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Abstract

We extract heart rate and beat lengths from videos by
measuring subtle head motion caused by the Newtonian
reaction to the influx of blood at each beat. Our method
tracks features on the head and performs principal compo-
nent analysis (PCA) to decompose their trajectories into a
set of component motions. It then chooses the component
that best corresponds to heartbeats based on its temporal
frequency spectrum. Finally, we analyze the motion pro-
jected to this component and identify peaks of the trajecto-
ries, which correspond to heartbeats. When evaluated on
18 subjects, our approach reported heart rates nearly iden-
tical to an electrocardiogram device. Additionally we were
able to capture clinically relevant information about heart
rate variability.

1. Introduction
Heart rate is a critical vital sign for medical diagnosis.

There is growing interest in extracting it without contact,
particularly for populations such as premature neonates and
the elderly for whom the skin is fragile and damageable by
traditional sensors. Furthermore, as the population ages,
continuous or at least frequent monitoring outside of clin-
ical environments can provide doctors with not just timely
samples but also long-term trends and statistical analyses.
Acceptance of such monitoring depends in part on the mon-
itors being non-invasive and non-obtrusive.

In this paper, we exploit subtle head oscillations that ac-
company the cardiac cycle to extract information about car-
diac activity from videos. In addition to providing an unob-
trusive way of measuring heart rate, the method can be used
to extract other clinically useful information about cardiac
activity, such as the subtle changes in the length of heart-
beats that are associated with the health of the autonomic
nervous system.

The cyclical movement of blood from the heart to the
head via the abdominal aorta and the carotid arteries (Fig. 1)
causes the head to move in a periodic motion. Our algo-
rithm detects pulse from this movement. Our basic ap-

Carotid Artery 

Figure 1: Blood flows from the heart to the head via the
carotid arteries on either side of the head [11].

proach is to track feature points on a person’s head, filter
their velocities by a temporal frequency band of interest,
and use principal component analysis (PCA) to find a pe-
riodic signal caused by pulse. We extract an average pulse
rate from this signal by examining its frequency spectrum
and obtain precise beat locations with a simple peak detec-
tion algorithm.

Our method is complementary to the extraction of pulse
rate from video via analysis of the subtle color changes in
the skin caused by blood circulation [14, 18]. These meth-
ods average pixel values for all channels in the facial re-
gion and temporally filter the signals to an appropriate band.
They then either use these signals directly for analysis [18]
or perform ICA to extract a single pulse wave [14]. They
find the frequency of maximal power in the frequency spec-
trum to provide a pulse estimate. Philips also produced a
commercial app that detects pulse from color changes in
real-time [13]. These color-based detection schemes require
that facial skin be exposed to the camera. In contrast our ap-
proach is not restricted to a particular view of the head, and
is effective even when skin is not visible. There have also
been studies on non-invasive pulse estimation using modal-
ities other than video such as thermal imagery [6] and pho-
toplethysmography (measurement of the variations in trans-



mitted or reflected light in the skin) [21].
The analysis of body motion in videos has been used in

different medical contexts, such as the measurement of res-
piration rate from chest movement [17, 13], or the monitor-
ing of sleep apnea by recognizing abnormal respiration pat-
terns [20]. Motion studies for diseases include identification
of gait patterns of patients with Parkinson’s disease[4], de-
tection of seizures for patients with epilepsy [12] and early
prediction of cerebral palsy [1]. The movements involved
in these approaches tend to be larger in amplitude than the
involuntary head movements due to the pulse.

Our work is also inspired by the amplification of imper-
ceptible motions in video [22, 10]. But whereas these meth-
ods make small motions visible, we want to extract quanti-
tative information about heartbeats.

The idea of exploiting Newton’s Third Law to measure
cardiac activity dates back to at least the 1930’s, when the
ballistocardiogram (BCG) was invented [15]. The subject
was placed on a low-friction platform, and the displace-
ment of the platform due to cardiac activity was measured.
The BCG is not widely used anymore in clinical settings.
Other clinical methods using a pneumatic chair and strain-
sensing foot scale have also been successful under labora-
tory conditions[9, 8]. Ballistocardiographic head movement
of the sort studied here has generally gained less attention.
Such movement has been reported during studies of vestibu-
lar activity and as an unwanted artifact during MRI studies
[2]. Recently, He et al.[7] proposed exploiting head motion
measured by accelerometers for heart rate monitoring as a
proxy for traditional BCG.

In this paper we first describe a novel technique that ex-
tracts a pulse rate and series of beat sequences from video
recordings of head motion. We then evaluate our sys-
tem’s heart rate and beat location measurements on subjects
against an electrocardiogram. Results show that our method
extracts accurate heart rates and can capture clinically rele-
vant variability in cardiac activity.

2. Background

2.1. Head Movement

The head movements related to cardiac activity are small
and mixed in with a variety of other involuntary head move-
ments. From a biomechanical standpoint, the head-neck
system and the trunk can be considered as a sequence of
stacked inverted pendulums. This structure allows the head
unconstrained movement in most axes. There are sev-
eral sources of involuntary head movement that complicate
the isolation of movements attributable to pulsatile activity.
One is the pendular oscillatory motion that keeps the head in
dynamic equilibrium. Like He et al. [7], we found that the
vertical direction is the best axis to measure the movement
of the upright head caused by pulse because the horizon-

tal axis tends to capture most of the dynamic equilibrium
swaying. A second source of involuntary head movement
is the bobbing caused by respiration. We deal with this by
filtering out low-frequency movement.

The net acceleration of involuntary vertical head move-
ment has been measured to be around 10 mG (≈ .098m

s2 )
[7]. The typical duration of the left ventricular ejection time
of a heart cycle is approximately 1

3 seconds. Using these
numbers we can calculate a rough estimate of the displace-
ment of head movement to be 1

2 · 0.098 · ( 1
3 )2 ≈ 5 mm.

Though this calculation neglects the complex structure of
the head system, it does provide an indication of how small
the movement is.

2.2. Beat-to-beat Variability

Pulse rate captures the average heart rate over a period of
time (e.g., 30 seconds). It is useful primarily for detecting
acute problems. There is a growing body of evidence [16]
that measuring beat-to-beat variations provides additional
information with long-term prognostic value. The most es-
tablished of these measures is heart rate variability (HRV).
HRV measures the variation in the length of individual nor-
mal (sinus) heartbeats. It provides an indication of the de-
gree to which the sympathetic and parasymathetic nervous
systems are modulating cardiac activity. To measure HRV,
the interarrival times of beats must be accurately measured,
which can be determined by locating the ”R” peaks in suc-
cessive beats in an ECG. A lack of sufficient variation when
the subject is at rest suggests that the nervous system may
not perform well under stress. Patients with decreased HRV
are at an increased risk of adverse outcomes such as fatal
arrhythmias.

3. Method
Our method takes an input video of a person’s head and

returns a pulse rate as well as a series of beat locations
which can be used for the analysis of beat-to-beat variabil-
ity. We first extract the motion of the head using feature
tracking. We then isolate the motion corresponding to the
pulse and project it onto a 1D signal that allows us to extract
individual beat boundaries from the peaks of the trajectory.
For this, we use PCA and select the component whose tem-
poral power spectrum best matches a pulse. We project the
trajectories of feature points onto this component and ex-
tract the beat locations as local extrema.

Fig. 2 presents an overview of the technique. We as-
sume the recorded subject is stationary and sitting upright
for the duration of the video. We start by locating the
head region and modeling head motion using trajectories
of tracked feature points. We use the vertical component
of the trajectories for analysis. The trajectories have extra-
neous motions at frequencies outside the range of possible
pulse rates, and so we temporally filter them. We then use
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Figure 2: Overview of our pulse estimation approach. (a)
A region is selected within the head and feature points are
tracked for all frames of the video. (b) The vertical compo-
nent is extracted from each feature point trajectory. (c) Each
trajectory is then temporally filtered to remove extraneous
frequencies. (d) PCA decomposes the trajectories into a
set of source signals s1, s2, s3, s4, s5. (e) The component
which has clearest main frequency is selected. (f). Peak
detection identifies the beats of the signal.

PCA to decompose the trajectories into a set of indepen-
dent source signals that describe the main elements of the
head motion. To choose the correct source for analysis and
computation of the duration of individual beats, we examine
the frequency spectra and select the source with the clear-
est main frequency. Average pulse rate is identified using
this frequency. For more fine-grained analysis and calcu-
lation of beat durations, we perform peak detection in the
time-domain.

3.1. Region Selection and Tracking

We find a region of interest containing the head and track
feature points within the region. For videos where the front
of the face is visible, we use the Viola Jones face detector
[19] from OpenCV 2.4 [3] to first find a rectangle contain-
ing the face. We opt to use the middle 50% of the rectangle
widthwise and 90% heightwise from top in order to ensure
the entire rectangle is within the facial region. We also re-
move the eyes from the region so that blinking artifacts do
not affect our results. To do this we found that removing the
subrectangle spanning 20% to 55% heightwise works well.
For videos where the face is not visible, we mark the region
manually.

We measure the movement of the head throughout the
video by selecting and tracking feature points within the re-
gion. We apply the OpenCV Lucas Kanade tracker between
frame 1 and each frame t = 2 · · ·T to obtain the location
time-series 〈xn(t), yn(t)〉 for each point n. Only the verti-
cal component yn(t) is used in our analysis. Since a mod-
ern ECG device operates around 250 Hz to capture heart
rate variability and our videos were only shot at 30 Hz, we
apply a cubic spline interpolation to increase the sampling
rate of each yn(t) to 250 Hz.

Many of the feature points can be unstable and have er-
ratic trajectories. To retain the most stable features we find
the maximum distance (rounded to the nearest pixel) trav-
eled by each point between consecutive frames and discard
points with a distance exceeding the mode of the distribu-
tion.

3.2. Temporal Filtering

Not all frequencies of the trajectories are required or
useful for pulse detection. A normal adult’s resting pulse
rate falls within [0.75, 2] Hz, or [45, 120] beats/min. We
found that frequencies lower than 0.75 Hz negatively affect
our system’s performance. This is because low-frequency
movements like respiration and changes in posture have
high amplitude and dominate the trajectories of the feature
points. However, harmonics and other frequencies higher
than 2 Hz provide useful precision needed for peak detec-
tion. Taking these elements into consideration, we filter
each yn(t) to a passband of [0.75, 5] Hz. We use a 5th order
butterworth filter for its maximally flat passband.
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Figure 3: Examples of the first two eigenvectors for two
subjects. Each white arrow on a face represents the mag-
nitude and direction of a feature point’s contribution to that
eigenvector. The eigenvector decomposition is unique to
each subject.

3.3. PCA Decomposition

The underlying source signal of interest is the movement
of the head caused by the cardiovascular pulse. The feature
point trajectories are a mixture of this movement as well as
other motions caused by sources like respiration, vestibu-
lar activity and changes in facial expression. We must de-
compose this mixed motion into subsignals to isolate pulse.
To do this we consider the multidimensional position of the
head at each frame as a separate data point and use PCA
to find a set of main dimensions along which the position
varies. We then select a dimension on which to project the
position time-series to obtain the pulse signal.

Formally, given N feature points, we represent the N -
dimensional position of the head at frame t as mt =
[y1(t), y2(t), · · · , yN (t)]. The mean and the covariance ma-
trix of the positions are:

m̄ =
1

|T |

T∑
t=1

mt (1)

Σm =
1

T

T∑
t=1

(mt − m̄)(mt − m̄)T (2)

PCA finds the principal axes of variation of the position
as the eigenvectors of the covariance matrix:

ΣmΦm = ΦmΛm (3)

where Λm denotes a diagonal matrix of the eigenval-
ues λ1, λ2, · · · , λN corresponding to the eigenvectors in the
columns of Φm, φ1, φ2, · · · , φN . Fig. 3 displays the first
two eigenvectors for two of the subjects. Each eigenvec-
tor represents the N-dimensional direction and magnitude
of movement for the feature points. The eigenvectors differ
for each subject. We obtain the 1-D position signal si(t) by
projecting the position time-series onto φi:

si(t) =


m1

m2

...
mT

 · φi (4)

There are periods in the video during which the head
moves abnormally (e.g. swallowing, adjustments in pos-
ture). Such movement adds variance to the position vectors,
thereby affecting the PCA decomposition. To deal with this
one could discard a percentage α of the mt with the largest
L2-norms before performing PCA. However, all of the mt

must still be used in the projection step (Eq. 4) to pro-
duce a complete signal. We set α at a value of 25% for our
experiments.

A popular alternative to PCA is independent component
analysis (ICA). We did not see any improvement in our re-
sults when using ICA.

3.4. Signal Selection

The question remains of which eigenvector to use for
pulse signal extraction. The eigenvectors are ordered such
that φ1 explains the most variance in the data, φ2 explains
the second most, and so on. Although φ1 explains most
of the variance, s1 may not be the clearest pulse signal for
analysis. We instead choose the si that is most periodic.
We quantify a signal’s periodicity as the percentage of total
spectral power accounted for by the frequency with maxi-
mal power and its first harmonic.

We found that it was not necessary to consider any sig-
nals beyond the first five, i.e. s1, ..., s5 for any of our sub-
jects. We label the maximal frequency of the chosen signal
fpulse and approximate the pulse rate as 60

fpulse
beats per

minute.

3.5. Peak Detection

Average pulse rate alone is not sufficient to fully evaluate
the cardiovascular system. Clinicians often assess beat-to-
beat variations to form a complete picture. To allow for



such analysis, we perform peak detection on the selected
PCA component signal.

The peaks are close to 1
fpulse

seconds apart with some
variability due to the natural variability of heartbeats, vari-
ations of the head motion, and noise. We label each sample
in the signal as a peak if it is the largest value in a window
centered at the sample. We set the length of the window (in
samples) to be round(

fsample

fpulse
), where fsample = 250Hz.

4. Experiments

We implemented our approach in MATLAB. Videos
were shot with a Panasonic Lumix GF2 camera in natural,
unisolated environments with varying lighting. All videos
had a frame rate of 30 frames per second, 1280 x 720 pixel
resolution and a duration of 70-90 seconds. We connected
subjects to a wearable ECG monitor [5] for ground truth
comparison. This device has a sampling rate of 250 Hz and
three electrodes that we placed on the forearms.

4.1. Visible Face

We extracted pulse signals from 18 subjects with a
frontal view of the face (as in Fig. 3). The subjects varied
in gender (7 female, 11 male) and skin color. They ranged
from 23-32 years of age and were all seemingly healthy.
We calculate our program’s average pulse rate using the
frequency of maximal power for the selected PCA compo-
nent. Similarly, we compute the true pulse rate by finding
the main frequency of the ECG spectrum. Table 1 presents
our results. The average rates are nearly identical to the true
rates for all subjects, with a mean error of 1.5%. The num-
ber of peaks were also close to ground truth values, with a
mean error of 3.4%.

We also evaluate the ability of our signal to capture sub-
tle heart rate variability. Clinically meaningful HRV mea-
sures typically use 10-24 hours of ECG data. Therefore we
did not attempt to compute any of these for our 90 second
videos. Instead, we compare the distributions of time be-
tween successive peaks for each signal. Incorrect or missed
peaks can introduce spurious intervals too large or small to
be caused by the natural variations of the heart. We account
for these cases by only considering intervals with length
within 25% of the average detected pulse period.

We use the Kolmogorov-Smirnov (KS) test to measure
the similarity of the distributions, with the null hypothesis
being that the observations are from the same distribution.
Table 2 presents the results. At a 5% significance level,
16 of the 18 pairs of distributions were found to be simi-
lar. Fig. 4 presents histograms of 4 of the 16 distributions
binned at every 0.05 seconds. Our method was able to cap-
ture a wide range of beat-length distributions shapes, from
the flat distribution of subject 4 to the peakier distribution
of subject 10.

Table 1: Average pulse rate and # peaks detected from ECG
and by our method.

Avg. Pulse (beats per minute) Number of beats
Sub. ECG Motion (% error) ECG Motion(% error)

1 66.0 66.0(0) 99 98(1.0)
2 54.7 55.3(1.1) 82 84(2.4)
3 81.3 82.6(1.6) 122 116(4.9)
4 44.7 46.0(2.9) 67 70(4.5)
5 95.3 96.0(0.7) 143 142(0.7)
6 78.9 78.0(1.1) 92 78(15.2)
7 73.3 71.3(2.7) 110 100(9.1)
8 59.3 58.6(1.2) 89 88(1.1)
9 56.7 58.6(3.4) 85 84(1.2)
10 78.7 79.3(0.8) 118 117(0.8)
11 84.7 86.6(2.2) 127 121(4.7)
12 63.3 62.6(1.1) 95 95(0)
13 59.3 60.0(1.2) 89 89(0)
14 60.0 61.3(2.2) 90 89(1.1)
15 80.0 81.3(1.6) 120 114(5.0)
16 74.7 74.6(0.1) 112 110(1.8)
17 50.0 49.3(1.4) 75 76(1.3)
18 77.1 78.8(2.2) 90 85(5.6)

Table 2: Results when comparing the interpeak distributions
of the ECG and our method. Presented are the means (µ)
and standard deviations (σ) of each distribution, the number
of outliers removed from our distribution, and the p-value
of distribution similarity. 16 of the 18 pairs of distributions
were not found to be significantly different.

Sub. ECG Motion KS-Test
µ(σ) µ(σ) p-value

1 0.91(0.06) 0.90(0.06) 0.89
2 1.08(0.08) 1.06(0.11) 0.52
3 0.73(0.04) 0.73(0.08) 0.05
4 1.34(0.19) 1.28(0.18) 0.14
5 0.62(0.03) 0.63(0.07) <0.01
6 0.76(0.04) 0.76(0.04) 0.64
7 0.81(0.05) 0.81(0.06) 0.85
8 1.01(0.04) 1.02(0.09) 0.16
9 1.04(0.07) 1.04(0.11) 0.27
10 0.75(0.04) 0.75(0.04) 0.75
11 0.70(0.06) 0.70(0.08) 0.30
12 0.94(0.08) 0.94(0.09) 0.85
13 0.99(0.04) 0.98(0.12) <0.01
14 0.99(0.11) 0.98(0.12) 0.47
15 0.74(0.05) 0.75(0.06) 0.95
16 0.80(0.05) 0.80(0.06) 0.60
17 1.18(0.08) 1.18(0.11) 0.70
18 0.76(0.05) 0.76(0.06) 0.24

4.1.1 Motion Amplitude

Pulse motion constitutes only a part of total involuntary
head movement. We quantify the magnitude of the differ-
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Figure 4: Beat distributions of the ECG and our motion
method for 4 subjects. We were able to accurately capture a
wide range of distribution shapes.

ent movements within [0.75, 5] Hz by calculating root mean
square (RMS) amplitudes of the feature point trajectories.
For each subject we calculated the mean RMS amplitude
of the trajectories before and after filtering to a passband
within 5% of the pulse frequency. The mean RMS ampli-
tude of the trajectories without filtering was 0.27 (std. dev
of 0.07) pixels across the subjects. The mean RMS ampli-
tude after filtering to the pulse frequency was 0.11 (0.05)
pixels. Thus the pulse motion had roughly 40% the RMS
amplitude of other head motions within the [0.75, 5] Hz fre-
quency range.

4.1.2 Comparison to Color-Based Detection and Noise
Analysis

We compare the robustness of our method to a color-based
pulse detection system [14] in the presence of noise. The
color method spatially averages the R, G, and B channels
in the facial area and uses independent component analysis
(ICA) to decompose the signals into 3 independent source
signals. The source with the largest peak in the power spec-
trum is then chosen as the pulse signal.

We added varying levels of zero-mean Gaussian noise to
the videos and swept the standard deviation from 5 to 500
pixels. For each subject we found σmotion, the maximum
noise standard deviation before our method first produced
an average pulse rate outside 5% of the true rate. We calcu-
lated σcolor in a similar manner for the color method. Fig.
5 plots the results. Our method outperformed color for 7 of
the 17 subjects, and performed worse for 9 subjects. Note
that color failed to produce a correct pulse rate for subject 7

before adding any noise.
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Figure 5: Comparison of our method to color-based detec-
tion. σmotion and σcolor are the maximum noise standard
deviations where motion and color give reliable results. The
blue line is where σmotion = σcolor. Our method worked
longer for 7 of the 18 subjects while color worked longer for
9 subjects. The color method failed to give a correct result
for subject 7 before the addition of noise.

We see a large variance in σmotion and σcolor across the
subjects, suggesting that there are subject-specific factors
that affect performance. To understand why, we compare
σmotion against β, the ratio of the total energy of the fea-
ture points within 5% of fpulse to the maximal energy at
any other frequency. Fig. 6 plots σmotion against β for all
subjects. The subjects with the 10 highest σmotion values
also have 10 of the top 11 β values. This indicates that our
method performs best for subjects with a large ballistocar-
diac motion relative to any other periodic head movement.

We were unable to find a similar relationship between
σcolor and the frequency content of the R, G, and B chan-
nels. This is likely due to the layer of complexity intro-
duced by the ICA algorithm. However, when simplifying
the method to extracting a signal from the G channel alone,
we found that noise performance is indeed strongly related
to the ratio of power at the pulse frequency to the next
largest power in the spectrum. Contrary to our initial hy-
pothesis we saw no relationship between motion or color
performance and skin tone.

4.2. Other Videos

One of the advantages of motion-based detection over
color is that a direct view of the skin is not needed. We took
videos of the backs of the heads of 11 subjects and a video
of one subject wearing a mask, as shown in Fig. 7. We were
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Figure 6: Log plot comparing σmotion (the max noise stan-
dard deviation before our method produced an incorrect
pulse rate) and β (ratio of the total energy of feature points
at the pulse frequency to the maximal energy at any other
frequency) for each subject. Subjects with large β tended to
have better noise performance.

able to get average heart rates close to the true values for all
videos.

We also tested our system on a 30-second video of a new-
born recorded in situ at a hospital nursery (see Fig. 8). We
also obtained a video of the baby’s actual pulse rate from
a hospital-grade monitor measuring the perfusion of blood
to its skin. Our algorithm extracts a clean pulse signal that
matches the pulse rate reported by the monitor.

Figure 7: Reference frames from two videos of the back of
the head and one of a face covered with a mask.

5. Discussion
Our results show it is possible to consistently obtain ac-

curate pulse rate measurements from head motion. The re-
sults for beat detection were equally encouraging. Most of
our beat interval distributions looked qualitatively similar

0 2 4 6 8 10

seconds

0 2 4 6

Frequency (Hz)

2.53 Hz = 152 bpm  

Figure 8: Results from video of a sleeping newborn. The ac-
tual heart rate is about 152 bpm (top right). Our method pro-
duces a clean signal (bottom left) and a frequency closely
matching the ground truth.

to the ECG distributions, indicating that we do capture a
real physiological variability. For 16 of the 18 subjects, we
found that there was not a statistically significant difference
between the ECG and the motion beat intervals. It is worth
noting that this is a stronger test than is required in most
clinical contexts. Typically heart rate variability (HRV) is
used to dichotomize patients into high and low risk groups,
so the precise shape of the distribution is not relevant. The
relevant test would be whether the distribution of motion-
generated intervals yields the same set of high risk individ-
uals as ECG generated intervals. Since all of our subjects
were healthy volunteers, we were not able to perform this
test.

Several factors affected our results. First, our camera
has a sampling rate of 30Hz. ECG used for HRV analy-
sis normally has a sampling rate of at least 128 Hz. Cu-
bic interpolation of our signal only partially addresses this
discrepancy. Second, extra variability might be introduced
during the pulse transit time from the abdominal aorta to the
head. In particular, arterial compliance and head mechanics
could affect our results. Third, the variable and subopti-
mal lighting conditions can affect our feature tracking. We
believe this to be the case for several of our videos. Fi-
nally, our videos were only a maximum of 90 seconds long.
Normally, HRV measures are computed over many hours to
obtain reliable estimates.

An important future direction is to develop approaches
for moving subjects. This is complicated because, as our
results show, even other involuntary head movements are
quite large in relation to pulse motion. Clearly with larger
motions such as talking, more sophisticated filtering and de-
composition methods will be needed to isolate pulse.



In this work we considered the frequency and variabil-
ity of the pulse signal. However, head movement can offer
other information about the cardiac cycle. If head displace-
ment is proportional to the force of blood being pumped by
the heart, it may serve as a useful metric to estimate blood
stroke volume and cardiac output. Additionally, the direc-
tion of the movement could reveal asymmetries in blood
flow into or out of the head. This might be useful for the
diagnosis of a stenosis, or blockage, of the carotid arteries.

Another future direction is to better assess the strengths
and weaknesses of the color and motion pulse estimation
methods. Our results suggest that neither method is strictly
more robust than the other in the presence of noise. How-
ever, further work needs to be done with varying lighting,
skin tones, and distance from the camera to form a com-
plete picture. In addition, we need to understand how sen-
sitive the methods are to voluntary motions like talking or
typing. For many applications, this is a critical factor. A
motion-based approach is certainly better when the face is
not visible. Based on these ideas, we believe that a com-
bination of the color and motion methods will likely prove
more useful and robust than using either one independently.

6. Summary
We described a novel approach that offers a non-

invasive, non-contact means of cardiac monitoring. Our
method takes video as input and uses feature tracking to ex-
tract heart rate and beat measurements from the subtle head
motion caused by the Newtonian reaction to the pumping of
blood at each heartbeat. A combination of frequency filter-
ing and PCA allows us to identify the component of motion
corresponding to the pulse and we then extract peaks of the
trajectory to identify individual beats. When evaluated on
18 subjects, our method produced virtually identical heart
rates to an ECG and captured some characteristics of inter-
beat variability.
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