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Abstract. We present a novel algorithm for persistent monitoring of
stochastic events that occur at discrete locations in the environment
with unknown event rates. Prior research on persistent monitoring as-
sumes knowledge of event rates, which is often not the case in robotics
applications. We consider the multi-objective optimization of maximiz-
ing the total number of events observed in a balanced manner subject to
real-world autonomous system constraints. We formulate an algorithm
that quantifies and leverages uncertainty over events statistics to greed-
ily generate adaptive policies that simultaneously consider learning and
monitoring objectives. We analyze the favorable properties of our algo-
rithm as a function of monitoring cycles and provide simulation results
demonstrating our methods effectiveness in real-world inspired monitor-
ing applications.

Keywords: persistent monitoring, optimization and optimal control,
probabilistic reasoning, mobile robots, sensor planning, machine learning

1 Introduction

Robotic surveillance missions often require a mobile robot to navigate an un-
known environment and monitor stochastic events of interest over a long period
of time. Equipped with limited a priori knowledge, the agent is tasked with ex-
ploring the environment by traveling from one landmark to the other and iden-
tifying regions of importance in an efficient way. The overarching monitoring
objective is to observe as many events as possible in a uniform, balanced man-
ner so that sufficient heterogeneous information can be collected across different
parts of the environment. Applications include people and vehicle surveillance of
friendly and unfriendly activity and environmental monitoring of natural phe-
nomena.

In our formulation, we consider monitoring stochastic, instantaneous events
of interest that occur at discrete stations, i.e., locations, over an infinite time
horizon. Our robot is equipped with a limited-range sensor that can only record
accurate measurements when the robot is stationary, e.g., a microphone on a
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UAV. Hence, the robot must travel to each location and listen for events for a
predetermined amount of time before traveling to another location.

We are given a fixed, cyclic path for the robot to traverse, but do not know
the dwell time at each station. The persistent monitoring problem is to compute
the optimal observation time for each station with respect to problem-specific
optimality criteria. In particular, we consider maximizing the number of events
observed in a maximally balanced way to be the overarching monitoring objec-
tive. Our multi-objective problem formulation extends previous work by relaxing
the assumption that the rates of events are known, which introduces the notori-
ous exploration and exploitation trade-off.

This paper contributes the following:

1. A novel per-cycle monitoring problem that hinges on an uncertainty con-
straint, a hard constraint that enables computation of policies conducive to
balancing the exploration and exploitation trade-off.

2. A persistent monitoring algorithm with provable per-cycle guarantees that
quantifies and employs the uncertainty over events’ statistics to generate
per-cycle optimal policies.

3. An analysis proving probabilistic bounds on the accuracy of rate approxi-
mations and the per-cycle optimality of the generated policies as a function
of monitoring cycles.

4. Simulation results that characterize our algorithm’s effectiveness in robotic
surveillance scenarios and compare its performance to state-of-the-art mon-
itoring algorithms.

1.1 Related Work

We build on important prior work in persistent surveillance, sensor schedul-
ing, and machine learning. Robotic surveillance missions have been considered
for a variety of applications and objectives such as ecological monitoring, un-
derwater marine surveillance, and detection of natural phenomena [1–10]. Ex-
amples of monitoring objectives include facilitating high-value data collection
for autonomous underwater vehicles [2], keeping a growing spatio-temporal field
bounded using speed controllers [5], and generating the shortest watchman routes
along which every point in a given space is visible [11].

Surveillance of discrete landmarks is of particular relevance to our work.
Monitoring discrete locations such as buildings, windows, doors using a team of
autonomous micro-aerial vehicles (MAVs) is considered in [3]. [12] presents dif-
ferent approaches to the min-max latency walk problem in a discrete setting. [13]
extends this work to include multiple objectives, i.e. [13] considers the objective
of minimizing the maximum latency and maximizing balance of events across
stations using a single mobile robot. The authors show a reduction of the opti-
mization problem to a quasi-convex problem and prove that a globally optimal
solution can be computed in O(poly(n)) time where n is the number of discrete
landmarks. Persistent surveillance in a discrete setting can be extended to the
case of reasoning over different trajectories as shown in [5,9,14]. However, most
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prior work assumes that the rates of events are known prior to the surveillance
mission, which is very often not the case in real world robotics applications. In
this paper, we relax the assumption of known rates and present an algorithm
with provable guarantees to generate policies conducive to learning event rates
and optimizing the monitoring objectives.

[10] considers controlling multiple agents to minimize an uncertainty metric
in the context of a 1D spatial domain. Decentralized approaches to controlling
a network of robots for purposes of sensory coverage are investigated in [9],
where a control law to drive a network of mobile robots to an optimal sensing
configuration is presented. Persistent monitoring of dynamic environments has
studied in [4,5,7]. For instance, [7] considers optimal sensing in a time-changing
Gaussian Random Field and proposes a new randomized path planning algo-
rithm to find the optimal infinite horizon trajectory. [15] presents a surveillance
method based on Partially Observable Markov Decision Processes (POMDPs),
however, POMDP-based approaches are often computationally intractable, es-
pecially when the action set includes continuous parameters, as in our case.

Persistent surveillance is closely related to sensor scheduling [16], sensor po-
sitioning [17], and coverage [18]. Previous approaches have considered persistent
monitoring in the context of a mobile sensor [19]. Other related work includes
variants and applications of the Orienteering Problem (OP) to generate infor-
mative paths that are constrained to a fixed length or time budget [20]. Yu et
al. present an extension of OP to monitor spatially-correlated locations within
a predetermined time [21]. In [22] and [23] the authors consider the OP problem
in which the reward is a known function of the time spent at each point of inter-
est. In contrast to our work, approaches in OP predominantly consider known
environments and budget-constrained policies that visit each location at most
once and optimize only a single objective.

The main challenge for the problem we address in this paper stems from
the inherent exploration and exploitation trade-off, which has been rigorously
analyzed in the form of regret bounds in Reinforcement Learning [24–26] and
more relevantly, in Multi-armed Bandit (MAB) literature [27–29]. However, the
traditional MAB problem considers minimizing regret with respect to the ac-
cumulated reward by appropriately pulling one of the K ∈ N+ levers at each
discrete time step to obtain a stochastic reward that is generally assumed to
bounded or subgaussian.

Our work differs from the canonical MAB formulation in that we consider a
multi-objective optimization problem, i.e. we consider both the number and bal-
ance of event observations, in the face of travel costs, distributions with infinite
support, cyclic policy structure, and continuous state and parameter space. To
the best of our knowledge, this paper presents the first treatment of a MAB vari-
ant exhibiting all of the aforementioned complexities and an adaptive algorithm
with provable guarantees as a function of monitoring cycles.
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2 Problem Definition

Let there be n ∈ N+ spatially-distributed stations in the environment whose
locations are known. At each station i ∈ [n], stochastic events of interest occur
according to a Poisson process with an unknown, station-specific rate parameter
λi that is independent of other stations’ rates. We assume that the robot executes
a given cyclic path, taking di,j > 0 time to travel from station i to station j

and let D :=
∑n−1
i=1 di,i+1 + dn,1 denote the total travel time per cycle. The

robot can only observe events at one station at any given time and cannot make
observations while traveling.

We denote each complete traversal of the cyclic path as a monitoring cy-
cle, indexed by k ∈ N+. We denote the observations times for all stations
πk := (t1,k, . . . , tn,k) as the monitoring policy at cycle k. Our monitoring ob-
jective is to generate policies that maximize the number of events observed in
a balanced manner across all stations within the allotted monitoring time Tmax

that is assumed to be unknown and unbounded. We introduce the function
fobs(Π) that computes the total number of expected observations for a sequence
of policies Π := (πk)k∈N+

: fobs(Π) :=
∑
πk

∑
i∈[n] E[Ni(πk)], where Ni(πk) is

the Poisson random variable, with realization ni,k, denoting the number of events
observed at station i under policy πk and E[Ni(πk)] := λiti,k by definition.

To reason about balanced attention, we let fbal(Π) denote as in [13] the
expected observations ratio taken over the sequence of policies Π:

fbal(Π) := min
i∈[n]

∑
πk

E[Ni(πk)]∑
πk

∑n
j=1 E[Nj(πk)]

. (1)

The idealized persistent surveillance problem is then:

Problem 1 (Idealized Persistent Surveillance Problem). Generate the optimal se-
quence of policies Π∗ = argmaxΠ∈S fobs(Π) where S is the set of all possible
policies that can be executed within the allotted monitoring time Tmax.

Generating the optimal solution Π∗ at the beginning of the monitoring pro-
cess is challenging due to the lack of knowledge regarding both the upper bound
Tmax and the station-specific rates. Hence, instead of optimizing the entire se-
quence of policies at once, we take a greedy approach and opt to subdivide the
problem into multiple, per-cycle optimization problems. For each cycle k ∈ N+,
our goal is to adaptively generate the policy π∗k that optimizes the monitoring
objectives with respect to the most up-to-date knowledge of event statistics. We
let f̂bal represent the per-cycle counterpart of fbal

f̂bal(πk) := min
i∈[n]

E[Ni(πk)]∑n
j=1 E[Nj(πk)]

.

We note that the set of policies that optimize f̂bal is uncountably infinite and
policies of all possible lengths belong to this set [13]. To generate observation
times that are conducive to exploration, we impose the hard constraint ti,k ≥ tlowi,k
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on each observation time, where tlowi,k is a lower bound that is a function of our
uncertainty of the rate parameter λi (see Sec. 3). The optimization problem that
we address in this paper is then of the following form:

Problem 2 (Per-cycle Monitoring Optimization Problem). At each cycle k ∈ N+,
generate a per-cycle optimal policy π∗k satisfying

π∗k ∈ argmax
πk

f̂bal(πk) s.t. ∀i ∈ [n] ti,k ≥ tlowi,k . (2)

3 Methods

In this section, we present our monitoring algorithm and detail the main sub-
routines employed by our method to generate dynamic, adaptive policies and
interleave learning and approximating of event statistics with policy execution.

3.1 Algorithm for Monitoring Under Unknown Event Rates

The entirety of our persistent surveillance method appears as Alg. 1 and employs
Alg. 2 as a subprocedure to generate adaptive, uncertainty-reducing policies for
each monitoring cycle.

Algorithm 1: Core monitoring al-

gorithm

1 αi ← αi,0; βi ← βi,0;

λ̂i ← αi/βi;

2 Loop

3 π∗ ← Algorithm2(αi, βi);

4 for i ∈ [n] do

5 Observe for t∗i time to

obtain ni observations;

6 αi ← αi +ni,; βi ← βi + t∗i ;

7 λ̂i ← αi/βi;

Algorithm 2: Generates a per-

cycle optimal policy π∗

1 for i ∈ [n] do

2 Compute tlowi using (8);

3 πlow ← (tlow1 , . . . , tlown );

4 Nmax ← maxi∈[n] t
low
i αi/βi ;

5 for i ∈ [n] do

6 Compute t∗i using Nmax

according to (10);

7 return π∗ = (t∗1, . . . , t
∗
n);

3.2 Learning and Approximating Event Statistics

We use the Gamma distribution as the conjugate prior for each rate parameter
because it provides a closed-form expression for updating the posterior distri-
bution after observing events. We let Gamma(αi, βi) denote the Gamma distri-
bution with hyper-parameters αi, βi ∈ R+ that are initialized to user-specified
values αi,0, βi,0 for all stations i and are updated as new events are observed.

For any arbitrary number of events ni,k ∈ N observed in ti,k time, the poste-
rior distribution is given by Gamma(αi+ni,k, βi+ ti,k) for any arbitrary station
i ∈ [n] and cycle k ∈ N+. For notational convenience, we let Xk

i := (ni,k, ti,k)
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represent the summary of observations for cycle k ∈ N+ and define the aggre-
gated set of observations up to any arbitrary cycle as X1:k

i := {X1
i , X

2
i , . . . , X

k
i }

for all stations i ∈ [n]. After updating the posterior distribution using the hyper-
parameters, i.e. αi ← αi + ni,k, βi ← βi + ti,k, we use the maximum probabiliy

estimate of the rate parameter λi, denoted by λ̂i,k for any arbitrary station i:

λ̂i,k := E[λi|X1:k
i ] =

αi,0 +
∑n
k=1 ni,k

βi,0 +
∑n
k=1 ti,k

=
αi
βi
. (3)

3.3 Per-cycle Optimization and the Uncertainty Constraint

Inspired by confidence-based MAB approaches [28–30], our algorithm adaptively
computes policies by reasoning about the uncertainty of our rate approximations.
We introduce the uncertainty-constraint, an optimization constraint that enables
the generating a station-specific observation time based on uncertainty of each
station’s parameter. The constraint helps bound the policy lengths adaptively
over the course of the monitoring process so that approximation uncertainty
decreases uniformly across all stations. We use the posterior variance of the rate
parameter λi, Var(λi|X1:k

i ), as our uncertainty measure of each station i after
executing k cycles. We note that in our Gamma-Poisson model, Var(λi|X1:k

i ) :=
αi

β2
i

by definition of the Gamma distribution.

Uncertainty constraint For a given δ ∈ (0, 1), ε ∈
(
0, 2(1 + 2e1/π)−1

)
and arbi-

trary cycle k ∈ N+, πk must satisfy the following

∀i ∈ [n] P
(
Var(λi|X1:k

i , πk) ≤ δVar(λi|X1:k−1
i )

∣∣X1:k−1
i

)
> 1− ε. (4)

We incorporate the uncertainty constraint as a hard constraint and recast
the per-cycle optimization problem from Sec. 2 in terms of the optimization
constraint.

Problem 3 (Recast Per-cycle Monitoring Optimization Problem). For each mon-
itoring cycle k ∈ N+ generate a per-cycle optimal policy π∗k that simultaneously
satisfies the uncertainty constraint (4) and maximizes the balance of observa-
tions, i.e.,

π∗k ∈ argmax
πk

f̂bal(πk) (5)

s.t. ∀i ∈ [n] P
(
Var(λi|X1:k

i , πk) ≤ δVar(λi|X1:k−1
i )

∣∣X1:k−1
i

)
> 1− ε.

3.4 Controlling Approximation Uncertainty

We outline an efficient method for generating observation times that satisfy
the uncertainty constraint and induce uncertainty reduction at each monitoring
cycle. We begin by simplifying (4) to obtain

P
(
Ni(ti,k) ≤ δk(ti,k)|X1:k−1

i

)
> 1− ε (6)
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where Ni(ti,k) ∼ Pois(λiti,k) by definition of Poisson process and k(ti,k) :=
δαi(βi+ti,k)2/β2

i −αi. Given that the distribution of the random variable Ni(ti,k)
is a function of the unknown parameter λi, we use interval estimation to reason
about the cumulative probability distribution of Ni(ti,k).

For each monitoring cycle k ∈ N+ we utilize previously obtained observations
X1:k−1
i to construct the equal-tail credible interval for each parameter λi, i ∈ [n]

defined by the open set (λli, λ
u
i ) such that

∀λi ∈ R+ P (λi ∈ (λli, λ
u
i )|X1:k−1

i ) = 1− ε

where ε ∈ (0, 2(1 + 2e1/π)−1). By leveraging the relation between the Poisson
and Gamma distributions, we compute the end-points of the equal-tailed credible
interval:

λli :=
Q−1(αi,

ε
2 )

βi
λui :=

Q−1(βi, 1− ε
2 )

βi

where Q−1(a, s) is the Gamma quantile function and αi and βi are the posterior
hyper-parameters after observations X1:k−1

i . Given that we desire our algorithm
to be cycle-adaptive (Sect. 2), we seek to generate the minimum feasible obser-
vation time satisfying the uncertainty constraint for each station i ∈ [n], i.e.,

tlowi,k = inf
ti,k∈R+

ti,k s.t. P
(
Ni,k(ti,k) ≤ δk(ti,k)|X1:k−1

i

)
> 1− ε. (7)

For computational efficiency in the optimization above, we opt to use a tight
and efficiently-computable lower bound for approximating the Poisson cumula-
tive distribution function that improves upon the Chernoff-Hoeffding inequalities
by a factor of at least two [31]. As demonstrated rigorously in Lemma 1, the ex-
pression for an approximately-minimal observation time satisfying constraint (4)
is given by

tlowi,k := t ∈ R+ | DKL

(
Pois(λui t) ||Pois(k(t))

)
−Wε = 0 (8)

where DKL

(
Pois(λ1) ||Pois(λ2)

)
is the Kullback-Leibler (KL) divergence be-

tween two Poisson distributions with mean λ1 and λ2 respectively and Wε is

defined using the Lambert W function [32]: Wε = 1
2W

( (ε−2)2
2ε2π

)
. An appropri-

ate value for tlowi,k can be obtained by invoking a root-finding algorithm such as
Brent’s method on the equation above [33].

The constant factor δ ∈ (0, 1) is the exploration parameter that influences
the rate of uncertainty decay. Low values of δ lead to lengthy, and hence less
cycle-adaptive policies, whereas high values lead to shorter, but also less efficient
policies due to incurred travel time. We found that values generated by a logistic
function with respect to problem-specific parameters as input worked well in
practice for up to 50 stations: δ(n) := (1 + exp(−n/D))−1 where D is the total
travel time per cycle.

3.5 Generating Balanced Policies that Consider Approximation
Uncertainty

We build upon the method introduced in the previous section to generate a
policy π∗k that simultaneously satisfies the uncertainty constraint and balances
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attention given to all stations in approximately the minimum time possible.
The key insight is that the value of tlowi,k given by (8) acts as a lower bound
on the observation time for each station i ∈ [n] for satisfying the uncertainty
constraint (see Lemma 2). We also leverage the following fact from [13] regarding
the optimality of the balance objective for a policy πk:

E[N1(πk)] = · · · = E[Nn(πk)]⇔ πk ∈ argmax
π

f̂bal(π). (9)

We use a combination of this result and the fact that any observation time
satisfying ti,k ≥ tlowi,k also satisfies the uncertainty constraint to arrive at an
expression for the optimal observation time for each station. In constructing
the optimal policy π∗k = (t∗1,k, . . . , t

∗
n,k), we first identify the “bottleneck” value,

Nmax, which is computed using the lower bounds for each ti,k, i.e., Nmax :=

maxi∈[n] λ̂i,kt
low
i,k . Given (9), we use the bottleneck value Nmax to set the value

of each observation time t∗i,k appropriately so that each t∗i,k ≥ tlowi,k and the
policy defined by π∗k := (t∗1,k, . . . , t

∗
n,k) maximizes the balance objective function.

Namely, the optimal observation times for all stations which constitute the per-
cycle optimal policy π∗k = (t∗1,k, . . . , t

∗
n,k) are computed individually:

∀k ∈ N+ ∀i ∈ [n] t∗i,k :=
Nmax

λ̂i,k
= Nmax

βi
αi
. (10)

4 Analysis

The outline of results in this section is as follows: we begin by proving the
uncertainty-reducing property and per-cycle optimality of policies generated by
Alg. 2 with respect to the rate approximations. We present a probabilistic bound
on posterior variance and error of our rate approximations with respect to the
ground-truth rates by leveraging the properties of each policy. We use the previ-
ous results to establish a probabilistic bound on the per-cycle optimality of any
arbitrary policy generated by Alg. 2 with respect to the ground-truth optimal
solution of Problem 3.

We impose the following assumption on user-specified input.

Assumption 1. The parameters ε and δ are confined to the intervals (0, 2(1 +
2e1/π)−1) and (0, 1) respectively, i.e., ε ∈ (0, 2(1 + 2e1/π)−1), δ ∈ (0, 1).

A policy πk is said to be approximately-optimal at cycle k ∈ N+ if πk
is an optimal solution to Problem 3 with respect to the rate approximations
λ̂1,k, . . . , λ̂n,k, i.e., if it is optimal under the approximation of expectation: E[Ni(πk)]

≈ λ̂i,kti,k ∀i ∈ [n]. In contrast, a policy πk is ground-truth optimal if it is an op-
timal solution to Problem 3 with respect to the ground-truth rates λ1, . . . , λn.
For sake of notational brevity, we introduce the function g : R→ R denoting

g(x) := 1− e−x

max
{

2, 2
√
πx
} ,
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and note the bound established by [31] for a Poisson random variable Y with
mean m and k ∈ R+ such that k ≥ m

P
(
Y ≤ k) > g

(
DKL(Pois(m) ||Pois(k))

)
. (11)

We begin by proving that each policy generated by Alg. 2 is optimal with
respect to the per-cycle optimization problem (Problem 3).

Lemma 1 (Satisfaction of the uncertainty constraint). The observation
time tlowi,k given by (8) satisfies the uncertainty constraint (4) for any arbitrary
station i ∈ [n] and iteration k ∈ N+.

Proof. We consider the left-hand side of (6) from Sect. 3 and marginalize over
the unknown parameter λi ∈ R+:

P (Ni(ti,k) ≤ k(ti,k)|X1:k−1
i ) =

∫ ∞
0

P (Ni(ti,k) ≤ k(ti,k)|X1:k−1
i , λ)P (λ|X1:k−1

i ) dλ

where the probability is with respect to the random variableNi(ti,k) ∼ Pois(λti,k)
∀λ ∈ R+ by definition of a Poisson process with parameter λ. Using the equal-
tails credible interval constructed in Alg. 2, i.e. the interval (λli, λ

u
i ) satisfying

∀i ∈ [n] ∀λi ∈ R+ P (λli > λi|X1:k−1
i ) = P (λui < λi|X1:k−1

i ) =
ε

2
,

we establish the inequalities:

P (Ni(ti,k) ≤ k(ti,k)|X1:k−1
i ) >

∫ λu
i

0

P (Ni(ti,k) ≤ k(ti,k)|X1:k−1
i , λ)P (λ|X1:k−1

i ) dλ

≥ P (Ni(ti,k) ≤ k(ti,k)|X1:k−1
i , λui )

∫ λu
i

0

P (λ|X1:k−1
i ) dλ

= (1− ε

2
)P (Ni(ti,k) ≤ k(ti,k)|X1:k−1

i , λui ). (12)

where we utilized the fact that P
(
Ni(ti,k) ≤ k(ti,k)|X1:k−1

i , λui
)

is monotonically
decreasing with respect to λ. By construction, tlowi,k satisfies

DKL(Pois(λui t
low
i,k ) ||Pois(k(tlowi,k ))) = Wε which yields 1 − g(Wε) = 1 − ε

2−ε by
definition and thus by (11) we have:

P (Ni(t
low
i,k ) ≤ k(tlowi,k )|X1:k−1

i , λui ) > 1− g(Wε) = 1− ε

2− ε
.

Combining this inequality with the expression of (12) establishes the result.

Lemma 2 (Monotonicity of solutions satisfying (4)). For any arbitrary
station i ∈ [n] and monitoring cycle k ∈ N+, the observation time ti,k satisfying
ti,k ≥ tlowi,k , where tlowi,k is given by (8), satisfies the uncertainty constraint.

Theorem 1 (Per-cycle approximate-optimality of solutions). For any
arbitrary cycle k ∈ N+, the policy π∗k := (t∗1,k, . . . , t

∗
n,k) generated by Alg. 2 is an

approximately-optimal solution with respect to Problem 3.
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Proof. By definition of (10), we have for any arbitrary cycle k ∈ N+ and station

i ∈ [n], t∗i,k = Nmax/λ̂i,k ≥ tlowi,k by definition of Nmax := maxi∈[n] λ̂i,kt
low
i,k .

Applying Lemma 2 and observing that

λ̂1,kt
∗
1,k = Nmax, λ̂2,kt

∗
2,k = Nmax, . . . , λ̂n,kt

∗
n,k = Nmax

implies that the uncertainty constraint is satisfied for all stations i ∈ [n] and

that π∗k ∈ argmaxπk
f̂bal(πk), which establishes the optimality of πk with respect

to Problem 3.

Using the fact that each policy satisfies the uncertainty constraint, we estab-
lish probabilistic bounds on uncertainty, i.e. posterior variance, and rate approx-
imations.

Lemma 3 (Bound on posterior variance). After executing an arbitrary
number of cycles k ∈ N+, the posterior variance Var(λi|X1:k

i ) is bounded above
by δkVar(λi) with probability at least (1− ε)k, i.e.,

∀i ∈ [n] ∀k ∈ N+ P
(
Var(λi|X1:k

i ) ≤ δkVar(λi)|X1:k
i

)
> (1− ε)k

for all stations i ∈ [n] where Var(λi) := αi,0/β
2
i,0 is the prior variance.

Proof. Iterative application of the inequality Var(λi|X1:k
i ) ≤ δVar(λi|X1:k−1

i )
each with probability 1−ε by the uncertainty constraint (4) yields the result.

Corollary 1 (Bound on variance of the posterior mean). After execut-
ing an arbitrary number of cycles k ∈ N+, the variance of our approximation
Var

(
λ̂i,k|X1:k−1

i

)
is bounded above by δk−1Var(λi) with probability greater than

(1− ε)k−1, i.e.,

∀i ∈ [n] P
(
Var(λ̂i,k|X1:k−1

i ) ≤ δk−1Var(λi)|X1:k−1
i

)
> (1− ε)k−1.

Proof. Application of the law of total conditional variance and invoking Lemma
3 yields the result.

Theorem 2 (ξ-bound on approximation error). For all ξ ∈ R+ and cycles

k ∈ N+, the inequality |λ̂i,k−λi| < ξ holds with probability at least (1−ε)k−1(1−
δk−1Var(λi)

ξ2 ), i.e.,

∀i ∈ [n] P
(
|λ̂i,k − λi| < ξ|X1:k−1

i

)
> (1− ε)k−1

(
1− δk−1Var(λi)

ξ2
)
.

Proof. Applying Corollary 1 and using Chebyshev’s inequality gives the result.

Theorem 3 (∆-bound on optimality with respect to Problem 3). For

any ξi ∈ R+, i ∈ [n], k ∈ N+, given that |λ̂i,k − λi| ∈ (0, ξi) with probability as
given in Theorem 2, let σmin :=

∑n
i=1(λi − ξi)−1 and σmax :=

∑n
i=1(λi + ξi)

−1.
Then, the objective value of the policy π∗k at iteration k is within a factor of ∆ of
the ground-truth optimal solution, where ∆ := σmin

σmax
with probability greater than

(1− ε)n(k−1)
(
1− δk−1Var(λi)

ξ2

)n
.
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Proof. Note that for any arbitrary total observation time T ∈ R+, a policy
πk = (t∗1,k, . . . , t

∗
n,k) satisfying

∀i ∈ [n] t∗i,k :=
T

λi
∑n
l=1

1
λl

. (13)

optimizes the balance objective function f̂bal [13]. Using the fact that |λ̂i,k−λi| <
ξi with probability given by Theorem 2, we arrive at the following inequality for
f̂bal(π

∗
k)

f̂bal(π
∗
k) >

T∑n
l=1(λi+ξl)−1

nT∑n
l=1(λl−ξl)−1

=

∑n
l=1(λl − ξl)−1

n
∑n
l=1(λl + ξl)−1

with probability at least (1− ε)n(k−1)
(
1− δk−1Var(λi)

ξ2

)n
.

5 Results

We evaluate the performance of Alg. 1 in two simulated scenarios modeled after
real-world inspired monitoring tasks: (i) a synthetic simulation in which events
at each station precisely follow a station-specific Poisson process and (ii) a sce-
nario simulated in Armed Assault (ARMA) [34], a military simulation game,
involving detections of suspicious agents. We note the statistics do not match
our assumed Poisson model, and yet our algorithm performs well compared to
other approaches. We compare Alg. 1 to the following monitoring algorithms:

1. Equal Time, Min. Delay (ETMD): computes the total cycle time to minimize
latency Tobs [13] and partitions Tobs evenly across all stations.

2. Bal. Events, Min. Delay (BEMD): the algorithm introduced by [13] which
generates policies that minimize latency and maximize observation balance.

3. Incremental Search, Bal. Events (ISBE): generates policies to maximize bal-
ance that increase in length by a fixed amount ∆obs ∈ R+ after each cycle.

4. Oracle Algorithm (Oracle Alg.): an omniscient algorithm assuming perfect
knowledge of ground-truth rates and monitoring time Tmax where each ob-
servation time is generated according to (13).

5.1 Synthetic Scenario

We consider the monitoring scenario involving the surveillance of events in three
discrete stations over a monitoring period of 10 hours. We characterize the aver-
age performance of each monitoring algorithm with respect to 10,000 randomly
generated problem instances with the following statistics:

1. Prior hyper-parameters: αi,0 ∼ Uniform(1, 20) and βi,0 ∼ Uniform(0.75, 1.50).
2. Rate parameter of each station: µλi = 2.23 and σλi = 1.02 events per minute.
3. Initial percentage error of the rate estimate λi,0, denoted by ρi: µρi =

358.29% and σρi = 221.32%.
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4. Travel cost from station i to another j: µdi,j = 9.97 and σdi,j = 2.90 minutes.

where µ and σ refer to standard deviation and variance of each parameter re-
spectively and the transient events at each station i ∈ [n] are simulated precisely
according to Pois(λi).

The performance of each algorithm with respect to the the monitoring ob-
jectives defined in Sect. 2 is shown in Figs. 1a and 1b respectively. The figures
show that our algorithm is able to generate efficient policies that enable the robot
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Fig. 1: Results of the synthetic simulation averaged over 10,000 trials that char-
acterize and compare our algorithm to the four monitoring algorithms in ran-
domized environments containing three discrete stations.
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to observe significantly more events that achieve a higher balance in compari-
son to those computed by other algorithms (with exception of Oracle Alg.) at
all times of the monitoring process. Figs. 1c and 1d depict the efficiency of each
monitoring algorithm in rapidly learning the events’ statistics and generating ac-
curate approximations. The error plots show that our algorithm achieves lower
measures of error at any given time in comparison to those of other algorithms
and supports our method’s practical efficiency in generating exploratory policies
conducive to rapidly obtaining accurate approximations of event statistics. Figs.
1a-1d show our algorithm’s dexterity in balancing the inherent trade-off between
exploration vs. exploitation.

Fig. 2: Viewpoints from two stations in the ARMA simulation of the yellow
backpack scenario. Agents wearing yellow backpacks whose detections are of
interest appear in both figures.

5.2 Yellow Backpack Scenario

In this subsection, we consider the evaluation of our monitoring algorithm in
a real-world inspired scenario, labeled the yellow backpack scenario, that en-
tails monitoring of suspicious events that do not adhere to the assumed Poisson
model (Sect. 2). Using the military strategy game ARMA, we simulate human
agents that wander around randomly in a simulated town. A subset of the agents
wear yellow backpacks (see Fig. 2). Under this setting, our objective is to op-
timally monitor the yellow backpack-wearing agents using three predesignated
viewpoints, i.e. stations. We considered a monitoring duration of 5 hours under
the following simulation configuration:

1. Environment dimensions: 250 meters x 250 meters (62, 500 meters2).
2. Number of agents with a yellow backpack: 10 out of 140 (≈ 7.1% of agents).
3. Travel cost (minutes): d1,2 = 3, d2,3 = 2, d3,1 = 12.

We used the Faster Region-based Convolutional Neural Network (Faster R-
CNN, [35]) for recognizing yellow backpack-wearing agents in real-time at a
frequency of 1 Hertz. We ran the simulation for a sufficiently long time in or-
der to obtain estimates for the respective ground-truth rates of 23.3, 20.3, and
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18.5 yellow backpack recognitions per minute, which were used to generate Figs.
3c and 3d. The results of the yellow backpack scenario, shown in Figs. 3a-3d,
tell the same story as did the results of the synthetic simulation. We note that
at all instances of the monitoring process, our approach that leverages uncer-
tainty estimates outperforms others in generating balanced policies conducive to
efficiently observing more events and obtaining accurate rate approximations.
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Fig. 3: The performance of each monitoring algorithm evaluated in the ARMA-
simulated yellow backpack scenario.
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6 Conclusion

In this paper, we presented a novel algorithm with provable guarantees for mon-
itoring stochastic, transient events that occur at discrete stations over a long
period of time. The algorithm developed in this paper advances the state of
the art in persistent surveillance by removing the assumption of known event
rates. Our simulation experiments show that our approach has potential appli-
cations to important real world scenarios such as detection and tracking efforts
at a large scale. We conjecture that our algorithm can be extended to persistent
surveillance of events in dynamic environments where event statistics are both
unknown and time-varying.
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