
ScopLib support for Graphite

Linking Graphite to the huge industrial and research community

April 27, 2010

1 Summary

Many polyhedral optimization tools and libraries have been developed since the 90's. Our project aims to enable
Graphite to take advantage of these tools by making it able to export/import internal polyhedral representation to
the scopLib �le format, a standard format used for communication between polyhedral tools and libraries.

2 The project

Advanced compiler optimization projects such as Graphite need a huge amount of work, not only from the side
of developers but also from the research and the industrial side. Collaborative work is crucial to the project, our
proposal aims to bridge the gap and enable better collaboration between worldwide researchers/industrial users
and Graphite developers, the �nal bene�t for Graphite is to reach a better optimized, well tested and more reliable
code generation.

Graphite uses the polyhedral model as a basic model for loop optimization and parallelization. Many tools such
as PoCC1, Loopo2 and Pluto3 rely also on this model to perform advanced loop transformations. Making graphite
bene�t from the algorithms that are currently implemented in these tools is a big step toward the support of a full
polyhedral framework in GCC.

The goal of our project is to enable Graphite to Export/Import polyhedral internal loop representation to other
polyhedral tools through the scopLib �le format, a format designed to enable polyhedral tools and libraries to
communicate with each other. GCC and graphite will parse loops, detect scops, and prepare structures needed for
polyhedral optimization, these structures are dumped to a scop �le (a text �le in the scopLib format that speci�es
all necessary information for loop transformations), polyhedral tools will then read this �le, apply polyhedral
transformations and dump the result back to a scop �le, Graphite will then read this �le, and proceed to generate
code.

3 Bene�ts for Graphite

• ScopLib support will help developers in the mid-term to experiment with di�erent �real world� transformations
that come from di�erent tools and that are not yet implemented in Graphite, this is crucial for developers
to take strategic decisions about futur releases. With scopLib support, Graphite will be better tested and
more parts of graphite will be evaluated with a variety of test cases in order to simulate real world usage. To
encourage this aspect, a big part of our work is based on testing and problem-hunting,

• By enabling the communication between Graphite and external tools, new algorithms will be tested easily
outside of the complexity of GCC and the best of these algorithms will be merged to GCC. Researchers from
all over the world will work side by side with the graphite community to evaluate and provide a valuable
feedback about the real e�ciency of the generated code,

• Since the scopLib format is human readable, it will help greatly graphite developers, especially in debugging
and testing special and rare cases,

• This work is a basic work for futur support of privatization in Graphite,

1http://www-rocq.inria.fr/~pouchet/software/pocc/
2http://www.infosun.�m.uni-passau.de/cl/loopo/
3http://pluto-compiler.sourceforge.net/

1



• The project will complete the circle (Graphite ↔ research community↔ industry) : our project has a long
term e�ect on Graphite and GCC, it will enable more people to get involved in Graphite and thus more papers
will appear and more advanced algorithms will be implemented, the results will encourage more support from
the industry4 5. All the bene�t is for Graphite and for GCC,

• Graphite will bene�t from a wealth of advanced polyhedral optimization algorithms implemented by re-
searchers from all over the world, it will be able to communicate with any polyhedral tool/library that
implements the standard ScopLib format. It's a big step towoard a large usability of Graphite code outside
GCC in all industrial and academic open source tools.

4 Details about the project

After scop formation in �build_poly_scop()�, scops are optimized through �scop_do_block()�, �scop_do_strip_mine()�
and �scop_do_interchange()�. After these optimizations, we export the scop (dump it) to a text �le in special stan-
dard format readable by other standard polyhedral tools (and human readable also). After scop dumping, the tool
reads the scop �le, applies appropriate polyhedral transformations and then dumps the transformed polyhedral
structures into a scop �le. Graphite will then read the generated �le and proceed to code generation through Gloog
�scop_to_clast()�.

The current internal scop representation in graphite is actually di�erent from the simple scopLib format. In
graphite, a scop is formed of a vector of polyhedral basic blocks (poly_bb or pbb for short), each pbb has its own
scattering function, iteration domain, and a vector of polyhedral data references (poly_dr_p) that describe read
and write accesses.

ScopLib has the same general structure, but di�ers in some internal details from the graphite polyhedral repre-
sentation, in this section, we present a list of di�erences between scopLib format and the internal Graphite format :

• Statement representation : this is di�erent between Graphite and scopLib, but as the statement section in a
scop �le is not needed by Pluto to perform loop transformations, it will be ignored for now and not considered
as a priority,

• Iteration domain : exactly the same between Graphite and scopLib,

• Scattering functions : Graphite uses full scattering relations represented as a union of polyhedron whereas
in scoplib the scattering function is a set of a�ne functions that does not consider union of polyhedron. We
will use the extended scopLib format to handle these di�erences (the extended scopLib is an extension that
supports scattering relations, union of scattering polyhedrons...),

• Data accesses : data accesses in graphite are represented as relations, scopLib represent accesses as functions,
we will use the extended scopLib format to be able to represent graphite data accesses,

• Data dependencies : polyhedral tools need dependency information to perform optimization. Data depen-
dencies will not be exported from Graphite, they will be calculated by the tool itself (Pluto will call candl to
extract data dependencies and insert them into the .scop �le).

Test plan

• Make sure that graphite is generating the correct .scop �les by comparing between what graphite generates
and what PoCC generates (we need to store some correct scop �les generated by pocc in the testsuite and
compare them with the scop �les generated later by Graphite),

• Make sure that Graphite is applying correctly what it's reading from the scop �le by reading the scop �le and
comparing the result with what should be obtained,

• Test the whole process : Compile a C program and optimize it with Pluto, a scop �le will be generated,
optimized by Pluto and read back again by Graphite.

We will need to add these three tests to the GCC testsuite.

4Diego Novillo. Keynote talk: Using GCC as a toolbox for research: GCC plugins and whole-program compilation. 2nd International
Workshop on GCC Research Opportunities (GROW'10). Italy, 2010.

5Y.Huang, L.Peng, C.Wu, Y.Kashnikov, J.Rennecke, G.Fursin. Transforming GCC into a research-friendly environment: plugins
for optimization tuning and reordering, function cloning and program instrumentation. 2nd International Workshop on GCC Research
Opportunities (GROW'10). Italy, 2010.

2



5 Required deliverables

• Graphite must be able to Import/Export a portable polyhedral representation fully compatible with scopLib
format,

• We will focus on tiling in Pluto as an example for code transformations, by the end of the project, Graphite
must become able to deal with tiling through Pluto without any problem,

• Pass regression tests.

6 Nice to have

According to advancement in work on scoplib and results, we want to :

• Be able to export dependency information from Graphite to the scop �le,

• Enable graphite to deal with Pluto annotations for privatization :

� Focus on simple cases where the implementation relies on OMP,

� Enable more advanced privatization.

Additional Info

Project wiki page : http://gcc.gnu.org/wiki/ScopLibSupportForGraphite

3


