IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 9. NO. 2, FEBRUARY 1991 165

Performance Analysis of a Rate-Control Throttle
where Tokens and Jobs Queue

Arthur W. Berger, Member, IEEE

Abstract—A rate-control throttle is used for overload control in dis-
tributed switching systems and computer and communication net-
works. Typical implementations of the throttle have a token bank where
an arriving job is blocked and rejected if the bank is empty of tokens.
This paper examines an expanded implementation where an arriving
job queues in a finite buffer when the token bank is empty. We show
that the steady-state throughput and blocking of jobs depends on the
capacity of the job buffer and the capacity of the token bank only via
the sum of the two capacities, and not on their individual values. Thus,
the job buffer per se is not needed to enhance the robustness of the
throughput of the throttle to unknown exogenous job arrival rates.
However, a job buffer, along with a token bank, with adjustable buffer
capacities does have the potential to shape the departure process and
to adapt between a delay control and a work-rejection control.

I. INTRODUCTION

RATE-control throttle is an input regulation technique for

overload control. It has been used in distributed switching
systems [1], [2], and is applicable to general computer and
communication networks. The throttle is typically implemented
with a token bank where an arriving job is blocked and rejected
if the bank is empty of tokens. This paper considers an ex-
panded throttle where jobs may queue in a finite buffer when
the token bank is empty. The operation of the throttle is illus-
trated in Fig. 1. The throttle contains two finite buffers, one for
tokens and one for jobs. The buffer capacities are typically,
though not necessarily, constant during the operation of the
throttle. The tokens arrive deterministically and evenly spaced
from an infinite source. The arrival rate of tokens is the control
variable of the throttle. Tokens that arrive to a full bank are
blocked and lost. If the bank contains a token when a job arrives
to the throttle, then the job is allowed to pass through, and the
bank is decremented by one token. If the bank does not contain
a token when a job arrives, then the job queues in the job buffer
if the buffer is not full. If the job arrives to a full buffer, then
the job is rejected. Note that the rate-control throttle differs
from sliding window flow control in that there is no constraint
on the number of outstanding tokens; rather, tokens are used
once and do not circulate back to the token bank.

The rate-control throttle has been used to regulate the requests
of users to initiate a call or session. In this application, only the
call-setup request is controlled, and a given throttle receives
requests from many users. Moreover, during normal nonover-
load conditions, the throttle is not turned on, and arriving jobs
are not affected. When a monitor detects an overload, then the
throttle is activated and remains on until the monitor determines
the abeyance of the overload. As this paper investigates quali-

Manuscript received April 20, 1990; revised September 13, 1990. This
paper was presented at INFOCOM, San Francisco, CA, June 1990.

The author is with AT&T Bell Laboratories, Holmdel, NJ 07733.

1EEE Log Number 9040752.

‘ TOKEN LOST IF I
! , BANK IS FULL |

| ‘ ‘
| Tokens TOKEN BANK i
oo AL T Fw !
RN it I I N I J |JOBS THAT

JOB
o oY i PASS
‘t 1 | THROUGH
/

‘THROTTLE

e

|
JOB BUFFER ‘
_— ST s - 1

Pl
A T _— ><>,, JLL Hj AN

ijoa REJECTED IF
BUFFER IS FULL

Fig. 1. Diagram of a rate-control throttle.

ties of the throttle that are independent of the downstream sys-
tem, the mechanism to detect the overload is not considered.
(Of course, the design of the overall control would include a
monitor.) Doshi and Heffes study the overall control for a star
topology network with a monitor of the occupancy of the pro-
cessor at the bottleneck, central node, and throttles at the pe-
ripheral nodes [1]. They compare a rate-control throttle
containing a token bank but no job buffers versus a sliding win-
dow flow control. For a similar network configuration, Kumar
describes a monitor that uses stochastic approximation to up-
date the control settings [2].

Recently, the rate-control throttle has been suggested to reg-
ulate the packet flow for the duration of a call or session in
broadband integrated services digital networks (B-ISDN’s). In
this application, a throttle is associated with each user and is
active for the duration of the session. The bank capacity and
token arrival rate are determined at call setup and are such that,
with high probability, the throttle will not affect the user’s traffic
if it remains within agreed limits. Eckberg et al. use a leaky
bucket (which is almost isomorphic to a token bank), for a
throughput-burstiness filter for asynchronous transfer mode
(ATM) cells of a B-ISDN [3]. Cells that arrive to an empty
token bank are not blocked but rather are marked, are allowed
through, and may be discarded if a subsequent node is con-
gested. In [4], Sidi et al. also use a token bank for B-ISDN
where the cells that arrive to an empty bank are not marked or
blocked but rather are delayed in a job buffer, as is done in the
present note. For Poisson job arrivals, they determine the La-
place-Stieltjes transform of the distribution of the cell waiting
times and interdeparture times.

The contribution of the present note is to analyze the through-
put and blocking of jobs for a general Markovian arrival pro-
cess. Of particular interest is the robustness of the throughput
to unknown job arrivals rates (and, more generally, to unknown
job arrival processes), given constant parameter values of the
throttle. In the B-ISDN application, these parameters would in-
deed be constant for the duration of the call. For the regulation

0733-8716/91/0200-0165%01.00 © 1991 IEEE

166 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 9, NO. 2, FEBRUARY 1991

of call setups, the token arrival rate is typically updated period-
ically, and the arrival rate of jobs may change markedly within
an update interval. For example, the users may reattempt if a
previous request is blocked, and the total arrival rate seen by
the throttle can increase significantly. Moreover, sometimes the
number of possible values for the control setting is constrained

- and the designer must choose these values with care. The more
robust the throttle, the less the designer need be concerned with
the arrival rate of jobs, and the more the designer can tune for
changes in the desired departure rate.

The following analysis assumes a stationary arrival process
of jobs and thus is an approximation to the nonstationary arrival
process of call setups with reattempts in the previous example.
However, for sustained overloads of possibly unknown mag-
nitude, the superposition process of first attempts and retries
may approach a steady state and could be modeled reasonably
as a stationary process.

II. MODEL OF RATE-CONTROL THROTTLE

Consider a constant control setting where the arrival rate of
tokens is r. To present the results under general conditions, as-
sume the token arrival process is renewal with interarrival times
having a general distribution F (-) with finite mean r~'. Later,
we consider a special case where the token interarrival times
are evenly spaced; F () has a jump of size 1 at »~'. Assume
the job arrival process is a Markovian arrival process (MAP)
and is independent of the token arrival process. The MAP is
introduced by Lucantoni et al. in [5] and is a class of semi-
Markov processes that models a broad range of arrival pro-
cesses, yet is analytically and numerically tractable. The gen-
erality of the MAP may prove useful for modeling the bursty
packet arrival process in ATM networks; a special case of the
MAP, the Markov-modulated Poisson process, has been useful
for modeling stationary, packetized, voice, and data traffic [6].
Also, the MAP could model the presumably simplier arrival
process of call-setup requests, which is frequently assumed to
be a Poisson process. Although, since customers typically reat-
tempt when their setup request is blocked, the resulting super-
position of first attempts and reattempts is a complicated process
[7]. The MAP could be used to partially characterize the cor-
relations of the interarrival times of the stationary version of
this superposition process and would be an improvement over
the classical approximation of inflating the rate of a Poisson
process.

The key quality of the MAP for the present note is that its
future evolution is independent of the past, given its current
state. The following section is an abbreviated description of the
MAP. For more details, see [5].

A. Markovian Arrival Process

The MAP is a Markov process with a finite number of tran-
sient states m and one absorbing state. The epoch of absorption
constitutes an arrival of the modeled job arrival process. Upon
absorption, the MAP immediately restarts in a transient state,
and the cycle repeats.

More formally, and using the notation in [5], if the MAP is
in transient state i, i € 1, - + +, m, it will remain in i for a length
of time that is exponentially distributed with parameter \,. At
the end of this period, the process may move to another tran-
sient state or may be absorbed and then instantaneously restart
in some transient state. Let g; be the probability the process
goes to transient state j, given that is has been in transient state

—

i. Let p,j be the probability the process is absorbed and then
restarts in state j, given that it has been in transient state i. Note
that:

2 q,-j+2p,»j=l, l=i<m
J=lj#i j=1
Let the matrix P(n, ¢) denote the counting function whose ijth
entry, P;(n, t), is the probability the number of job arrivals
over the interval (0, ¢] is n and the state of the MAP at time ¢
is j, given that the state of the MAP at time O is i. The
z-transform of P(n, t) with respect to n, P*(z, t) =
Lo P(n, 1)Z", is equal to:

P*(z, 1) = " |z] = 1,1 2 0,

where C is an m X m matrix whose ijth entry equals \;g; for
i # jand equals —X, fori = j, and where D is an m X m matrix
whose ijth entry equals \;p;;.

As an example, when C and D are scalars and are equal to
—\and A, respectively, then the MAP simplifies to the Poisson
process. The MAP becomes a renewal process with interevent
times distributed as a two-branch hyperexponential if C and D
are 2 X 2 matrices equal to:

c [_)" 0 J D [)\'} [o @}
= , = A a >
0 - W Rl

o + o, = 1. The MAP becomes a Markov-modulated Poisson
process, if with probability 1 the process restarts in the same
state that it absorbed from, i.e., if the nonzero (positive) entries
of D are along the diagonal.

III. ANALYSIS OF RATE-CONTROL THROTTLE

Define the notation:

N = the mean arrival rate of jobs.

N’ = the throughput of jobs that pass through the throttle,
i.e., jobs that are not rejected.

By definition, in steady state A’ equals A X [1 — Prob(job is
blocked)]. Moreover, since each job that passes through the
throttle requires a token, and tokens either depart with a job or
are lost from a full token bank, A’ also equals the rate that to-
kens depart with jobs, which equals r X [1 — Prob(token is
blocked)]. Thus, for token bank and job buffer capacities that
are finite,

kl

N X [1 — Prob(job is blocked)]
r x [1 — Prob(token is blocked)]. (1)

Using an embedded Markov renewal process, we can determine
the Prob(token is blocked). Then, from (1), the throughput and
blocking of jobs is known trivially.

A. State Evolution Equation

Define the notation:

T, = arrival epoch of the nth token. 7, = 0.

X(t) = the number of tokens in the token bank at time 7. It
is convenient to view X(z) as left continuous. For example,
X(T,) = number of tokens in the token bank just before the
arrival of the nth token. X(7,/) = number of tokens in the token
bank just after the arrival of the nth token. Let X, denote X(7,,).

Y(t) = the number of jobs in the job buffer at time ¢. Y, =
Y(T,).

J (t) = the state of the MAP at time ¢. J, = J(T,). J (1) €
{1, -+, m}.

BERGER: PERFORMANCE ANALYSIS OF A RATE-CONTROL THROTTLE

V,., = the number of job arrivals over the interval (7,
Tn +1]

C, = capacity of the job buffer. C, is finite.

Cr = capacity of the token bank. Cy is finite.

The operation of the throttle implies that the token bank and
the job buffer do not simultaneously contain entities. Thus, we
can define:

200 ={ X(r) ifY() =0
-Y(t) ifX(1)=0

Note that, given J (7), the future stochastic behavior of the MAP
is independent of the past and, thus, {Z(¢), J ()} is a semi-

Z, = Z(T,).

167

than ¢, and k jobs arrive during (7,, T,), and the MAP is in
state j at time T, , |, given that the MAP is in state i at time 7,,.
B(k, t)equals L, A(n, t).
Conditioning on the token interarrival time, A(k, ¢) can be
expressed as:

1

A(k, 1) = SO P(k, s)dF (s)

where P(k, s) is the counting function of the MAP defined in
Section II-A. Ordering the states (Z,, J,) as (—C,, 1), (—C,,
2), -, (—=C;, m), (=C; + 1, 1), - -+, the semi-Markov
kernel, denoted Q(t), is the following block martix, where i
ranges from —C, to Cr — 1.

-C, -G+ 1 -C, +2 i+l (ol
-G B(1, 1) A(0, 1) 0 0 0
—-C,+ 1| B(2,1) A(lL, 1) A(0, 1) 0 0
—-C, + 2| B(3,1) A(2,1) A(1, 1) 0 0
i B(C,+1+i,1) A(C, +1i,1) A(C,+i—1,1) A0, 1) 0
Cr—1|B(C, + Cr 1) A(C, + Cr—1,1) A(C, + Cr—2,1) A(Cr—1—i, 1) A0, 1)
Cr B(C, + Cp 1) A(C, + Cr—1,1) A(C,+ C, —2,1) A(Cr—1—1i,1) A(0,1)

regenerative process, where the T,,’s are regeneration points and
the sequence {Z,, J,, T,,} is an embedded Markov renewal pro-
cess [8].

The state-evolution equation of Z, follows directly from the
definition of the throttle. In particular, suppose Z, = 0, then at
time T, there exist Z, tokens in the token bank. A token then
arrives, and the number of tokens increase by 1 if there is room
in the token bank. Thus, at 7,7 the number of tokens in the bank
is min(Z, + 1, C;). Then, over the interval (7,, T, .1, V, 1+,
jobs arrive. With each job arrival, the number of tokens Z(¢)
is decremented by 1. Enough jobs may arrive so that all of the
tokens are used, and jobs begin to queue in the job buffer, in
which case Z(¢) becomes negative. However, the queue of jobs
is limited by the capacity of job buffer C,. Thus, Z(¢) can be-
come no more negative then —C,. In summary, at T, , , after
the V, ., job arrivals,

Z, .y = max (mln(Zn + 1, CT) = Vasrs

6 =0, C =0 (2)

If Z, < 0, then an abbreviated version of the above argument
pertains.

Note that if C, = 0 and C; > 0, then there is no buffer for
jobs, which is the standard case for the rate-control throttle.
Likewise, if Cr = 0 and C; > 0, then jobs but not tokens queue.
- In this case, one can view the throttle as a gate on the job queue
that opens only for an instant (the instant of a token arrival) and

allows one of the queued jobs to pass through, if any are pre-
sent.

-G),

B. Semi-Markov Kernel
Define:

A(k, 1) equals an m X m matrix whose ijth element equals
the probability the token interarrival time, 7,,, — T,, is less

C. Eguivalence to GI/MAP/1/K System

Lemma 1: The rate-control throttle with jobs arriving as a
MAP is equivalent to a GI/MAP/1/K queueing system where
the server operates in the following nonstandard manner:

upon a service completion that leaves the system empty,
the server continues to operate; the MAP continues to
transit among the m states, possibly being absorbed and
restarting.

Comment: The nonstandard feature of the server corre-
sponds in the throttle to the jobs continuing to arrive, irrespec-
tive of the token arrival process. Furthermore, the absorption
and restarting of the MAP of the server while the system is
empty corresponds in the throttle to the arrival of a job that is
blocked and rejected at a full job buffer. As is standard, an ar-
rival to the GI/MAP/1/K system that finds the system empty
immmediately enters service. Its service time is the time until
the next absorption of the MAP. This time has the same distri-
bution as the time between absorptions of the MAP, given com-
mon starting states of the MAP. Loosely speaking, the throttle
is a GI/MAP/1/K queue with the state variable of the throttle,
Z,, shifted up by C,.

Proof: The candidate GI/MAP/1/K queue has an interar-
rival time distribution G equal to the token interarrival time dis-
tribution F, has the parameters of the service process equal to
those of the job arrival process to the throttle, and has a system
capacity K equal to C;, + C;. Let:

U(t) = the number of entities in the GI/MAP/1/K system at
time ¢. View U(t) as left continuous. Thus, let U(7,) = the
number of entities in the system just prior to the nth arrival.

L(t) = the state of the MAP of the server of the GI/MAP/
1/K system at time ?.

168 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 9, NO. 2, FEBRUARY 1991

We show that the joint stochastic process { U(?), L(1)} is
equivalent in sample paths to the stochastic process {Z(7) +
C,, J(1)}. For any sample path of the renewal process with
interevent time distribution F, the epochs of token arrivals to
the throttle coincide with the epochs of arrivals to the GI/MAP/
1/K queue. Likewise, for any sample path of the MAP, then
L(t) = J (). As for U(t) and Z(¢), first consider the embed-
ded epochs. U(T,), denoted U,, evolves according to the state
equation:

U, = max (min (U, + 1, K) — Vi1, 0), (3)

where, as before V, ., equals the number of absorption of the
MAP in the interval (T,, T, ,,]. Making the variable substitu-
tions K = C; + Crand U, = Z, + C,, then (3) becomes:

Z,s + C, = max (min(Z, + C, + 1,

C;+ Cr) = Vasr, 0).

Subtracting C, from both sides and bringmg C, inside the
max (-) and the min(-) yields: '

Z,yy = max (min(Z, + 1, Cr) = Vs, -G),

which is identical to the state evolution equation (2). Further-
more, for ¢ between T, and T, ;, Z(¢) and U(t) each evolve
by the common MAP. Thus, the two joint stochastic processes
{U(t), L(¢)} and {Z(¢) + C,, J (1)} are equivalent in sample
paths. O

D. The Blocking of Jobs is a Function of C; + Cr

Theorem 1: For jobs arriving according to a Markovian ar-
rival process (MAP) and tokens arriving according to a renewal
process that is independent of the job arrival process, then the

. probability a job is blocked depends on the capacity of the job
buffer, C;, and the capacity of the token bank, C, only via the
sum of the two capacities, C; + Cr.

Proof: The proof uses the simple observation that for con-
stant C, + Cy the semi-Markov renewal kernel Q(¢) is invari-
ant. Consider the Markov chain associated with the Markov
renewal process {Z,, J,, T, } whose transition matrix is the limit
t = oo of the semi-Markov kernel Q(¢). This Markov chain is
positive recurrent, aperiodic, and irreducible and hence its lim-
iting distribution equals its stationary distribution, denoted by
v. v is invariant over C, and Cy, given that C; + Cris constant.
The sum of the last m components of » is the probability a token
is blocked, which from (1) determines the throughput of jobs
and the probability a job is blocked. Thus, the probability a job
is blocked depends on C; and C; only via their sum, C, + Cr.

‘]

The key implication of Theorem 1 is that the job buffer can
be eliminated without affecting the steady-state throughput and
blocking of jobs, as long as the token bank capacity is increased
by what had been the capacity of the job buffer. One advantage
of eliminating the job buffer is that jobs that pass through the
throttle are not delayed. The presence of a job buffer introduces
the performance degradation of additional delay to those jobs
that are admitted; in contrast, the delay of tokens is not a per-
formance degradation. (The delay of jobs is examined in [9].)

Note that the blocking probability in Theorem 1 is a steady-
state concept and is independent of the initial state {Z,, J,}.
Thus, Theorem 1 implies that for two rate-control throttles, each
with the same value for C; + C, and each driven by the same
MAP of jobs and renewal process of tokens, the blocking prob-

abilities are the same for the two sytems regardless of the initial
state. However, in the special case where the two J,’s are the
same and where the difference in the two Z,’s equals difference
in token bank capacities, then one can make the stronger state-
ment that for each sample path the epochs of blocking coincide
for the two systems.

Theorem 2: For two rate-controls throttles, denoted ‘‘a’’ and
“p,”” with buffer capacities C%, C% and C%, C%, respectively,
such that C§ + Cf = CJ + C%, then for a common MAP of
jobs and renewal process of tokens, the epochs at which jobs
are blocked coincide for the two systems, as do the epochs at
which tokens are blocked, for all sample paths if the initial states
are related as:

Ze+Ci=2b+Ch Ji=1T, (4a)
or, equivalently,
Zi-Ch=25-Cy Jy=1Us (4b)

Proof: The proof is based on the observation that the two
rate-control throttles are equivalent to the same GI/MAP/1/K
queue. From Lemma 1, each rate-control mgﬂttle is equivalent
in sample paths to a GI/MAP/1/K queueing gystem with a con-
tinuous server. Each of the two queueing systems have the same
capacity, K = C§ + C7 = C% + C%and are driven by the same
MAP of jobs and renewal process of tokens. Thus, if the two
queueing systems have common intial states, then their sample
paths would be the same. Let U“(¢) = the number of entities
at time ¢ that are in the queueing system that is equivalent to
rate throttle “‘a’’ and, likewise, for U "(t). From the proof of
Lemma 1, U%(t) = Z°(¢) + C%and U*(¢) = Z°(1) + o
Thus, from (4a), at time t = 0, U“(0) equals U’(0). Also, the
initial states of the MAP’s are given to be equal. Thus, the two
rate-control throttles are equivalent in samples paths to the same
GI/MAP/1/K queueing system. In particular, U®(t) = Ub(1)
and, thus,

)+ Ci=2()+ C5 1=0 (5a)
or, equivalently,
Z1) - C4=21u) - €4 =0 (5b)

Consider the epochs at which tokens are blocked. Tokens arrive
at the embedded points, 7,, n = 0, 1, - - -, and are blocked iff
the token bank is full. For example, a token is blocked in sys-
tem ‘‘a’’ at time T, iff Z°(T,) = C%and, likewise, for system
““b.”” Moreover, (5b) implies that Z°(T,) = C7iff (T, =
C%. Thus, the epochs at which tokens are blocked coincide for
the two systems. Similarly, a job is blocked in system “‘a’’ at
time 7 iff Z9(¢t) = —C$ and, likewise, for system ‘‘b.”” Equa-
tion (5a) implies that Z%(¢) = —C§ iff Z®(tr) = —CJ. Thus,
the epochs which jobs are blocked coincide for the two
systems. O

IV. APPLICATION AND DISCUSSION OF ANALYSIS
A. Robustness to Job Arrival Process

In [10], the robustness of a rate-control throttle with a token
bank and no job buffer is studied. It is shown that in overload
and for a fixed coritrol settting, the departure rate from the throt-
tle is surprisingly insensitive to the arrival rates beyond the
maximum desired value, if the capacity of the token bank is 10
or more. With a capacity of 10 or more and for Poisson arrivals,
then as a practical matter for the application of regulation of

P

BERGER: PERFORMANCE ANALYSIS OF A RATE-CONTROL THROTTLE

call-setup requests in telecommunication switching systems, one
can ignore the arrival rate and adjust r only for changes in the
desired job departure rate [10]. From Theorem 1 above, we see
that the presence of a job buffer, per se, does not increase this
robustness. A token bank alone yields the same robustness if its
capacity is augmented by what would have been the capacity of
the job buffer. Fig. 2 illustrates this robustness. For hyperex-
ponential job interarrival times, deterministic token interarrival
times, and for r held fixed, Fig. 2 plots the normalized depar-
ture rate A’ /r, versus the normalized arrival rate of jobs, N /7,
indexed by C, + C;. The computation of the departure rate
requires the computation of the block matrices of Q(o), for
which an algorithm by Lucantoni and Ramaswami was used
[11]. Fig. 2 shows the substantial improvement in robustness
as C, + Cyincreases from 1 to 10.

Fig. 3 shows how the robustness is affected by changes in the
parameters of the hyperexponential distributjon of job interar-
rival times. (To show the details, the scale differs from that in
Fig. 2.) Note that for Poisson job arrivals, the departure rate is
close to ideal. As a possibly unexpected result, note that for a
common coefficient of variation, cases 2 and 4, the case with
higher skewness is closer to the ideal for \ around r, while the
case with lower skewness is closer to the ideal for A >> r.
Informally, one might think that (1) higher skewness is more
“stressful,”” and also that (2) over the class of H, distributions,
the limiting case of batch Poisson with geometric batch sizes is
the most ‘‘stressful.”’ However, both informal notions cannot
be true simultaneously since the batch Poisson with geometric
batch sizes has the minimum skewness over the class of H, dis-
tributions.

An intuitive explanation can be given for the reversal in cases
2 and 4. Consider the scenario where N >> r. Here, the job
buffer is frequently full, and the token bank is lightly loaded
and is frequently empty. Arriving tokens are blocked only when
there is an atypically long job interarrival time. Such inter-
arrival times occur more frequently when the distribution has a
long tail. This occurs at high skewness for given X and c?. Thus,
for A >> r, higher skewness of job interarrival times causes
higher blocking of tokens and a lower throughput of jobs for
given c2.

Now consider the opposite scenario of N < r. Here, the token
bank is frequently full. In contrast, for the job buffer to be full,
a number of jobs need to arrive closely spaced. Typically, this
would occur if one of the branches of the H, distribution has a
high arrival rate and if that branch has a nonnegligible proba-
bility of occurring. This is the case for low skewness, with the
limiting case of one branch with infinite arrival rate: batch Pois-
son arrivals with geometric batch sizes. Thus, given A < r, if
the job interarrival times have a low skewness, then the job
buffer is more likely to be full at job arrival epochs, and thus
an arriving job is more likely to be blocked, and the throughput
of jobs will be lower. Thus, for X\ < r, lower skewness of job
interarrival times causes a lower throughput of jobs for given

c’.

B. Short-Term Congestions and False Alarms

Given the above, one can ask whether there are any advan-
tages in having a job buffer. One advantage is the reduction of
the negative consequences of false alarms by the monitor. This
advantage is potentially useful for the regulation of call-setup
requests. Suppose that the throttle is turned on only when a
monitor detects an overload in the system or network, and oth-

169

N
o JOB INTERARRIVAL TIMES ARE 1.1.D. H, WITH
i
R 14 | COEFFICIENT OF VARIATION = 2. SKEWNESS = 50. |
M | TOKEN ARRIVAL RATE = DESIRED DEPART. RATE OF JOBS
C2 ‘
M ‘ Cy=to IDEAL |
100 | o |
g 0 BRI
A [o7Cy=s
N 08 b i |
i
R 06 -
A ‘
T 04 |
e " . = CAPACITY OF SYSTEM = C, + C .
:
o 02 - |
u
T 00 L . . Lee
0.0 0.5 10 15 20 25 30

NORMALIZED MEAN RATE INTO THROTTLE. A/r

Fig. 2. Normalized mean departure of jobs N’ /r versus arrival rate, given
the control settting is fixed: indexed by system capacity.

N o | T -
g JOB INTERARRIVAL TIMES ARE LI.D. H..
M 105 - C,+Cy =10
3) @ IDEAL
M 100 - ,_/rf - 4 ;
E T 0
A [- = '
P ~
N 095 | / P P
/ //
R /5 (OIS
A 090 | / .~ ¢ =COEF. OF VARL.§ = SKEWNESS
T [7 (1) ¢=1., $=2. (POISSON)
E s fr ’ @) c=2. $=50
° 085 r / : (3 c=3. §=50.
U g @ c=2. S=5.
Ve
TORO e
08 10 12 14 16 18 20

NORMALIZED MEAN RATE INTO THROTTLE. A/r

Fig. 3. Normalized mean departure rate of jobs N\'/r versus arrival rate,
given the control setting is fixed: indexed by second and third moments of
job arrival process.

erwise is inactive. Typically, the monitor detecting the overload
is not perfect and will occasionally give false alarms. This oc-
curs when the overall arrival rate is nominal, but there has been
a statistically random clump of call of call-setup requests that
temporarily congests the system. In this case, the system will
clear itself without any action being taken. Nevertheless, the
monitor detects an overload and the throttle needlessly turns on.
The throttle design can take these false alarms into account by
initializing the token bank with an appropriate number of to-
kens. In the case of no job buffer, the designer is faced with a
performance tradeoff. By initializing the token bank with a
“‘large’’ number of tokens, the effects of the false alarm is min-
imized because the next few job arrivals will get through and,
with the next update from the monitor, the downstream system
may have cleared and the throttle will turn off. On the other
hand, the designer would like to initialize the token bank with
a “‘small’’ number of tokens so that, during a true overload (not
a false alarm), the throttle will activate quickly. By introducing
a buffer for the jobs, this performance tradeoff is partially
avoided. The designer can initialize the token bank with a small
number of tokens so that the throttle will activate quickly for a
true overload and, in the case of a false alarm, rather than hav-
ing jobs needlessly blocked and rejected, they are delayed in a
queue. However, during a sustained overload when all jobs can-
not be served, it is preferable in some systems, such as telecom-

170 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 9, NO. 2, FEBRUARY 1991

munications switching systems, not to delay those call setups
that are served. A possible adaptive implementation is to have
the throttle turn on with a large capacity for the job buffer when
the monitor first detects an overload. If the congestion contin-
ues, then the throttle reduces the capacity of the job buffer to
zero and increases the capacity of the token bank.

C. Shaping the Output Process

A second use for the job buffer is to shape the output process
from the throttle. This has the potential for the application to
ATM B-ISDN’s where an end device shapes its traffic to stay
within the characteristics agreed to with the network when the
session was initiated [3]. Note that Theorem 1 above pertains
to the first moment of the output process. For given total ca-
pacity Cr + C, the nature of the output process does depend
on the individual values of Cr and C, [4]. The potential for
shaping the output process is relevant to both stationary and
nonstationary job arrival processes, though the latter is more
challenging to analyze.

V. CONCLUSION

This note has examined a rate-control throttle where arriving
jobs queue in a finite buffer if the token bank is empty. We have
shown that the steady-state throughput and blocking of jobs is
invariant to the presence of the job buffer, as long as the token
bank capacity is increased by what would have been the capac-
ity of the job buffer. Thus, the job buffer per se is not needed
to enhance the robustness of the throughput of the throttle to
unknown job arrival rates. Overall, the job buffer is not a useful
enhancement to a pure work-rejection throttle. However, the
presence of a job buffer along with a token bank and adjustable
capacities would enable: (1) a tuning of the output process,
which may be useful in applications to B-ISDN; and (2) an
overload control that adapts-between a pure delay control and a
pure work-rejection control.

ACKNOWLEDGMENT

The author would like to thank D. Lucantoni for thoughful
and stimulating discussions and to thank the anonymous re-
viewers for their constructive comments.

REFERENCES

[1] B. T. Doshi and H. Heffes, ‘‘Analysis of overload control
schemes for a class of distributed switching machines,’’ in Proc.
10th Int. Teletraffic Cong., Montreal, Canada, 1983, paper 5.2.2.

[2] A. Kumar, ‘‘Adaptive load control of the central processor in a
distributed system with a star topology,”’ IEEE Trans. Comput.,
vol. 38, pp. 1502-1512, Nov. 1989.

[3] A. E. Eckberg, D. T. Luan, and D. M. Lucantoni, ‘‘Bandwidth
management: A congestion control strategy for broadband packet
networks—Characterizing the throughput-burstiness filter,”” Int.
Teletraffic Cong. Specialist Sem., Adelaide, Australia, Sept.
1989, paper 4.4.

[4] M. Sidi, W. Z. Liu, I. Cidon, and I. Gopal, ‘*Congestion control
through input rate regulation,’’ in Proc. GLOBECOM’89, Dal-
las, TX, Nov. 1989, pp. 1764-1768.

[5] D. M. Lucantoni, K. S. Meier-Hellstern, and M. F. Neuts, ‘A
single server queue with server vacations and a class of non-re-
newal arrival processes,”’ Advances Appl. Prob., Sept 1990.

[6] H. Heffes and D. M. Lucantoni, ‘‘A Markov modulated charac-
terization of packetized voice and data traffic and related statis-
tical multiplexer performance,”’ IEEE J. Select. Areas Commun.,
vol. 4, pp. 856-868, Sept. 1986.

[7]1 P. K. Reeser, ‘‘Simple approximation for blocking seen by peaked
traffic with delayed, correlated reattempts,”’ in Proc. 12th Int.
Teletraffic Cong., Torino, Italy, June 1988, paper 3.1B.5.

[8] E. Cinlar, Introduction to Stochastic Processes. Englewood
Cliffs, NJ: Prentice-Hall, 1975.

[9]1 A. W. Berger, ‘‘Performance analysis of a rate control throttle
where tokens and jobs queue,’’ in Proc. INFOCOM’90, San
Francisco, CA, June 1990, pp. 30-38.

[10] A. W. Berger, ‘‘Overload control using rate control throttle: Se-
lecting token bank capacity for robustness to arrival rates,’’ IEEE
Trans. Automat. Contr., vol. 36, Feb. 1991.

[11] D. M. Lucantoni and V. Ramaswami, ‘‘Efficient algorithms for
solving the non-linear matrix equations arising in phase type
queues,”’ Commun. Stat.—Stochast. Models, vol. 1, pp. 29-51,
1985.

Arthur W. Berger (5’82-M’83) was born in
New York City on April 17, 1953. He received
the B.S. degree in mathematics from Tufts
University, Medford, MA, in 1974, and the
M.S. and Ph.D. degrees in applied mathemat-
ics from Harvard University, Cambridge, MA,
in 1980 and 1983, respectively.

Since 1983, he has been a Member of Tech-
nical Staff at AT&T Bell Laboratories, Holm-
del, NJ, where he has worked on network
planning and the performance analysis of tele-
communication switching systems. His research interests are in the
control of queueing systems with application to the analysis and design
of overload controls and of resource allocation schemes.

Dr. Berger is a member of the IEEE Communications Society and
the IEEE Control Systems Society.

