
quests made to the CDN from that particular network,
we find the addresses that follow the pattern originate
only from Android devices of one popular vendor. In
contrast, the addresses without the pattern originate
from mobile devices of various vendors. Thus, we sus-
pect the reason for what we see in Fig. 10(b), lies in
client-side interface identifier selection in a specific ver-
sion of Android built by a particular vendor for that

network. We did not observe similar patterns in any
other evaluated dataset.

Fig. 8(c) displays entropy vs. ACR plots for the other
datasets of active client addresses. For these datasets,
we found the interface identifiers to be pseudo-random,
e.g., as in privacy addresses; this is visible where en-
tropy is near 1 and ACR is near 0 in the low 64 bits.
This matches our findings for dataset AC. However, we
did not observe a drop in entropy on bits 68-72, char-
acteristic for SLAAC privacy addresses, for dataset C2,
which represents a mobile operator. In all client ad-
dresses, we found various structures in bits 32-64 (or
even 20-64), which demonstrates that operators imple-
ment their own addressing schemes for the /64 prefixes.
Below we show some of these structures are predictable.

5.5 Scanning IPv6 Networks
One of the supplementary applications of our method

is candidate address generation for active measurements
of the IPv6 Internet. In this subsection, we evaluate En-
tropy/IP for scanning addresses of servers and routers.

For scanning IPv6 addresses, we apply the following
methodology. A BN model for a particular network is
trained on a random sample of 1K real IPv6 addresses
known a priori. Then, the model is used to generate
1M candidate targets for scanning, and the result is
evaluated. For our experiments we used the datasets
S* and R*: for each of them, we randomly selected 1K
IPs as the training set, and used the remaining part as
the testing set.

Test set Ping rDNS Overall

S1 0 0 0 0 0.0% 0

S2 6.4 K 160 K 29 160 K 16% 12 K

S3 62 K 430 K 0 430 K 43% 0

S4 480 23 K 0 23 K 2.3% 0

S5 44 K 53 K 18 K 66 K 6.6% 1.2 K

R1 20 K 33 K 37 K 44 K 4.4% 24 K

R2 14 K 9.7 K 22 19 K 1.9% 8.2 K

R3 11 K 10 K 16 K 19 K 1.9% 70

R4 1.6 K 400 1.7 K 1.7 K 1.7% 0

R5 4.3 K 3.3 K 2.3 K 5.5 K 0.55% 380

160 K 720 K 75 K 770 K 46 K

Dataset
Found IPv6 addresses Success

rate
New
/64s

Table 4: IPv6 scanning results for Servers (S*) and
Routers (R*). Models trained on 1K real addresses and
tested on 1M generated addresses.

100 1 K 10 K 100 K 1 M

S5 5.2% 6.7% 7.0% 2.9% -

R1 4.1% 4.4% 4.4% - -

C5 16% 20% 21% 20% 14%

Dataset
Training sample size

Table 5: Success rate vs. training set size.

We counted the number of generated candidates that
were present in the testing set, which is presented in
column “Test set” in Table 4. Independently, for each
dataset we scanned the 1M generated IPs using ICMPv6
echo requests: we show the number of IPs that replied
with an echo response in column “Ping”. Similarly, col-
umn “rDNS” gives the number of IPs that had a reverse
DNS record. (We manually removed records that ap-
peared dynamically generated.) In column “Overall,”
we present the number of candidate IPs that passed at
least one of the three tests, with the corresponding suc-
cess rate in the next column. For these IPs, in column
“New /64s” we give the number of /64 prefixes that
were not present in the training data. Note that some
networks use just a few prefixes globally (e.g., S3).

As visible in Table 4, in total we found 770K ad-
dresses and 46K prefixes in 10 networks. We used only
1K training IPs per network, which corresponds to a
considerable gain in discovered IPs vs. what we used
for training the BN models. We believe this resembles
a relatively common situation in which one has a limited
set of existing IPs from the target network and wishes
to use them to bootstrap active address discovery. We
found it possible to find new addresses for each dataset
except for S1, which uses largely pseudo-random IIDs
for a major subset of its addresses. On the other hand,
we achieved 43% success rate for S3 (a large CDN). Note
the probability of guessing by chance an IPv6 address
in a known /32 prefix is approx. 1 in 296.

We acknowledge some limitations of our evaluation
method: first, part of the positive responses to our

“Ping” and “rDNS” tests might have been generated au-
tomatically (e.g. replying to any ping request destined
to a certain prefix, causing false positives); second, the
network may have far fewer hosts than the generated
1M candidates; finally, we might get a number of false
negatives due to restricted datasets and due to networks
blocking our ping requests and reverse DNS queries.

We believe our results indicate that Entropy/IP im-
plements a fruitful approach to IPv6 scanning. Compar-
ing to existing works, we find it complementary. The
scan6 tool by Gont [31] and the method by Ullrich et
al. [33] attempt to predict interface identifiers; they do
not tackle guessing the network identifiers. In contrast,
our statistical model successfully predicted active /64
prefixes not seen in the training sets.

In Table 5 we show the effect of the training set size
on the success rate for a server dataset S5 and a router
dataset R1. We found that a larger training set often
does not cause better scanning performance and can
even make it worse. We believe the reason for what we
experimentally observed is that more training IPs make
the BN model better at adhering to already seen data
vs. generating completely new addresses.

5.6 Predicting IPv6 Client Prefixes
The addresses in the sample client networks (C1-C5)

extensively use pseudo-random interface identifiers, and
thus there is no point in trying to guess the full address.
For this reason, in this subsection, we turn to predicting
the prefixes, i.e., generating the candidates for the first
64 bits in the client addresses.

For that purpose, we constrained Entropy/IP to the
top 64 bits, without any other modification to our method.
We used a similar evaluation approach as in the previ-
ous subsection. We trained the model on a random 1K
sample of prefixes seen on March 17th 2016 and tested
them on the rest of data: for each of 1M candidate pre-
fixes, we checked if it was observed on the same day and
in the following week, as seen in the dataset.

In Table 6, we present the results. We were able
to predict thousands of client /64 prefixes for each net-
work, with success rates ranging ∼1% to 20%. For some
datasets we found it easier to predict the prefix for the
whole week vs. single day (e.g., C1), while for others

Mar 17 Mar 17-23

C1 12 K 54 K 5.4%

C2 2.0 K 11 K 1.1%

C3 7.5 K 8.3 K 0.83%

C4 37 K 120 K 12%

C5 150 K 200 K 20%

210 K 390 K

Dataset
Predicted /64s Success rate

(7-day)

Table 6: Prefix prediction results for Clients (C*), for
two time spans. Models trained on 1K real /64 prefixes
and tested on 1M generated prefixes.

we did not find such a difference (e.g., C3). We believe
this demonstrates that operators have various address-
ing strategies for the top 64 bits of their IPv6 addresses,
some of which are easy to predict. Moreover, we were
able to repeat the same using the BitTorrent AT dataset
for training. For example, by training a BN model using
1K prefixes of BitTorrent peers belonging to the net-
work represented in C4, we were able to predict 120K
prefixes from that dataset.

Finally, in Table 5 we briefly show the effect of the
training sample size for C5. Again, using a too large
training set can harm the predictive performance.

5.7 Validation
To qualitatively validate our results, we prepared a

briefing for each of the five networks that we studied,
at least one from each of the Servers, Routers, and
Clients categories, mentioned in Section 3. The brief-
ings contained both a link to the Entropy/IP interactive
user interface with an analysis of the given network and
subjective assessments based on our interpretation. We
emailed briefings to four subject matter experts (SME),
each responsible for one of those IPv6 networks, and
asked them to confirm, refute, or otherwise comment on
our results, promising to publish them in anonymized
fashion (herein). 3 Summarizing their feedback:
• The first SME, from a mobile carrier network, wrote

“In short, I don’t know. :)” They reported that they
assign prefixes to gateways from a common vendor for
service providers in the US, and these gateways in turn
assign the /64 prefixes and hint about an IID to the user
equipment, i.e., SLAAC for 3GPP cellular hosts [21].
Regarding a detail, they were surprised that our analy-
sis showed 47% of the IIDs end with 01, i.e., apparently
not pseudo-random. They hypothesized these addresses
are selected by some Android handsets.
• The second SME wrote “[Your] assumptions when

it comes [to] infrastructure are wrong.” This SME said
that internally they use a RIR block that is not routed
on the Internet, and that their routers are in a block
that is only used for that purpose. In the briefing, we
guessed that the lowest IPv6 address bits sometimes
identified services. The SME confirmed this is the case,
but did not comment on many other assertions includ-
ing our guesses as to the uses of prefixes containing“van-
ity” hexadecimal strings that spell English words in the
midst of their IPv6 addresses.
• Another network’s SME wrote, “of your analysis

[...]: nice reverse engineering of our address plan ;).”
They also mentioned some confusion because the ini-
tial segment A in the conditional probability browser
showed a /32 prefix that contained some addresses that
are not theirs. This was a mistake on our part, due
to “hard-wiring” a segment boundary at /32 and incor-

3We were unable to identify an expert for one of the net-
works, even after weeks with assistance from our network
operations colleagues.

rectly assuming that the entire /32 was allocated to
them. The SME asked if we used the RIR databases to
verify the netblock owners.
• The final SME responded to the details that we

reported regarding values in particular segments, say-
ing it would require digging to confirm or refute. They
reported that our subjective assessments were correct,
e.g., about which prefixes were dedicated to routers or
clients, but also mentioned that was “rather obvious.”
They also asked questions and generously offered to dis-
cuss the results further.

With regard to the SME suggesting it may be An-
droid handsets that use curious IIDs in their network,
independent investigation confirmed this (Section 5.4).
In answer to the question about using RIR databases,
we did consult them, but apparently not carefully
enough. This was useful feedback as it shows we can
improve our system by better integrating RIR data and
BGP-advertised prefixes. With regard to some of our
assessments being labeled obvious, perhaps the SME
meant they are obvious to an IPv6 operator or expert.

Overall, we find these responses interesting in their
variability with respect to how forthcoming operators
are, or are not, with details of their address plan. We
appreciate their candid, collegial responses, such as one
even admitting, essentially, that some network gear“just
works,” and that they did not study the resultant
SLAAC-based address assignments to user equipment.
This comports with one of the stated applications of our
work: namely, to remotely analyze networks’ addressing
practices, assess, and report potential risks.

6. LIMITATIONS AND FUTURE WORK
Some limitations arise from out initial assumptions

and choice of parameter values for segmentation, de-
scribed in Section 4.2. First, as mentioned in Section 5.7,
one network’s SME identifies a problem with an as-
sumption we made to “hard-wire” a break in segments
at a /32 boundary, i.e., after bit 32. Sometimes this re-
sults in segments that disagree with the actual subnet
identifiers in a network’s address plan. This could, also,
result from requiring segment boundaries to be between
4-bit aligned nybbles or from algorithmic sensitivity to
configurable parameters, e.g., the threshold and hys-
teresis values, which influence the segmentation process.
While these assumptions do not necessarily prevent us
from observing effects of features smaller than 4 bits
nor from observing phenomena involving boundaries at
other bit positions, they do affect the resulting struc-
ture and candidate subnets. In future work, we might
consider removing some of these fixed parameters or
searching the parameter space with the hope of produc-
ing structures that match real subnet boundaries, e.g.,
ground truth from operators.

Note that our Bayesian Network model captures de-
pendencies between segments, and that we did not study
dependencies across nybbles within segments. We in-

tend to do so in future research, possibly employing the
concept of mutual information, or an entropy measure
of the string of nybbles within a segment, where the
normalization considers the length of that segment.

In this work, we have ignored the temporal character-
istics of address sets, treating them as if they are a set of
active addresses at one point in time. However, future
work would benefit from integrating temporal consider-
ations into our method, for instance with the hope of
uncovering boundaries of sequential and random assign-
ments of addresses from dynamic pools that we discov-
ered in some networks [27]. Another consideration for
future work is structural analysis in time-series, e.g., to
detect changes in network deployments.

Lastly, our evaluation supports our claim that En-
tropy/IP is effective at generating hit lists of candidate
target addresses if one wishes to conduct a survey or
census of the IPv6 Internet by active scans. This is an
obvious choice for future work that we plan to pursue.
Here, note that our tool can be used on datasets much
smaller than the large sets we described in Section 3 and
employed for evaluation. Thus, datasets known to the
research community can be used for further discovery
of IPv6 server farms, routing infrastructure, as well as
client addresses of selected networks.

7. CONCLUSION
Comprehensive understanding of address structure is

more difficult with IPv6 than IPv4. This is due to
the features and the freedom that IPv6 offers in ad-
dress assignment. To accelerate our IPv6 investigations,
we developed a system—Entropy/IP—that automates
network structure discovery by deeply analyzing sets
of sample addresses gleaned by standard means, e.g.,
server logs, passive DNS, and traceroute. We demon-
strate the system’s effectiveness in discovering structure
in both interface identifiers and network identifiers, i.e.,
subnets. While there is future work still to do, our ini-
tial performance evaluation suggests there is potential
to surgically survey the vast Internet address space, as
well as improve analysts’ understanding in operation
and defense of our increasingly complicated Internet.

Acknowledgements
We thank Keung-Chi “KC” Ng, Eric Vyncke, and the
four network operators who replied to our solicitation
for comments. We thank Johanna Ullrich for helpful
discussion on their methods and datasets. We also ex-
press gratitude to our proof-readers: Jan Galkowski,
Steve Hoey, Grzegorz Karch, Mariusz S labicki, and our
shepherd, Walter Willinger.

8. REFERENCES

[1] ARIN. Number Resource Policy Manual.
https://www.arin.net/policy/nrpm.html#six521.

[2] K. Cho, R. Kaizaki, and A. Kato. Aguri: An
Aggregation-Based Traffic Profiler. In Proceedings
of the Workshop on Quality of Future Internet
Services (QofIS ’01), Coimbra, Portugal,
September 2001.

[3] J. Czyz, M. Luckie, M. Allman, and M. Bailey.
Don’t Forget to Lock the Back Door! A
Characterization of IPv6 Network Security Policy.
In Network and Distributed System Security
Symposium, Feb. 2016.

[4] A. Dainotti, K. Benson, A. King, k. claffy,
M. Kallitsis, E. Glatz, and X. Dimitropoulos.
Estimating Internet Address Space Usage
Through Passive Measurements. ACM
SIGCOMM Computer Communication Review
(CCR), 44(1):42–49, Jan 2014.

[5] M. Defeche and E. Vyncke. Measuring IPv6
Traffic in BitTorrent Networks. Internet-Draft
draft-vyncke-ipv6-traffic-in-p2p-networks-01, 2012.

[6] N. Dojer. Learning Bayesian Networks Does Not
Have to Be NP-hard. In Mathematical
Foundations of Computer Science 2006, pages
305–314. Springer, 2006.

[7] A. W. Drake. Fundamentals of applied probability
theory. Mcgraw-Hill College, 1967.

[8] Z. Durumeric, E. Wustrow, and J. A. Halderman.
ZMap: Fast Internet-Wide Scanning and its
Security Applications. In Proceedings of the 22nd
USENIX Security Symposium, Aug. 2013.

[9] C. Estan and G. Magin. Interactive Traffic
Analysis and Visualization with Wisconsin Netpy.
In Proceedings of USENIX LISA, San Diego, CA,
December 2005.

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise. In Kdd,
volume 96, pages 226–231, 1996.

[11] Farsight Security. DNSDB.
https://www.dnsdb.info/.

[12] L. Feinstein, D. Schnackenberg, R. Balupari, and
D. Kindred. Statistical Approaches to DDoS
Attack Detection and Response. In DARPA
Information Survivability Conference and
Exposition, 2003. Proceedings, volume 1, pages
303–314. IEEE, 2003.

[13] O. Gasser, Q. Scheitle, S. Gebhard, and G. Carle.
Scanning the IPv6 Internet: Towards a
Comprehensive Hitlist. In Traffic Monitoring and
Analysis - 8th International Workshop.
Proceedings, TMA 2016., Louvain La Neuve,
Belgium, 2016. IFIP.

[14] F. Gont and T. Chown. Network Reconnaissance
in IPv6 Networks. RFC 7707, 2016.

[15] D. Goodin. Using IPv6 with Linux? You’ve likely
been visited by Shodan and other scanners.
http://goo.gl/98vLdx, August 2016.

[16] Google. IPv6 Statistics. http://goo.gl/8FWGW9,
August 2016.

[17] R. Hinden and S. Deering. IP Version 6
Addressing Architecture. RFC 4291, 2006.

[18] S. Jiang, Q. Sun, I. Farrer, Y. Bo, and T. Yang.
Analysis of Semantic Embedded IPv6 Address
Schemas. Internet-Draft
draft-jiang-semantic-prefix-06, 2013.

[19] E. Kohler, J. Li, V. Paxson, and S. Shenker.
Observed Structure of Addresses in IP Traffic. In
Internet Measurement Workshop, pages 253–266,
2002.

[20] D. Koller and N. Friedman. Probabilistic
Graphical Models: Principles and Techniques.
MIT Press, 2009.

[21] J. Korhonen, J. Arkko, T. Savolainen, and
S. Krishnan. IPv6 for Third Generation
Partnership Project (3GPP) Cellular Hosts:
Stateless Address Autoconfiguration, RFC 7066.
https://goo.gl/EHcx0M, 2013.

[22] B. Krishnamurthy and J. Wang. On
Network-Aware Clustering of Web Clients. ACM
SIGCOMM Computer Communication Review,
30(4):97–110, 2000.

[23] A. Lakhina, M. Crovella, and C. Diot. Mining
Anomalies Using Traffic Feature Distributions. In
Proceedings of ACM SIGCOMM ’05,
Philadelphia, PA, August 2005.

[24] W. Lee and D. Xiang. Information-Theoretic
Measures for Anomaly Detection. In Security and
Privacy, 2001. S&P 2001. Proceedings. 2001
IEEE Symposium on, pages 130–143. IEEE, 2001.

[25] D. Malone. Observations of IPv6 Addresses. In
Passive and Active Network Measurement, 9th
International Conference, PAM 2008, Cleveland,
OH, USA, April 29-30, 2008. Proceedings, pages
21–30, 2008.

[26] T. Narten, R. Draves, and S. Krishnan. Privacy
Extensions for Stateless Address
Autoconfiguration in IPv6. RFC 4941, 2007.

[27] D. Plonka and A. Berger. Temporal and Spatial
Classification of Active IPv6 Addresses. In
Proceedings of the 2015 ACM Conference on
Internet Measurement Conference, pages 509–522.
ACM, 2015.

[28] L. Rabiner and B. Juang. An introduction to
hidden Markov models. IEEE ASSP Magazine,
3(1):4–16, 1986.

[29] Rapid7 Labs. Forward DNS Records (ANY).
https://scans.io/study/sonar.fdns, Aug. 2016.

[30] C. E. Shannon. A mathematical theory of
communication. ACM SIGMOBILE Mobile
Computing and Communications Review,
5(1):3–55, 2001.

[31] SI6 Networks. SI6 Networks’ IPv6 Toolkit.
https://goo.gl/MJXyTz, Aug. 2016.

[32] W. T. Strayer, C. E. Jones, F. Tchakountio, and
R. R. Hain. SPIE-IPv6: Single IPv6 Packet
Traceback. In Local Computer Networks, 2004.
29th Annual IEEE International Conference on,
pages 118–125. IEEE, 2004.

[33] J. Ullrich, P. Kieseberg, K. Krombholz, and
E. Weippl. On Reconnaissance with IPv6: A
Pattern-Based Scanning Approach. In
Availability, Reliability and Security (ARES),
2015 10th International Conference on, pages
186–192. IEEE, 2015.

[34] A. Wagner and B. Plattner. Entropy Based Worm
and Anomaly Detection in Fast IP Networks. In
Enabling Technologies: Infrastructure for
Collaborative Enterprise, 2005. 14th IEEE
International Workshops on, pages 172–177.
IEEE, 2005.

[35] B. Wilczyński and N. Dojer. BNFinder: Exact
and Efficient Method for Learning Bayesian
Networks. Bioinformatics, 25(2):286–287, 2009.

