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Comparison of Call Gapping and Percent Blocking
for Overload Control in Distributed Switching
Systems and Telecommunications Networks

Arthur W. Berger, Member, IEEE

Abstract— Two overload control techniques are compared, percent
blocking and call gapping, which have been used in distributed switching
y and in tel ions networks. The comparison is based
on nine criteria, seven of which concern robustness. The results are useful
in the design of practical, effective overload controls.

1. INTRODUCTION

VERLOAD controls are investigated for a star topology

network with throttles at the peripheral nodes (PN) and
with a bottleneck at the central node (CN). Customers initiate
jobs that pass through the PN and CN, but may be abandoned
by the customer if the response time is high; in overload, and
without throttling, the throughput of nonabandoned jobs declines
substantially. The contribution of this paper is to compare the
qualitative differences between two throttle schemes: percent
blocking and call gapping. A “percent-blocking throttle” blocks
and rejects an arrival with a given probability. A “call-gapping
throttle” closes for a deterministic time interval, the gap size;
after this interval, the next job to arrive passes through and the
throttle again closes for the deterministic time interval. These
throttle schemes have been used in network management of
public switched telephone networks, and in distributed switching
systems, [1]-[5].

The comparison of the throttle schemes is based on nine
criteria, seven of which concern robustness. Robustness has
practical consequences when one tries to design a throttle in
a particular, real application. Typically, the “state” of the CN
can not be transmitted continuously in time to the throttles
at the PN’s but rather is transmitted periodically and may
change significantly between update intervals. Moreover, the
value transmitted is typically from a small set, e.g., NORMAL,
MINOR, MAJOR, CRITICAL. Given the typical granularity in
the update intervals and in the value of the transmitted signal,
a more robust throttle performs better over a larger range of
contingencies. For example, when the throttle turns on and
jobs are blocked, then customers may reattempt, resulting in an
increase in the total arrival rate of jobs. A robust throttle could
appropriately handle this increase, at least for the time period
until the next signal from the monitor. To examine the robustness
of the throttie schemes, we consider fixed, nonadaptive control
settings and examine the resulting performance when exogenous
parameter values change. Thus, the robustness discussed herein
allows an easier design of practical, good controls.
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In a related paper [6], we compare two patently dissimilar
overload control schemes: 1) a dynamic, percent blocking throttle
at the peripheral nodes and a standard first-in—first-out (FIFO)
discipline at the central node, versus 2) no throttling at the
peripheral nodes and a last-in—first-out (LIFO) discipline at the
central node. The LIFO discipline with variations has been shown
to be effective as an overload control strategy in stored program
control switching systems [7]. In [6], a combination of the two
schemes is suggested where the dynamic throttle regulates the
arrivals to a level optimal for the LIFO discipline. In the present
paper, the comparison is between two relatively similar overload
control schemes (either of which could be used in conjunction
with a LIFO discipline at the central node); nevertheless, the two
schemes possess significantly different qualitative features.

II. MobpEL
A block diagram of the model is given in Fig. 1. We assume
that the arrival process to the ith PN, ¢ = 1,...,n is Poisson

with parameter \; and let A denote the sum of the arrival rates,
n
> A;. The arrival streams are independent of one another. If the

ail, or job, is blocked by the throttle at the PN, then it is rejected
and-lost from the system. If the call is not blocked at the throttle,
then it departs the PN and moves to the CN. The superposition
of the n departure processes from the PN’s is the arrival process
to the CN. Arrivals to the CN are queued and served according
to a first-in—first-out discipline. The waiting space is assumed to
be infinite, and we allow the possibility that the total arrival rate
to the CN, X', is greater than the service rate (causing an unstable
queue). We assume that the CN cannot test prior to serving the
call whether the customer has abandoned it. If it turns out that
the call has been abandoned, then we say that the call is “bad”,
otherwise it is “good”. We assume the service time distribution
is exponential with parameter x and is the same for both good
and bad calls. Calls that are served at the CN may have become
bad if their sojourn time in the system is large. The probability
a call is good is assumed to decay exponentially as a function
of sojourn time.! For example,

Prob(call is good | sojourn time = t) = e~ #** 1@
where § is the rate that calls turn bad, normalized by u, [8]. We
are interested in the case where the CN is the bottleneck of the
system, thus we assume any time spent at the PN is negligible and
is not modeled. This includes the case where the call returns to

L1f calls turned bad due to protocol timeouts, then a step function would be
more appropriate. Also, if prior to serving the call, the CN could test whether
it has been abandoned, then the probability a call is good is more appropriately
modeled as a function of waiting time in the queue.
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Fig. 1. Block diagram of the model.

a PN after being served at the CN and before exiting the system.
Thus the modeled sojourn time in the system is the waiting and
service time at the CN.

A. Calculation of Goodput

As defined in [8], “goodput” is the throughput times the
probability of being good. It provides both a convenient scalar
criterion for the tradeoff of throughput and delay, and also a
reasonable abstraction for customer abandonments due to dial
tone delay or post-dialing delay in telecommunication networks
and switching systems, [8]. Let I' = the normalized goodput,
which is goodput divided by u, ie.,

r= 1 - goodput
- throughput - P(good)

= - min ([l, /\’) : P(gOOd)

Tl~E|~T

where X' = Y 7_, A} = arrival rate to the CN. The utilization of
the server at the CN, denoted p, equals (1/p) min(p, \'); thus,
T = p - P(good). Conditioning on the sojourn time yields:

'=p- /Prob(goodl sojourn time = t) - dS(t)
°

where S(f) = probability distribution function of the sojourn time.
Substituting in (1) yields

oo

I'=p- /e""" -dS(t).

o

The last expression is simply p times the Laplace—Stieltjes
transform of the sojourn time distribution evaluated at Su. Thus,
finding the goodput for calls that exponentially turn bad amounts
to finding the Laplace—Stieltjes transform of the sojourn time
distribution.

B. Throttle Schemes

For percent blocking, the control variable is the probability
of blocking, denoted b; for call gapping, the control variable
is the gap size, denoted g. We adopt the viewpoint that the
controls are set at the PN based on information from the CN
that is sent periodically and simultaneously to all the PN’s. Here,
we are interested in behavior within periods of constant control
value, and we make the simplifying assumption that the departure
processes from the throttles are in statistical equilibrium.

575

III. ResuLrs

Table I summarizes the analytic results from the model. The
results are straightforward to obtain; they either follow trivially
from the definitions or exploit standard results from renewal
theory and from M/M/1 and G/M/1 queues, {9], [10]. For the
interested reader, Appendix A outlines the derivations. Table II
summarizes the comparison of the two throttle schemes, and the
following subsections provide details.

A. Robustness to the Rate that Calls Turn Bad, B

As [ increases, calls turn bad more quickly and goodput
declines. In the limit as 3 — oo, the goodput falls to
zero. However, typical values for 3 are small. For the case
of abandonments of call attempts due to dial-tone delay, the
Prob(call is good | delay = 5 s) is typically in the range of
0.1-0.2, [11], and for abandonments due to post-dialing delay,
it is typically in the range of 0.5-0.9. For a service rate of
1 call/s (g =1), B ranges from 0.021 to 0.461 as Prob(call
is good | delay = 5 s) varies from 0.9 to 0.1 (1). (Likewise, if
4 = 100, then 3 ranges from 0.00021 to 0.00461.) Moreover, for
this range of 3, both throttles are robust, i.e., there exists a fixed
control setting that maintains the goodput reasonably close to the
goodput that would have been attained with the optimal control
setting. To illustrate this point, consider a throttle designed for
abandonments due to post-dialing delay, and suppose the control
is set optimally for a 3 corresponding to Prob(call is good |
delay = 5 s) = 0.7. Holding this control fixed and letting 5 vary,
Table III shows that the resulting decrease in goodput is relatively
small, even for Prob(good | delay = 5 s) = 0.4. For completeness,
Table III includes probabilities below 0.4, though these parameter
values are more appropriate for a throttle designed to control
abandonments due to dial-tone delay.

For the remainder of the paper, § is set to the bench mark
value of 0.071 corresponding to Prob(good | delay = 5 s) = 0.7
when g = 1.2

B. Sen. itivity to Control Settings and Maximum Goodput

When plotting goodput versus the control settings of the two
throttles, we need to account for the control variables having
different ranges: b € [0,1] and g € [0,00]. We obtain a natural
correspondence by associating a given value of b with a given
value of g if they both yield the same utilization of the central
processor. Fig. 2 compares the goodput for varying control
settings, where the arrival rate is twice the service rate. (Note that
the control value increases towards the left.) Scaled according to
utilization, the plots have roughly the same shape and roughly the
same degree of sensitivity to control settings; note in particular
that underthrottling causes a sharp drop off in goodput.

Fig. 2 also shows that the goodput obtained from call gapping
is higher than that from percent blocking, for equal levels of
CN utilization. This occurs because the output process from
the call-gapping throttle is smoother (interdeparture times have
coefficient of variation < 1), and this leads to shorter queueing
delays. For one active PN, the maximum goodput from call
gapping is 11% higher than that from percent throttling; for
other values of 3, the maximum goodput from call gapping can
be over 20% greater. In tightly designed systems, a 10-20%
increase in goodput can be significant. However, as the number of

2The choice of parameter values for u and 3 was made for illustrative
purposes. The choice does effect the value of normalized goodput shown
below in Figs. 2—4; however, the choice is not important to the qualitative
comparisons demonstrated by the figures nor to the conclusions in Table IL



576

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 39, NO. 4, APRIL 1991

TABLE
ANALYTIC RESULTS
PERCENT BLOCKING CALL GAPPING
Departure process from throttle i Poisson. Renewal. Interdeparture times have a delayed
AL = (1 -8). exponential distribution
=1—e M9 1> g = 2L
=9 1+ Mg

Arrival process to CN (i.e., superposition of Poisson Superposition of renewal processes.

departure processes from throtties)

Criterion for Stability at CN

Utilization of Server at CN

Control setting that yields a specified utilization
(Suppose A > p, and a utilization of p° is
desired.)

Normalized Goodput

Optimal Control Setting

Maximum Goodput

A= z": A(1-b)
i=1

=A(1-b).

b> m{a.x(O,l —_ ;)

1728
b=1- .
A
r=21-#p
1-p+p8

with p given above.

opt
b°Pt = 1 — B2 where

Pt =min(%,l+ﬁ— \/ﬁ(l—+l3))

I'\opt _ popt (1 — popl)
1-p 5

For 5°Pt > 0, I'°P* simplifies to 2p°P* — 1.

Ai

N = .
1+ Mg

™=

i=1

For balanced loads (A\; = A/n for all i):

ni
AN=———.
n+ Ag
Given implicitly by:
—  <u
= 14 A\ig

1

For balanced loads:

ro(in(3 1)

Ai

1 & i
=minf 1, —
d ( u§1+z\ig)

Given implicitly by:

—_ p"

N
“~1+XNg

1
B

For balanced loads:

T'= fi_t—:%, for n = 1, with p given above &

o given implicitly by:

o=——0’+ e#9(1-9)

s+ A

Determined by numerical iteration, for n = 1.

Determined by numerical iteration, for n = 1.
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SUMMARY OF COMPARISON OF CALL GAPPING AND PERCENT BLOCKING

Advantage of

Criteria Call Gapping Percent Blocking Comments
: The smoother departure process from the call-gapping throttle yields
M um goodput v shorter delays and higher goodput. Section III-B.

Robustness to changes in arrival rate, A

Rob to changes in ber of
active sources, n

Robustness to unbalanced loads

Range of stabilizing control values

Attaining a desired utilization of central
processor

Robustness to the rate calls tumn bad, 8

Equity of who is blocked under
unbalanced loads v

Sensitivity to control settings —

For static control setting, call gapping is more robust to changes in
arrival rate, A. Section III-C.

Goodput from percent blocking is invariant to n; not so for call
gapping. Section III-D.

Goodput from percent blocking depends on the individual arrivial
rates only via their sum; not so, for call gapping. Section III-F.

Call gapping requires more information; it depends on the number of
sources, n, in addition to A and p. Table 1.

Call gapping requires more information; it depends on » and the
distribution of individual arrival rates. Table L

Both are robust over likely range for 3. Section III-A.

Depending on circumstances and viewpoint, either throttle can be
considered more equitable. Section III-E.

Goodput is sensitive to underthrottling for both schemes. When we
compare the control variables (be0, 1], ge[0, oc]) according to equal
utilization of CN, the sensitivity is the same. Section III-B.

TABLE III
ROBUSTNESS TO THE RATE CALLS TURN BAD, 3

Arrival rate is twice service rate, A/u = 2
Control is tuned for Prob(good | delay = 5 s) = 0.7

Prob(good Decrease in I" due to fixed control as opposed to optimal

given control for:
delay = 5 Percent Blocking Call Gapping
s) p=1 u =100 p=1 p =100
0.9 3.7% 0.5% 3.2% 0.4%
0.8 0.7% 0.1% 0.6% 0.1%
0.7 0.0% 0.0% 0.0% 0.0%
0.6 0.5% 0.1% 0.4% 0.1%
0.5 1.7% 0.4% 1.6% 0.3%
04 3.5% 0.9% 3.4% 0.7%
03 5.9% 1.7% 5.8% 1.4%
02 8.8% 2.9% 8.9% 2.4%
0.1 12.8% 52% 13.3% 4.4%

active PN’s increases, the maximum goodput from call gapping
declines. In Fig. 2, for 100 active sources and balanced loading
(A; is the same at all PN’s), then the maximum goodput from
call gapping is only 2% greater. (The goodput from 100 active
PN’s is obtained by simulation. The 95% confidence intervals
for the points plotted from the simulation are smaller than the
height of the symbol “X™ in the plots, and thus the confidence

intervals have not been shown.)

n 9P T T T T 4|
o Parameter values: A=2.0,u=1.0,8=.0713
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Fig. 2. Normalized goodput versus control settings, given fixed total arrival

rate.

C. Robustness to the Total Arrival Rate, A

Since call gapping can guarantee a minimal interdeparture time
from the throttle, it is more robust to varying arrival rates than
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is percent blocking. However, although call gapping is better, it
is not ideal, because if the gap size is set to guarantee stability
for A — oo, then for nominal overloads, the control is over-
throttling. Likewise, if the control is set for a nominal overload,
then as A — oo, arrivals increasingly come just after the throttle
opens and underthrottling occurs. Fig. 3 shows the case where
control levels are optimally set for an arrival rate twice the service
rate. Note that call gapping is more robust: it maintains high
goodput over a broader range of arrival rates. (Simulation was
used for the case of 100 active sources.)

The greater robustness from call gapping is particularly impor-
tant when customers may reattempt. When the throttle is active,
blocked customers may retry, and the arrival rate can noticeably
increase prior to the next control update from the monitor.
Hence, it is important that the given control setting maintain
high goodput when faced with this increasing offered load. If we
make the simplifying approximation that the combined load of
first attempts and retries is Poisson, then the impact of reattempts
is seen by letting A\ grow greater than 2 in Fig. 3.

D. Robustness to the Number of Sources, n

Sometimes the number of active sources # is static and known,
and robustness to variations in n is not of concern. However, the
number of potential sources may be static while the number of
active sources may vary. Percent blocking is more robust than
call gapping to variations in the number of active sources; in
fact, percent blocking is invariant to n, for given total arrival rate.
Fig. 4 shows the sensitivity of call gapping for variable n where
the control is optimally set for n = 100 and balanced loading. For
call gapping, both simulation and approximate analytic results
are shown. The analytic results make the approximation that
the superposition of the renewal streams is Poisson. Under this
approximation, the goodput from call gapping can be expressed
in closed form as: I' = p(1—p)/(1 —p+B) where p =
min [1,(1/p) - (nA)/(n + Ag)].

E. Fairness Under Unbalanced Loads

In unbalanced loads, the arrival rates, A; i = 1,.--,n, are
not all identical. Of typical interest are cases where some of the
A; are significantly higher than others. Regarding the equity of
who gets blocked and rejected under unbalanced loads, either
control scheme could be preferred depending on circumstances.
Call gapping more strongly controls the heavily loaded PN’s,
which is an advantage when load from one PN ought not to
interfere with load from another. Percent blocking regulates all
calls with the same probability, which is an advantage when there
is no prior right to capacity, and preference ought not to be given
to any PN, including ones that are lightly loaded.

F. Robustness to Unbalanced Loads

Consider a given total arrival rate A and a variety of possible
values for the arrival rate from each source, \;,i = 1,---,n. For
percent blocking, the goodput is invariant, since it only depends
on the sum of the A,;’s. For call gapping, however, the goodput
is not invariant, and thus we would like to choose the gap size
to be robust over different apportionments of the A;’s, i.c., over
different possible values for the A;’s given }_"_, \; is constant.
Suppose a g is found that is optimal for a given apportionment of
the arrival rates, and suppose the apportionment were to change.
The g would then be either underthrottling or overthrottling.
Underthrottling has the more severe consequences, as the system
may become unstable. Thus, it would be prudent to set the control
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Fig. 4. Normalized goodput versus number of sources, given fixed total
arrival rate and fixed control setting.

for an apportionment such that any deviation would lead to
overthrottling. This is attained if the g is set assuming a balanced
load. One can show that any other apportionment of load yields
a lower total arrival rate to the CN (a lower \’) and thus a lower
p. Thus, the deviation from optimality would be in the direction
of overthrottling, as desired.

To make a quantitative comparison of percent blocking and
call gapping, consider the scenario where the control is set
for balanced loads, held fixed, and then the load changes to
become unbalanced. Supposed that there are 100 active PN’s,
AL == Ap,and Aj; = - -+ = Ajqo, and the arrival rates in the
first set are greater than those in the second set. Table IV shows
that for large imbalances, the goodput from call gapping falls off
significantly, while the goodput from percent blocking remains
unaffected. (Note that the first row of Table IV corresponds to
balanced loads, A; = 0.02,7 = 1,---,100.)

IV. SumMARY

Two overload control throttles, percent blocking and call
gapping, have been compared. Each throttle has strengths and
weaknesses, summarized in Table I. The key strengths of call
gapping are 1) a greater robustness to changes in total arrival
rate, and 2) higher goodput. For varying arrival rates, where the
control setting is fixed, call gapping maintains reasonable good-
put over regions where percent blocking has allowed goodput to
fall to zero. Moreover, for optimal control settings, the maximum
goodput from call gapping can be 10-20% greater than from
percent blocking, due to the smoother departure process from
the throttle.
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TABLE IV
ROBUSTNESS TO UNBALANCED LOADS

Parameters: A = 2., p=1., 3 =0.0713, b=0.602, g =70.5s

10 100 goodput from goodput from
Z')\-‘ Z Ai call gapping  percent blocking
i=1 i=11

0.2 1.8 0.607 0.596
0.5 1.5 0.606 0.596
1.0 1.0 0.565 0.596
15 0.5 0.430 0.596
2.0 0.0 0.122 0.596

The strengths of percent blocking are 1) robustness to changes
in number of active sources and 2) robustness to unbalanced
loads. The optimal control setting for percent blocking is a
function of the total arrival rate A and is not a function of the
number of active sources nor the individual arrival rates. (Call
gapping is a function of these parameters.) Hence, the above
robustness is actually an invariance, for given A.

A possible control design is to use both throttle schemes
where, as a function of overload state, an arrival would need to
satisfy a call gapping criterion, or a percent blocking criterion, or
both. Percent blocking might be used for minor overloads, and
call gapping for critical overloads where the firm limit on the
departure rate is beneficial.

V. APPENDIX A
DERIVATION OF ANALYTIC RESULTS OF TABLE I

A. Departure Process from Throttle i

For percent blocking, since the departure process is a Bernoulli
decomposition of the Poisson arrival process, it is also Poisson.
For call gapping, the interdeparture time equals the deterministic
gap size g plus the time interval from the epoch the throttle
opens to the arrival of the next customer. This latter interval
has an exponential distribution since the interarrival times are
exponential and the exponential distribution is memoryless. Thus,
the interdeparture time distribution is a convolution of a point
mass and an exponential, which is a delayed exponential. In
particular, probability distribution function (pdf) of interdeparture
times:

=1-e M09 t>gq

The mean interdeparture time is (1/A;) + g and the variance is
-1
1/A%. The departure rate is (,\L + g) A

_ M
14+X;9°

B. Arrival Process to CN

For percent blocking, since the departure processes from the
PN’s are Poisson and the superposition of Poisson processes
is Poisson, then so is the arrival process to the CN. For call
gapping, the arrival process is the superposition of independent
non-Poisson renewal processes. The arrival rate to the CN is the
sum of individual departure rates from the PN’s.

C. Criterion for Stability at CN

The CN is stable if the arrival rate is less than the service
rate. For percent gapping, we have A\(1 — b) < p. Solving for b
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and noting that b > 0, yields b > max(0,1 — (/). For call
gapping, we have: 30 /(14 Aig) < p.

D. Utilization of Server at CN

The utilization of the server p is the minimum of 1 and the
arrival rate divided by the service rate; the expressions in Table I
follow immediately.

E. Control Setting That Yields A Specified Utilization

Suppose A > p, then any value of p e [0, 1] is attainable and
suppose the value of p° is desired. Substitute p° for the utilization
in Table I and solve for the control variable.

F. Normalized Goodput

From Section II-A, we have that the normalized goodput I'
equals

oo

I'=p- /e_ﬂ‘" -dS(7)

o

where S(r) = pdf of the sojourn time. Thus, ' =
p - Laplace—Stieltjes transform of sojourn time distribution
evaluated at Gpu.

For percent blocking, since the arrival process to the CN
is Poisson and the service times are exponential, then the
system is M/M/1, and the sojourn time density function is:
p(1 — p)e~#(1=P)_The Laplace transform of the density, evalu-
ated at By, is p(1 — p)/(u(1 — p) + Bp) = (1 — p)/(1 — p+ B).
Thus, for percent blocking
p-(1-p)
1-p+8

For call gapping with one active source, the arrival process to
the CN is renewal with delayed exponential interarrival times,
and exponential service times (a GI/M/1 system). The pdf of
the waiting time is 1 — oe #(1=?)* t > 0 where o is given
implicitly by: o = A*(u — po), and A*(u — po) is the Laplace
transform of the interarrival time density evaluated at p — po,
[10]. For one active source, (n =1),\A; = A; = A, and since
interarrival times to the CN have density: );(t — g)e™ (=9 ¢ >
g, then

r= (A1)

A*(u — uo) = e—9(p—ne)
(= po) =57 o
Thus, o is given by ¢ = [\/(A + p — po)|e~9¢~#9) which can
be rearranged to
2

no A
o=+
Atp Atp
The Laplace transform of the sojourn time denmsity is the
product of the Laplace transform of the waiting time density
and that of the service time density. The waiting time density
equals (1 — 0)6,(1) + ou(l — o)e™*(1=2)" where §,(r) is the
unit delta function. Thus, the Laplace transform of the sojourn

time density equals

e—#9(1—c)

(A2)

si—u;(zl(l_-ai)] ' [s iﬂ]

1-o0+

which simplifies to

u(l-o0)

Traie (A3)
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1-o

Equation (A.3) evaluated at By yields: Thus, for call

3 1-0+48"
gapping,
_p(1-9) _
F_l—a+/3 forn=1

where o is given by (A.2).

G. Optimal Control Setting

For percent gapping, the normalized goodput is given by (A.1).
Viewing p as the control variable in (A.1), we can optimize T’
over p, obtaining p°® = 1+ 8 — /B(1 + ). One can show
that 143 — /B(1 + B) is €[}, 1] for B ¢ [0, 00). However, this
optimal value for p, which is always > %, may not be attainable
if A is too small, as would be the case when the system is lightly

loaded. When 2 <1+ B — /B(1 + B), then the blocking
should be zero, yielding the highest utilization possible. Thus,

o = min( 2,145~ VBT +7)-

The optimal blocking is the contrpl setting that yields this
utilization, namely, b°P* = 1 — l:‘.:i

(A4)

H. Maximum Goodput

For percent blocking, maximum goodput is attained when
the optimal utilization (A.4) is substituted into the normalized
goodput (A.1). For overload where b°P* > 0, then p°Pt =
1+ 8- +/B(1+ B), and T°P* simplifies to 2p°Pt — 1.
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