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Abstract— We develop a new paradigm for designing fully
streaming, area-efficient FPGA implementations of common
building blocks for vision algorithm. By focusing on avoiding
redundant computation we achieve a reduction of one to two
orders of magnitude reduction in design area utilization as
compared to previous implementations. We demonstrate that
our design works in practice by building five 325 frames per
second, high resolution Harris corner detection cores onto a
single FPGA.

Index Terms— FPGA, Vision, Accelerator, Harris Corner,
Convolution, Non-Max Suppression

I. INTRODUCTION

Field Robotics imposes hard design restrictions on robotics
engineers. Constrained power and space limit computational
resources. These limited computational resources must be
shared between the localization, planning, control, and state
estimation subsystems on the robot.

Carnegie Mellon University’s entry in the DARPA
Robotics Challenge, CHIMP (CMU Highly Intelligent Mo-
bile Platform), was a great example of such restrictions. With
limited on board processing power and degraded communi-
cation with the outside world, the visual odometry system
was always fighting other robot subsystems for CPU time.
This conflict led to design choices that ultimately decreased
the system’s tracking performance.

FPGAs (Field-Programmable Gate Arrays) are low–power,
available in small, ruggedized, radiation-hardened form fac-
tors, and can process large amounts of data in parallel. This
makes FPGAs an excellent candidate for offloading visual
odometry’s vision processing. Furthermore, with advances
in the computing power of FPGAs, we can run the complete
localization system on a single FPGA board that mixes
programmable logic cores and low–level software running on
an embedded ARM processor. However, algorithm design for
the logic portion of the FPGAs differs significantly from that
of CPUs. Processing the high–resolution video feed with the
limited FPGA area proved infeasible with state–of–the–art
algorithms.

To the best of our knowledge, no work has been done
on the growth of FPGA resource utilization in vision and
robotics applications. With n defined as the kernel radius,
current state–of–the–art implementations of computations
(such as convolutions) grow at the rate of O(n2) and quickly
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become infeasible for the kernel sizes required for high
resolutions.

Convolutions are used in many computer vision algorithms
and are often a computational bottleneck. Isotropic and
Gaussian kernels are used to reduce noise and gradients
kernels are used in Harris corners [1], Canny edge detection
[2] and Histogram of Oriented Gradients [3] to compute
moments of the image. Convolutions are also used at the
lowest level of many deep-learning based image recognition
systems often, with window sizes as large as 16px× 16px
[4].

We present a method to significantly reduce the area which
common computer vision building blocks require on a FPGA
by avoiding redundant computation. The method pipelines
well achieving a throughput of one pixel per clock cycle
without using a large area on the FPGA.

We examine redundant computation between adjacent im-
age windows, and propose a method for caching and re-
using the intermediate result in order to reduce the area–
growth as a function of window radius. This enables us to fit
many complex operations onto the FPGA fabric and process
higher–resolution images requiring larger radius windows.

We demonstrate our FPGA algorithm design-paradigm on
two building blocks of computer vision—convolutions and
Non-Max Suppression. Under the assumption of some struc-
ture, we improve convolution area growth with respect to
kernel radius from O(n2) to O(n) and Non-Max Suppression
(NMS) from O(n2) to O(logn).

Finally, we apply our efficient convolutions and NMS to
experimentally demonstrate a Harris corner detector imple-
mentation with extensive filtering. While it takes little area
on the FPGA, it can process 1241×376 pixel images at over
300 frames per second.

II. BACKGROUND AND RELATED WORK

A. Introduction to FPGA Algorithm Design Constraints

The hard-logic imposed restrictions on FPGA algorithms
force different design methodologies than those used to de-
sign for CPUs and GPUs (Graphical Processing Units). First,
FPGAs operate at clock speeds at least an order of magnitude
less than traditional CPU-based systems. Even using a state
of the art FPGA architecture [5], the implementation we
detail later in this paper operates at a frequency of 166MHz.

Although FPGAs operate at much lower clock frequencies
than traditional processors, they can bring much more raw
computational power to bear through parallelization and
pipelining.
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Fig. 1: A comparison of the logic-complexity of different
FPGA NMS implementations. Squares represent data stor-
age and circles represent comparisons. Factored NMS and
Logarithmic NMS are detailed in this paper.

One way in which FPGAs allow parallelization is simply
by making n side-by-side copies of the same logic. These
copies of the logic can be used in parallel, increasing the
amount of raw computation by a factor of n. This, however,
also increases the FPGA resource use by a factor of n.

Most major speedups achieved when porting to FPGAs
come from pipelining. In pipelining, a set of sequential
operations are all executed in parallel on different pieces
of data. Consider the case where we have some logic to
decide what number to multiply each pixel. Our logic might
be represented as a tree. A CPU would process the logic as
illustrated in Figure 2, executing each step per cycle. The
CPU only starts processing pixel 2 at time 3, after it has
finished processing pixel 1.

Furthermore, standard analysis of the algorithm takes ad-
vantage of shorter paths in the logic to reduce the amortized
cost.

Pipelining aims to utilize every computational resource
during every cycle. At every cycle, a new value is fetched
from memory and each previous value advances down the
tree. Thus, after the pipeline is filled, the FPGA produces
a new output during every clock cycle. At best, this speeds
processing by a factor of three in this example, demonstrated
in figure 3.

This allows FPGAs to achieve massive speedups on com-
plicated operations with deep pipelines—they are always
executing every step simultaneously. Amortized algorithms
do not port well to FPGAs, however. Notice how, in Figure
3, pixel 1 must be propagated for the total length of the
pipeline. The FPGA is not able to finish processing it early
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Fig. 2: A CPU executing logic. It finishes processing the first
pixel on the second cycle because it can take advantage of the
shorter logic path associated with the particular pixel value.
After it is done processing the first pixel, it starts processing
the second pixel.

Fig. 3: An FPGA executing logic. The first pixel must
go through the entire pipeline even though processing is
completed at time 2.

because it is already publishing one output per clock cycle.
Also note that even though the FPGA logic executed one side
of a branch, the logic devoted to both sides of the branch
is still there. One side sits idle. This leads to the issue of
an appropriate cost metric for designing FPGA algorithms.
While on a CPU the algorithm runtime is an appropriate
cost metric, all properly pipelined FPGA algorithms are
going to produce one output per clock cycle, regardless of
how difficult the output was to compute. Instead of runtime,
FPGA designers must minimize the amount of logic in their
designs, i.e., the area of their design. Traversing a logical
tree makes sense on the CPU where execution can skip large
chunks of the logic. But on FPGAs, the logic is programmed
into the fabric of the FPGA and remains idle when not used.



Furthermore, it limits the complexity of algorithms that can
fit in the remaining space.

Dependence on neighboring data requires more consider-
ation in a pipelined setting than in a parallelized setting. If
a step of the pipeline requires data which has not yet been
computed or is not yet available, the entire pipeline will stall
until that data becomes available. If the pipeline was waiting
on data generated in earlier part of the pipeline, it will stall
indefinitely.

B. Related Work

There has been significant previous work in accelerating
computer vision algorithms on FPGAs [6], [7], [8], [9],
[10]. This work falls into two categories —implementing full
computer vision algorithms (such as feature detectors), and
implementing the basic building blocks of computer vision
algorithms (such as convolution).

Most full implementations of computer vision algorithms,
such as SURF, are concerned exclusively with throughput
[6], [7]. Pauwels et al. compared an FPGA-accelerated
optical flow system to a GPU accelerated system and demon-
strate a large speedup [8]. These works, however, are rarely
concerned with FPGA resource utilization as long as their
design fits and operates on their FPGA of choice. Addition-
ally, no work has been done on accelerating optimal features
for modern optical flow/visual odometry systems, such as
Badino’s Multi-Frame Integration (MFI), that use Harris
corners [11]. MFI is a particularly promising candidate for
running on embedded systems because it provides state–of–
the–art performance wth a less expensive optimization step
than traditional bundle adjustment-based algorithms [11].

Work concerning the building blocks of computer vision
algorithms such as convolution [12], [13] also tends to focus
on throughput and comparing the performance of FPGA
implementations and GPU implementations of the same
operation. While they demonstrate a massive speedups with
respect to GPU implementations, their convolution imple-
mentations are very inefficient in terms of area, with Cope et
al.’s implementation of an 11x11 convolution taking up 99%
of the area of their FPGA [13]. This makes implementing
detectors like the Harris corner detector difficult, as they
require many convolutions.

While the work on FPGA convolution is extensive, work
on many other useful computer vision building blocks can
be lacking. For example, while NMS has been extensively
studied for the CPU, little work has been done with NMS
on FPGAs. The state–of–the–art NMS algorithms rely on
amortization and as such do not port well to FPGAs [14].

III. METHOD

A. General

The basic premise that we use to reduce FPGA area is
that adjacent windows have redundant computation. Since
pipelining forces us to apply the same logic to every pixel,
we must improve the complexity of the entire logic pathway
that can be executed. This requires splitting the problem into

distinct steps, and in later steps using a neighborhood of val-
ues from the previous step. Avoiding redundant computation
reduces the amount of per-pixel logic and thus use less FPGA
resources. Splitting the process into distinct, sequential steps
allows to easily identify inter–step dependencies and prevent
pipeline stalls. The Kernel radius is defined as n for the rest
of the discussion.

B. Convolution

The first example to which we apply our paradigm is
convolution. The standard way of performing a convolution
on an FPGA is by taking a window in the input image, multi-
plying each element by the corresponding kernel (resulting in
O(n2) multiplications), and then feeding the resulting output
into an adder tree (O(n2) additions) [12], [13].

However, this general convolution does not take advantage
of structure in the kernel, which can result in redundant
computation between adjacent windows. In vision applica-
tions, we can use structure in the kernel to identify redundant
computation.

We identify structure in the kernel by doing a low-rank
approximation. Consider the Singular Value Decomposition
of the kernel K =UΣV . Take the approximation of K, K̂ =

k
∑

i=1
uiσivi with ui and vi the ith column and row vectors of

U and V respectively. The values of Σ indicate how strongly
your approximation is improved by including the particular
vector pair. When considering the convolution, we can see
how this allows us to break it up:

G∗K ≈ G∗

(
k

∑
i=1

uiσivi

)
=

k

∑
i=1

(G∗uiσivi)

=
k

∑
i=1

((G∗ui)∗ (σivi))

Each vector pair can be split into a vertical and horizontal
convolution. For each pair, we create logic for convolving
by one vector that feeds a window-accumulator. This is turn
feeds the convolution by the other vector. The intermedi-
ate windowing is key and allows us to remain perfectly
pipelined. We create parallel logic for each pair of vectors
and sum the results with an adder tree. For an illustration of
the process see Figure 4.

In practice, convolution kernel often factor as a perfect
outer product of two vectors, i.e., kernels are often separable.
This means that we can often let k = 1 and forgo the adder
tree after the individual convolutions.

Gaussian, isotropic average, and gradient kernels are all
separable and can thus be perfectly factorized into a outer
product of vectors. Furthermore, any matrix or 2d function
can be approximated as a sum of outer products.

The factorization is a technique that has been used on CPU
and GPU algorithms before, as it reduces the computational
complexity. However, previous work fails to adapt the strat-
egy to an effective pipelined algorithm [13], [12]. We know
then for an image G, if HV = K then G ∗K = (G ∗H) ∗V .
We now can simply apply the same convolution methods



Fig. 4: Factorized Convolution process. From the input image
G, the convolution by the horizontal vector ∗H is applied
sequentially. The output of the horizontal vector convolution
is then used for the vertical vector convolution ∗V to provide
the output G∗H ∗V . Note how the last processing step reuses
the results from the previous convolution.

Fig. 5: A Non-Max Suppression Comparison Tree as it
advances through two iterations. Note that the comparison
circled was computed two cycles ago.

developed previously, but on n× 1 sized vectors instead of
a single n×n matrix. If the kernel is not separable, we can
approximate the convolution by doing multiple convolutions
via the eigenvectors of K, and then summing them.

In terms of resources, this approach applies 2k, 1 × n
convolutions and uses only O(n) resources. This represents
a significant improvement over the naı̈ve approach of simply
multiplying every element by its corresponding value in the
kernel and then summing them, which uses O(n2) resources.
The final adder tree in our approach requires O(k), resources
which is insignificant in practice in comparison to O(n).

C. Non-Max Suppression (NMS)

A similar idea can be applied to NMS as well. In order
to be a maxima in a n × n window, a pixel must be the
maxima of its own row, and larger than the maxima of the
neighboring rows. Using this idea, we can apply a similar
technique to the factored convolution mentioned above. The
difference is that we use comparison trees instead of adder
trees with multiplication at the leaves.

This reduces resource utilization to O(n), compared to

the naı̈ve comparison tree which requires O(n2). However,
adjacent row and column comparisons still involve large
amounts of redundant computation because we are always
comparing the same pixels. this can can be seen in Figure 5.

Instead of recomputing the comparison each time, we can
store the result in a FIFO (First In First Out) queue. Note
that the FIFO queue for a level i has to be of length n

2i ,
where n is the length of the segment considered, and i = 1
corresponds to the top level. Thus the total sum of FIFO
lengths is O(n), which is the same as the original window.
We then remove all but the leading edge of the comparison
tree, leaving only the O(logn) comparisons as can be see in
Figure 2.

IV. RESULTS

We implemented all examples in Vivado and Vivado HLS
for a Xilinx Zynq Z-7100 FPGA. Vivado HLS is a tool
that generates Verilog and VHDL code from C++ code.
Computational structures such as adder trees were generated
with C++ template meta–programming.

Here we examine the utilization of different resources on
the FPGA of the aforementioned algorithms, and compare
them to the Xilinx reference implementations which are
similar to that of [12], [13]. We provide a quick big-O
analysis for each reference implementation.

A. Convolution Results

The standard convolution multiplies each element in the
window, then adds them. This results in n2 multiplications
and n2 summations, and thus uses O(n2) resources. The
method we described above requires doing n multiplications
and additions in the first stage and n in the second, requiring
2n multipliers and adders. It thus uses O(n) resources.
The below chart lists the predicted resource usage after
HLS synthesis. Optimized utilization is usually about 2

3
of the predicted values. The ultimate utilization values
were not used because synthesis and implementation were
computationally infeasible for the larger window sizes of
the naı̈ve algorithm.

Operation BRAM DSP FF LUT

Optimal 5x5 24 46 5,791 5,791
Reference 5x5 20 77 18,255 44,305
Improvement 0.8x 1.7x 3.2x 7.7x

Optimal 7x7 32 66 8,311 12,916
Reference 7x7 28 149 34,341 82,118
Improvement 0.9x 2.3x 4.1x 6.4x

Optimal 11x11 48 106 13,833 19,928
Reference 11x11 44 365 79,815 188,935
Improvement 0.9x 3.4x 5.8x 9.5x

Our algorithm demonstrates the expected linear growth,
outperforming the naı̈ve 11×11 convolution by a 3.4 times
improvement in DSPs utilization, 5.8 time improvement in
Flip Flops and 9.5 time improvement in Look-Up-Tables.
The increase in Block RAM (BRAM) usage is to be expected



Fig. 6: Flowchart of the FPGA Harris corner implementation

because we partition our memory into more pieces, and thus
cannot use BRAM as efficiently.

B. Non-Max Suppression Results

The naı̈ve NMS method creates a max-tree over the entire
window. This tree again has n2 nodes and thus requires
O(n2) resources. Our optimal comparison tree requires only
O(logn) comparisons and thus O(logn) computational re-
sources. Because our chosen window sizes are relatively
small, the decrease from O(n) to O(logn) did not yield
significant improvement in design area.

Values predicted after HLS synthesis are shown below:

Operation BRAM DSP FF LUT

Linear 5x5 29 0 2,814 4,570
Reference 5x5 29 0 2,466 6,567
Improvement 1x 1x 0.9x 1.4x

Linear 7x7 37 0 4,010 6,986
Reference 7x7 37 0 4,790 12,498
Improvement 1x 1x 1.2x 1.8x

Linear 11x11 53 0 6,669 10,180
Reference 11x11 53 0 11,800 30,184
Improvement 1x 1x 1.8x 3.0x

For the NMS the gains are much less pronounced in the
smaller window sizes. This is due to floating point com-
parisons being significantly cheaper operations than floating
point addition and multiplication.

C. Harris Corner Detector Results

Lowering the resource utilization of the basic building
blocks of computer vision algorithms (such as convolution
and NMS) allows complex vision processing to be acceler-
ated even on modest FPGAs.

Consider the following Harris corner detector detailed in
[15]. It first convolves the image by a 7×7 kernel to get the
x moment, and repeats this convolution for the y moment.

It then uses the x and y moments to compute the second
moments of the image. The three second moments are each
smoothed with a 5 × 5 kernel, and the filtered moments
are used to compute a Harris corner score. Then, through
simultaneous NMS and quadratic interpolation, local maxima
in a 5× 5 window are identified and their coordinates are
estimated to sub–pixel precision. Quadratic interpolation is
done using two 3×3 kernels to identify best-fit coefficients
of a paraboloid on the neighboring Harris Score. A flowchart
illustrating the method is presented in Figure 6.

Since each element of the algorithm is perfectly pipelined
we can do the entire computation efficiently on the FPGA.

The complete implementation runs at 325 frames per
second for 1241 × 376 pixel images on a Xilinx Zynq
Z-7100 using the following predicted resources:

BRAM DSP FF LUT

Harris Core 213 346 57,462 83,141
Z-7100 FPGA 755 2,020 554,800 277,400

V. CONCLUSION

We presented a novel way of designing FPGA algorithms
that exploits redundant computation in adjacent windows to
reduce FPGA resource usage. We also presented a big-O
analysis of FPGA area as a function of window size—the first
time this has been done for FPGA-based vision algorithms
to the knowledge of the authors.

Smaller, more efficient convolution and NMS allow the
implementation of many complex algorithms such as the
Harris Corners detector with larger window sizes than was
previously possible. The ability to run these algorithms
efficiently on an FPGA opens up the ability to use advanced,
real-time, computer vision processing to many embedded
and ruggedized applications. Furthermore the smaller area
corresponds to lower cost and power through the use of
smaller FPGAs. This also leads to the possibility of including
efficient, dedicated logic in ASIC without sacrificing die area
or power consumption.
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