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Guha Balakrishnan, Frédo Durand, John Guttag∗

MIT

Figure 1: Example of output frames of our method for a basketball sequence. We overlay the edges of one video over the frames of the second
video. The edges are colored to signify regions of dissimilarity (red being most dissimilar, yellow being least). The overlay is meant to help a
user quickly identify differences in motion between pairs of video that look very similar

Abstract

When looking at videos of very similar actions with the naked eye,
it is often difficult to notice subtle motion differences between them.
In this paper we introduce video diffing, an algorithm that high-
lights the important differences between a pair of video recordings
of similar actions. We overlay the edges of one video onto the
frames of the second, and color the edges based on a measure of
local dissimilarity between the videos. We measure dissimilarity
by extracting spatiotemporal gradients from both videos and calcu-
lating how dissimilar histograms of these gradients are at varying
spatial scales. We performed a user study with 54 people to com-
pare the ease with which users could use our method to find dif-
ferences. Users gave our method an average grade of 4.04 out of
5 for ease of use, compared to 3.48 and 2.08 for two baseline ap-
proaches. Anecdotal results also show that our overlays are useful
in the specific use cases of professional golf instruction and analysis
of animal locomotion simulations.
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1 Introduction

Detecting subtle differences in motions is useful in such diverse
areas as physical therapy, stroke recovery, machinery testing and
sports. Unfortunately, when looking at videos of very similar mo-
tions with the naked eye, it is often difficult to notice subtle dif-
ferences between them. In this paper we present a computational
videography technique to help people visualize differences between
two videos. We emphasize the application of our technique to
sports, where it can be used both as an instructional tool and as
a method of enhancing the viewing experience of fans. However, it
can be applied to many other domains as well.

The obvious way to compare a pair of videos is to view them side
by side (Fig. 2a). This is what is typically done with existing com-
mercial sport video analysis software such as Ubersense [2015].
But detecting subtle spatial differences this way is difficult because
the user must scan back and forth between the videos. Another
approach is to create one video by combining the frames of the in-
put videos, e.g., by assigning each input to separate color channels
(Fig. 2b). This is the technique used in Matlab’s “imfuse” function
for compositing images. But this often leads to superimpositions
that are hard to interpret, and require the input videos themselves
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Figure 2: Approaches to comparing very similar videos. (a.) shows
frames of each video side-by-side. This is not conducive to finding
differences easily. (b) shows a false-color channel overlay, where
one video is mapped to the red and blue channels and the other is
mapped to the green channel. Areas of magenta and green indicate
differences. But this approach can be hard to interpret even when
referring to the input videos.

for reference. Our work presents a “video diffing” algorithm that
takes in two videos as input and produces a single video that makes
it relatively easy to spot important differences (Fig. 1). Like diffing
tools for text files, our method merges two inputs into one output
and indicates areas of differences.

The first challenge is detecting potentially relevant dissimilarities
between videos even when the foregrounds are not the same. The
second challenge is developing a way to present the information in
a useful manner. We cannot use optical flow to address the first
challenge because the scenes may not be identical. Instead, we first
roughly align the videos in space and time and then measure lo-
cal dissimilarities using a pyramid of histograms of spatiotemporal
gradients. The histogram features provide illumination invariance
which allows us to compare foregrounds of different appearance.
We address the second challenge by overlaying the edges of one
video over the frames of the second video (Fig. 1), an approach that
is more interpretable than simply merging the frames as in Fig. 2b.
We also color the edges based on the level of local dissimilarity be-
tween the input videos. These colored edges are meant to draw the
user’s attention to differences between the two videos.

Our method is simple, but dramatically enhances one’s ability to
notice differences. Humans are better at interpreting spatiotem-
poral matches than current computer vision algorithms, so instead
of automatically matching video pixels, we choose to direct users
to important areas of the videos, and let them interpret the differ-
ences. This design decision makes our method robust to a variety
of videos.

As far as we know, this is the first work focused on diffing two
videos for motion analysis. Our work is inspired by the field of mo-
tion magnification [Wadhwa et al. 2013; Wu et al. 2012], but differs
in significant ways. First, motion magnification is concerned with
amplifying small motions in one video, while we are focused on
highlighting motion differences between two videos. Second, mo-
tion magnification assumes that all motions are small. In our case,
the spatial differences are of a magnitude of many pixels. Because
a large fraction of our differences violate the small motion assump-
tion of these magnification algorithms, these differences cannot be
successfully magnified.

We evaluated our method with a user study involving 54 subjects,
and by having a PGA-certified golf instructor use our method to

evaluate the swings of a client. The results of our user study in-
dicate that users overwhelmingly prefer our method over viewing
videos side-by-side or merging videos into different color channels.
The golf instructor reported being surprised at his ability to dis-
cover aspects of his client’s swings that he had not detected either
by watching the swings live or by studying them using the video
analysis tools he normally uses.

In summary, the contributions of this work are:

1. Presenting a new type of visualization problem called video
diffing, in which subtle motion differences between videos are
highlighted.

2. Developing a method to measure video dissimilarity using
spatiotemporal gradients evaluated at different scales.

3. Presenting a way to display the differences of two videos at
once by overlaying edges of one video onto another.

4. Empirical evaluation with a user study and anecdotal results.

2 Related Work

Our work is related to research fields such as motion magnification,
video alignment, action recognition and pyramid matching. It is
also related to commercial applications that coaches currently use
for comparing video recordings in sports.

Our work is inspired by recent papers on motion magnifica-
tion [Wadhwa et al. 2013; Wu et al. 2012], in that we wish to high-
light motions in video. But while those works focus on magnify-
ing imperceptible motions in one video, we highlight differences
between multiple videos. We do not magnify motions but make
differences more apparent. We considered magnifying differences,
but concluded that this was more likely to be misleading than help-
ful, since the absolute degree of difference can be important. The
motion magnification work assumes all motion is small while we
are interested in small differences between big motions.
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Figure 3: An example of using SIFT Flow on a pair of images of
two golfers. The third image is the result of warping Image 2 by the
SIFT Flow field. A good field would make the warped image look
similar to Image 1 in positioning and orientation. However, there
are large errors with the arms and legs.

There is a rich field of research related to video alignment [Padua
et al. 2008; Evangelidis and Bauckhage 2013; Caspi and Irani 2002;
Ukrainitz and Irani 2006; Sand and Teller 2004; Diego et al. 2013].
Alignment focuses on spatiotemporally registering videos of the
same scene captured from different viewpoints and times with static



and moving cameras. In contrast, we do not find a dense alignment
between videos. While such an alignment could indeed help in vi-
sualizing differences, the methods are often restricted to videos of
the same scene. We compute visualizations of two different scenes
that may contain different people/objects. We found that dense
matching is not robust to different scenes. Even an algorithm like
SIFT Flow [Liu et al. 2008], which is intended for this purpose of-
ten yields inaccurate correspondences. Fig. 3 shows frames of two
different golfers in a similar position along with an image display-
ing how well the SIFT Flow field warps the second image to the
first. There is a large error for the arms and legs. Finally, our pur-
pose to produce an effective visualization as opposed to just finding
the alignment is also fundamentally different from all these previ-
ous works.

Our approach compares input videos using histograms of spa-
tiotemporal gradients. Analogous to 2D HOG [Dalal and Triggs
2005], which bins spatial gradients, there are 3D histogram fea-
tures proposed in the computer vision literature [Kläser et al. 2008].
Spatiotemporal gradient features have previously been used in ac-
tion recognition research [Laptev 2005; Dollar et al. 2005]. We use
histograms of gradients to obtain a measure of dissimilarity at each
pixel between the videos. The dissimilarity is then used to better
visualize differences instead of performing a classification task.

Our work builds on the idea of spatial pyramid matching and pyra-
mid match kernels [Lazebnik et al. 2006; Grauman and Darrell
2007]. In spatial pyramid matching, an image is partitioned into
increasingly fine subregions from which histograms are computed.
Histogram distances are weighted by the scale of their regions and
summed to obtain a distance between images. This type of ap-
proach is inspired from the pyramid match kernel for feature spaces.
Unlike this work, we do not combine histogram distances from dif-
ferent spatial regions into one score. We compute histograms at
different spatial scales to assign a score to each pixel between the
videos.

We borrow the idea of using spatial edges in a visualization from
computation re-photography research [Bae et al. 2010]. In that
work the authors introduce a visualization technique using edges
that helps users reach a desired viewpoint during capture. Specif-
ically, edges assist the user to evaluate the match between a refer-
ence image and a new scene.

Several commercial apps focus on improving athletic performance
with video. Some of the prominent names are Ubersense, Coach’s
Eye and Dartfish Express [Ubersense 2015; Coach’s Eye 2015;
Dartfish 2015]. They all contain a side-by-side comparison fea-
ture that allows, for example, golfers to compare different versions
of their own swings, or their swings with the swings of others.

3 Method

We take two grayscale input videos A(x, y, t), B(x, y, t) : R3 →
R and output a RGB video V (x, y, t, c) : R4 → R that high-
lights their differences. (x, y, t) is a location in spacetime and
c ∈ {0, 1, 2} represents a RGB channel number. A and B are
recordings of similar objects/people performing a similar action.
We assume for ease of explanation that the videos share the same
height, width, and number of frames. We assume for now that the
videos are prealigned in space and time. If this is not the case, the
videos can be quickly prealigned as described in Section 3.3.

Our output V overlays the spatial gradients (edges) of B over
the frames of A. The edges of B are colored based on a map
W (x, y, t) : R3 → R that stores the spacetime disimilarity of the
videos at each pixel location.

Fig. 4 gives an overview of our method. We extract the spatiotem-
poral gradient of each pixel of A and B. For each frame, we form a
pyramid of gradient descriptors, with each pyramid level consisting
of descriptors coarser in spatial resolution than the previous level.
Using the distances between the descriptors of the pyramids, we
compute a dissimilarity map W . Finally, we use W , A and edges
of B to form the output V . Edges are marked in color based on W
to draw the user’s attention to significant differences between the
inputs.

3.1 Forming the Dissimilarity Map

A main challenge in this work is to find potentially relevant dissimi-
larities between videos even when the foregrounds are not the same.
We compute a dissimilarity map W between A and B to do this
by extracting spatiotemporal gradients and computing distances be-
tween descriptors of these gradients at different spatial scales. We
combine the distances at different scales into one score per pixel
that indicates how dissimilar the two videos are at that pixel.

3.1.1 Spacetime Gradient Extraction and Quantization

The low-level information we use from A and B are spatiotempo-
ral gradients at each pixel. Common alternatives to spatiotemporal
gradients described in the action recognition literature are pixel in-
tensities or a higher level of abstraction such as optical flow. A com-
parison of these different sources of information indicate that gra-
dients and optical flow are most informative [Wang et al. 2009]. We
did not use optical flow because dense flow algorithms can be brittle
and only measure motion and disregard local appearance character-
istics. If for example, two body parts are misaligned between the
videos but are moving with the same velocity, optical flow will not
report a difference. The spatial components of 3D gradients can
differentiate between dissimilar structures.

For each pixel x of A (and similarly for B) we extract a gradient
vector ḡx consisting of the first-order partial intensity gradients:
( ∂A(x)

∂x
, ∂A(x)

∂y
, ∂A(x)

∂t
). To compute the gradients, we take central

differences of neighboring pixels. Similar to past work [Kläser et al.
2008], we quantize a gradient ḡ by orientation into a histogram us-
ing a 3D icosahedron. Each bin of the resulting histogram corre-
sponds to one of the icosahedron’s faces. Let P be the matrix of
center positions p1, · · · ,pn of all 20 faces, where the center posi-
tions are defined by:

(±1,±1,±1), (0,± 1

φ
,±φ), (± 1

φ
,±φ, 0), (±φ, 0,± 1

φ
) (1)

where φ = 1+
√
5

2
is the golden ratio. The projection q̂ of ḡ is

obtained through:

q̂ = (q̂1, · · · , q̂n)T =
P · ḡ
||ḡ||2

(2)

The resulting 20-bin histogram is directed, meaning that gradients
with opposite orientations are placed into separate bins. We form
an undirected histogram of 10 bins by halving the set of face centers
and taking the absolute value of q̂i.

The vector q̂ is thresholded so that ḡ only votes in a single bin in
case it is perfectly aligned with one of the face centers. We subtract
a threshold t = pi

T · pj = 1.29107 from q̂ and set all negative
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Figure 4: Overview of our method. Two gray-scale videos A and B are given as input. We extract spatiotemporal gradients from both
videos, and calculate histograms of these gradients at different spatial scales on a frame-by-frame basis. We form a dissimilarity map W by
computing a weighted (by level) sum of distances between the pyramids. Finally, we overlay edges ofB on frames ofA, usingW to colorcode
the edges appropriately. Tennis images courtesy of Essential Tennis on YouTube.

elements to zero. Finally, the gradient magnitude is distributed ac-
cording to the thresholded histogram q̂′:

q =
||ḡ||2 · q̂′

||q̂′||2
(3)

We do not quantize every pixel of the input videos. As described in
the next section, we only quantize the average gradient in blocks of
the image based on the location of the descriptors we extract.

3.1.2 Descriptor Computation

We measure local dissimilarity by calculating the difference be-
tween descriptors of the spacetime gradients. Our descriptors are
extracted over varying spatial scales and a fixed temporal scale of 1
frame. Adding variation in temporal scale requires us to determine
the relative importance between spatial and temporal scale differ-
ences in the visualization which varies for different applications.

A descriptor d in frame t with local support (x, y, s) is computed
over a square of side s pixels centered at pixel (x, y). We divide
the square into a grid of M x M cells c1 · · · cM2 . We compute a
histogram hci for each cell and concatenate all histograms to form
the final descriptor d = (hc1

T , · · · ,hc
M2

T )T . To calculate hci ,
we further divide the cell ci into a m x m grid of blocks. We com-
pute the average spatiotemporal gradient of each block, quantize
the gradient into a 10-dimensional histogram as described in 3.1.1,
and compute a weighted sum of the histograms of the m2 blocks.
We weight each block’s histogram by the distance of the block to
(x, y) using a 2D gaussian kernel.

The descriptor d is of dimension 10M2. We normalize d with a
regularized L2 norm: ||d||2 + 1 to make the descriptor invariant to
illumination changes. We set M = 2,m = 4 for all our videos.

3.1.3 Pyramid of Descriptors

We build on pyramid matching [Lazebnik et al. 2006; Grauman and
Darrell 2007] and use a multiscale approach where differences in
descriptors at coarser spatial scales are weighted more heavily than
those at finer scales.

We compute the values of W for each frame independently. For
frame t, we place a sequence of grids of increasingly coarse de-
scriptors. We call this sequence of grids a pyramid. Let L be the
number of levels in the pyramid (ranging from 0 to L − 1), which
we set at 3 for our videos. At level l, we use descriptors of scale
sl = 2lso, where s0 is set by the user. We set s0 to 32 for our
videos. The descriptor centers are located in a grid every sl

Mm
pix-

els, meaning that descriptors overlap with their neighbors.

We calculate the distances between corresponding descriptors of
the two videos for each level:

W t,l(x, y) = ||Dt,l
A (x, y)−Dt,l

B (x, y)||2 (4)

where W t,l contains the dissimilarities computed for level l of
frame t and Dt,l

A (x, y), Dt,l
B (x, y) are the descriptors at location

(x, y, t) in level l of the pyramid. W t,l is sparse since dissimilari-
ties are only computed at descriptor centers. We bilinearly interpo-
late the missing values. We next combine the dissimilarities from
each level into one dissimilarity value per pixel. We use a weighted
sum over all levels to compute W t, the map for frame t:

W t =

L−1∑
l=0

2lW t,l(x, y) (5)

Coarser levels are weighted more heavily because they correspond
to larger-scale differences. We set the weight of each level pro-
portional to its scale, similar to what is done in pyramid matching



Input	
  Frame	
  t	
  

Wt,0

Wt,1

Wt,2

Wt

+	
  

*1	
  

*2	
  

*4	
  

A	
  

B	
  

Figure 5: Example of computing W t, the weight map for frame
t. Weight maps computing differences at various scales are first
computed and then added together in a weighted sum to produce
W t.

kernels and spatial pyramid matching. Fig. 5 shows an example of
producing W t for a particular frame t of our tennis example.

If A,B are shot in different environments or even if the back-
grounds are spatially offset from one another, W will contain con-
stant, nonzero values at background pixels. This is problematic
because our goal is to emphasize differences in the action sequence
and not differences in the environment. To address this we tem-
porally highpass W to deemphasize constant or slowly-changing
values.

Finally,we normalize W by its maximum value over all frames so
that all values lie in the range [0, 1]. A value of 1 indicates the most
dissimilar pixel in the video.

3.2 Producing the Overlay

LetK be a RGB heat map ofW , formed with some heat map func-
tion fc : R ∈ [0, 1] → R3 that takes a dissimilarity score and
returns a RGB value. Fig. 6 shows the fc that we used for all our
videos.

We form V by blending K and A, weighted by the spatial gradient
of B. First, we compute the spatial gradient magnitude G(x, y, t):

G(x, y, t) = min (1, α
√
B∂x(x, y, t)2 +B∂y(x, y, t)2) (6)

where α is a factor that can reduce or emphasize gradients depend-
ing on how strong they are in the input video pair. We found that
using the Sobel operator here, along with α ∈ [0.5, 1] worked best.

0	
   1	
  

Figure 6: The heatmap function fc we used for our videos. Yellow
corresponds to colors of low dissimilarity and dark red for larger
ones.

Values are clipped at 1 since this is the maximum value of any out-
put pixel.

We then blend K and A:

V (x, y, t, c) =(1−G(x, y, t)) ·A(x, y, t)+
G(x, y, t) ·K(x, y, t, c)

(7)

where c is the channel number. Depending upon the function fc that
is used, it may be necessary to reduce the contrast of A to improve
the visualization. For example, given the colormap shown in Fig. 6,
we found it best to remove the very light and very dark intensities
of A. Our algorithm reduces the contrast of A on a frame-by-frame
basis. For each frame we map the value at the first percentile of
pixel intensities Ilow to βlow and the value at the 99th percentile
Ihigh to βhigh, where βlow, βhigh ∈ [0, 1]. All pixel intensities are
appropriately scaled, and values outside the range [βlow, βhigh] are
clipped.

We set βlow = 0.2 and βhigh = 0.8 for all our videos. Tun-
able variables in the overlay process include α, βmin, βmax and the
color function fc. We kept the same settings for all our videos, but a
user can test different parameters quickly given a precomputed W .
Fig. 7 shows the effect of adjusting these parameters for one frame
of our tennis example.

The overlay process is not symmetric. That is, there is a difference
in output depending on which video is chosen as the reference (A)
and which is not. Which looks better depends on the specific ex-
ample, but in general a video with prominent foreground edges and
few background edges is an ideal choice for video B.

3.3 Prealignment

Our visualization is most useful when the input videos are already
aligned in space and time. If the two videos are not aligned, we
bring them into alignment by automatically fitting a translational
temporal transformation and then manually fitting an affine spatial
transformation. We do not perform a dense spatiotemporal align-
ment, since this would remove the differences that the user wants to
observe in the first place. Unlike past works [Caspi and Irani 2002;
Ukrainitz and Irani 2006], we do not jointly optimize the alignment
along the spatial and temporal dimensions. Instead, we first tem-
porally align the sequences without any spatial alignment, and then
perform the spatial alignment.

We compute temporal alignment using the same spatiotemporal
gradient quantization we used for the visualization (see Sec. 3.1.1).
We represent each frame t of video A (and similarly for B) with a
10-dimensional vector qt

A that we calculate by adding together the
quantizations of all pixels in the frame. We encode no information
about the location of each gradient, since the videos are not yet spa-
tially aligned. The sequence of vectors q0

A,q
1
A, · · ·qT−1

A form a
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Figure 7: Overlays showing the effect of adjusting the parame-
ters α, βmin and βmax. The default setting is α = 0.75, βmin =
0.2, βmax = 0.8. Each parameter is adjusted while holding the
others constant. Row 2 adjusts βmin, row 3 adjusts βmax and row
4 adjusts α.

time series for video A. To align the videos, we bring their time-
series into translational alignment, assuming the videos are shot at
a similar frame rate and that the actions are of similar duration. We
do this by simply calculating a normalized cross-correlation for all
possible integer offsets of the time series and choosing the maxi-
mum. To also accomodate scale transformations, one can use New-
ton’s method to find optimal parameters, similar to previous work
for full spatiotemporal alignment [Ukrainitz and Irani 2006].

We next perform spatial alignment. For our videos we found that
it is more useful to spatially align the beginning of the sequences
rather than the later parts. For example, spatially aligning two ten-
nis serves based on the starting position leads to a more intuitive
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Figure 8: The average dissimilarity value of W over all pixels
when translating video B by different horizontal shifts from the
manual prealignment. Minimum dissimilarity occurs at a transla-
tion close, but not equal to 0. This is likely because the later parts
of the swings are offset from one another.

Figure 9: An example of an overlay when the foregrounds are
aligned (left) versus not aligned (right). In the aligned case, the
racket is clearly seen to be the major difference. In the misaligned
case, parts of the body are also highlighted.

visualization than aligning by the moment of ball impact when the
bodies may diverge. We align the sequences based on their first
frames (as determined by the temporal alignment). As Fig. 3 shows,
matching image features across frames is not reliable with different
foreground objects, even when the scenes have very similar back-
grounds. Instead, we let the user select a few foreground point cor-
respondences and fit a 2D affine transformation matrix to the point
pairs. All frames of the second video are spatially transformed by
this matrix.

Our algorithm will produce a visualization overlay regardless of
how well the prealignment phase works. The strength of the spatial
edges of B are unaffected, although they become less useful with
larger misalignment. The color of the edges as determined by the
weight map W will be altered. Fig. 8 shows how the average value
ofW for our tennis example changes whenB is translated horizon-
tally by different amounts. Minimum dissimilarity occurs at a hor-
izontal translation close, but not equal to, 0 because the later parts



of the swings deviate from one another. Fig. 9 shows an overlay
whenB is translated 100 pixels to the right. In the aligned case, the
racket is clearly seen to be the major difference. In the misaligned
case, parts of the body are also highlighted leading to a misleading
overlay.

4 Experiments and Results

We performed a user study designed to compare the ease with
which a viewer could find differences between a pair of videos us-
ing our approach compared to each of the two baselines described
below.

We selected three different video pairs from Youtube:

1. Two practice serves of Novak Djokovic. The serves are aimed
at different locations in the service box and possibly have dif-
ferent spins.

2. Two successful clean-and-jerk attempts from the same lifter
in a competition. The lifts are with different weights.

3. A pair of drives, one from Tiger Woods and the other from
Rory McIlroy.

Videos are courtesy of the Essential Tennis, Karumor and Golf-
swingHD channels on Youtube. Fig. 10 shows example output
frames for the weightlifting and golf videos. Example output
frames for the tennis videos are shown in Fig. 7.

Figure 10: Output frames from our weightlifting and golf survey
videos.

We evaluated three methods for comparing these videos: side-by-
side (SS), false color channel overlay (CO), and our video diff algo-
rithm (VD). CO is constructed by placing the grayscale frames of
one video into the R and B channels of the output and the grayscale

frames of the second video in the G channel. Areas that appear
magenta and green are different, while areas in grayscale are the
same. For VD and CO, we also show the input video pair next
to the method’s outputs for context. An example output of CO is
shown in Fig. 2b.

Subjects were asked to find as many differences as they could be-
tween each pair within 3 minutes. We did not suggest spatial or
temporal areas to focus on, but did tell them to limit their obser-
vations to the foreground of each scene. Each user was shown the
output of only one method for each video pair. Each subject saw
each method and each pair once, with the order of the methods
and pairs randomized. After completion of the tasks, they ranked
each method on ease of interpretability on a scale of 1 (very hard to
interpret) to 5 (very easy) and were also asked for any other com-
ments/feedback.

Figure 11: Results from the user study. Participants graded the
three methods (SS (side by side), CO (channel overlay) and VD
(our video diff algorithm)) on a scale of 1-5, with 5 indicating that
the method makes visualizing differences very easy and 1 indicating
that the method is very hard to interpret. Subjects graded VD the
best with an average score of 4.04. CO followed with 3.48 and SS
was last with 2.08.

We recruited 54 participants for the study. The participants were
men and women 20−35 years old. Their expertise in sports ranged
widely, but none were professional coaches or athletes. The par-
ticipants took the user study online, without administration or help
from the authors. Fig. 11 shows the distribution of user grades for
the three methods. Users graded VD with an average score of 4.04
out of 5.0, as opposed to 3.48 for CO and 2.08 for SS. Using the
Kolmogorov-Smirnov (KS) test, we can reject the null hypotheses
that SS and CO are from the same distribution (p < 10−9) and that
CO and VD are from the same distribution (p < 0.01).

Table 1 shows the average and standard deviation of grades broken
down by video pair and method. Numbers in parentheses indicate
the size of the sample. The average grade for VD was higher than
CO and SS for all three video pairs. VD’s improvement over CO
was smallest for pair 3. We speculate this was because the golfers
in this pair were different, making it harder for users to compare
their swings.

When examining the type of differences reported, we found that
timing differences (e.g., swing speed in tennis and golf) and sub-
tle spatial differences (e.g., the swing path of the golfers) were dis-
cussed more when using CO and VD than SS. We found no obvious



Method
Pair SS CO VD

1 2.06 ± 0.87(18) 3.59 ± 0.94(17) 4.16 ± 0.83(19)

2 2.27 ± 1.10(15) 3.25 ± 0.72(20) 4.16 ± 0.69(19)

3 1.90 ± 0.77(21) 3.59 ± 0.71(17) 3.75 ± 1.13(16)

Table 1: Average grade ± the standard deviation for each
method/video pair combination. Numbers in parentheses are the
number of samples. VD performed better than SS and CO for all
three video pairs.

qualitative differences in the comments of the CO and VD. We also
found no significant difference between the number of differences
found using each method. The quality and quantity of comments
were more linked to the expertise of viewers (determined based on
vocabulary used and feedback to the survey questions) than on any-
thing else. Additionally, many users felt that the time limit of 3
minutes limited the number of differences they could report.

4.1 Feedback from a Professional Golf Coach

We met with a PGA (Professional Golf Association)-certified golf
coach to determine whether our overlays would be useful in an in-
structional setting. The coach regularly takes video recordings of
his clients during lessons, and uses the video both to instruct and to
analyze techniques. We obtained several of his video recordings of
a novice golfer that the pro shot using an iPhone camera.

a.	
   b.	
  

Figure 12: Sample frames of overlays for videos of a golf student.
The golf instructor noted how the student had a large variance in
motions across his swings. In (a.), his left knee moves differently,
causing movement in his entire left side. In (b.), the follow-through
of the arms are inconsistent.

The coach considered our overlays “eye-opening” in that he did
not realize how much swing-to-swing variation there was. Fig. 12
shows overlay frames for two pairs of the student’s videos. After
examining the overlay video of the first pair, the pro observed that
there was a notable difference in both the “the speed and timing of
the backswing” (not shown in the figure) and that “the timing of the
lower body moving on the way through the ball, especially the left
knee, indicated a lot about his lack of ability to use the lower body
properly.” (Fig. 12(a)). For the second pair of swings, the instructor
found that the differences in arm movement after hitting the ball

during follow-through were significant (Fig. 12(b)). He stated that
all of these differences can lead to major inconsistencies in results.

4.2 Other Videos

Fig. 13 shows sample frames from several other videos on which
we tested our method. Figs. 13(a,b) shows overlays for synthesized
videos of animal locomotion used in a recent publication [Wampler
et al. 2014]. The goal of that work was to predict the gait of animals
based on their shapes. The authors compared videos of the outputs
of their algorithm to videos based on tracking data (ground truth).
We ran our method on their pairs and showed them the output. They
pointed out several differences that they felt would have been hard
to notice with the side-by-side video alone. For the video depicted
in Figure 13(a) of an elephant simulation, the authors commented
that the spacing between the front and back legs is slightly larger
for ground truth. Observing the overlay of an ostrich simulation,
depicted in Fig. 13(b), they noticed that the legs of their model lag
behind the legs of ground truth during the swing phase.

Fig. 13(c) shows an overlay of two ballet dancers trying to dance in
synchrony. In this frame, we see that the dancer of the edge video
has his right arm a little lower than the other dancer. Fig. 13(d)
is an overlay of an individual kicking a soccer ball twice. In the
edge video, the kicking foot rotates a little further during contact.
Fig. 13(e) depicts two fastballs by Major League Baseball pitcher,
Alex Wilson. The back leg of the edge video is lifted higher after
releasing the ball. Finally, Fig. 13(f) is of two deformed rods vi-
brating back and forth. There is a slight difference in the amplitude
of the rod vibrations as shown in this frame.

4.3 Processing Time

Table 2 gives the runtime of our method (without prealignment) for
several videos of varying size. We ran our algorithm on a Macbook
laptop with a 2.6 GHz processor and 16 GB of memory. The code
was written in a mixture of Matlab and mexed C code. The pro-
cessing times show that our method is almost real-time for small
videos and within a few minutes of real-time for relatively large
videos. Although not done here, processing time can be reduced
via parallelization, since our dissimilarity map W is computed in-
dependently for each pair of input frames.

Video Frame Size Number of Frames Time(sec)
Student’s Golf Swings 550x300 240 27

Basketball 1024x496 296 92
Djokovic Tennis Serves 1080x650 403 218

Woods vs. McIlroy Golf Swings 864x728 545 302

Table 2: Runtimes for videos of different sizes.

5 Limitations

A limitation of our method is that dissimilarity is based only on lo-
cal intensity-gradient distributions. This can be misleading because
even if two patches have similar gradient distributions, they are not
necessarily the same region of the object/body of interest. For ex-
ample, in Fig. 13(c), the dancer’s whole left arm in the second video
is translated to the right (in the image plane), but our visualization
only indicates the location change of the hand. In the future we
would like to incorporate matching into our visualization to present
richer information to the user. But as shown earlier, matching algo-
rithms like SIFT Flow can lead to misleading results, which must
be handled appropriately to not ruin the visualization.
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Figure 13: Outputs for various examples. Refer to the text for an
explanation. (a.) and (b.) are of animal locomotion videos in a
recent work [Wampler et al. 2014]. (c.) is of two ballet dancers.
(d.) is of the same person kicking a soccer ball twice. (e.) depicts a
Major League Baseball player throwing two pitches. (f.) is of two
deformed rods vibrating back and forth.

Several subjects in the user study mentioned that better time syn-
chronization would have helped them focus on non-timing related
differences. For example, in the two videos of Novak Djokovic’s
serves, the moment of impact with the ball was not the same. Some
users said that Djokovic’s body motions may have been similar at
impact but it was not easy to see this since they occurred at different
frames. The misalignment is a result of our prealignment optimiza-
tion where we constrained the temporal alignment to a 1D affine
transformation. We could have allowed for a more complex align-
ment in time. But while it may be useful to perform video diffing
by removing temporal differences first, in many cases the temporal
differences are important to the task. For example, the fact that the
racket speed was greater in one video than the other is highly rel-
evant. And as the golf instructor stated, consistency of the speed
of the swing is important. Because of this, it is likely that two in-
dependent video diff techniques, one that compensates for timing
differences and one that does not, will be needed.

Another limitation is that we treat the entire frame as the fore-
ground. Because of this, edges in the scenery of the second video
will be present in the overlay and can cause confusion when super-
imposed on the foreground of the first video. Examples of this in-
clude the background trees and fence in Fig. 13(d), and the shadow
and small gradients in the sand/grass in Fig. 13(e). A useful fu-
ture direction would be to estimate the likelihood that each pixel
belongs to the foreground or background, and adjust the overlay
by removing edges that are certainly part of the background. In
a similar vein, our method can produce bad visualizations when
the camera of either video is moving substantially. This is because
there will be dissimilar temporal gradients between all pixels of
the videos. Stabilization and/or foreground/background subtraction
may be needed to account for this.

Finally, what is highlighted in our visualizations are the motions
projected on the image plane. There is no quantification of the
variation of depth in the foreground’s position or motion. This is
important to remember, since for example, depth variations of the
hands can lead to missed shots in basketball and golf even though
they may look extremely similar in the image plane.

6 Summary

We presented video diffing, a new type of problem in which we
highlight subtle action differences between a pair of videos. Our
video diff algorithm first finds the dissimilarity between motions
using a novel video dissimilarity metric based on spatiotemporal
gradients evaluated at different scales. We then provide a visual-
ization of the difference by overlaying the edges of one video over
the frames of the second video. We color the edges based on the
level of local dissimilarity between the input videos. Our method
is simpler than a full spatiotemporal optimization, which makes it
robust to many different types of scenes and quick to process.

We evaluated the method with a user study with 54 subjects. The
results from the user study indicate that most users preferred our
overlay to side-by-side videos or merging the videos into different
color channels. A professional golf instructor also stated that he
thinks our visualizations can be used in numerous ways throughout
a lesson and in the study of students’ progression over time.
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